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Continuous logic

Continuous �rst order logic is to Boolean �rst order logic as [a, b] is to {T ,F}
Structures are complete bounded metric spaces, d(x , y) replaces x = y .

Formulas are real-valued, uniformly continuous, bounded.

Connectives are continuous, quanti�ers are sup and inf.

Contains Boolean �rst order logic: {0, 1}-valued structures.

Abstract continuous model theory: generalise classical results/tools � and deal with �surprises�

Compactness, Löwenheim-Skolem, stability, ℵ0-stability, Morley, ... ✓

Strongly minimal sets, Baldwin-Lachlan ✗(?)

Omitting types, Ryll-Nardzewski ✓

ℵ0-categorical reconstruction (Coquand, a.k.a. Ahlbrandt-Ziegler) ✓

No 2 models ✗

Skolem functions: �choosing witnesses� ✗

My topic today: non-ℵ0-categorical reconstruction . . .
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The Coquand / Ahlbrandt-Ziegler reconstruction

De�nition

Let T be an ℵ0-categorical theory (complete in a countable language). Let M be any countable model
of T and G (T ) = Aut(M), equipped with the topology of pointwise convergence.

Theorem (Coquand, published by Ahlbrandt & Ziegler ; B. & Kaïchouh)

Let T and T ′ be ℵ0-categorical. Then G (T ) ≃ G (T ′) as topological groups if and only if T and
T ′ are bi-interpretable.

Same, for continuous logic (replace countable with separable).

Moreover:

We can characterise groups of the form G (T ) (Polish, Roeolcke precompact, ...)

From G = G (T ) we can explicitly reconstruct a theory T ′ bi-interpretable with T .
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What is good and what is less good about ℵ0-categorical reconstruction

Theorem (Coquand, published by Ahlbrandt & Ziegler ; B. & Kaïchouh)

�ℵ0-categorical T (up to bi-interpretation)� equals �Roelcke-precompact Polish group G = G (T )�.

Connection between model theory (in T ) and dynamics (of G (T )) � Ibarlucía, Tsankov, B., and
others.

In one direction: subjects many non-locally-compact Polish groups �of interest� to model-theoretic
treatment, e.g., Property (T) for Roelcke-precompact groups (Ibarlucía).

In the other direction: Ibarlucía's (re-)proof of the preservation of NIP under randomisation: if T
is countably/separably categorical and NIP (or stable), then so is TR .

But:

Speci�c to ℵ0-categorical theories.
In order to cover non-ℵ0-categorical theories, we need topological groupoids of isomorphisms between
countable / separable structures.
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Topological groupoids

De�nition

A groupoid is a set G equipped with a partial composition law and total inversion map, satisfying
appropriate axioms [e.g., all isomorphisms of a small category].

Its basis is B(G) = {e ∈ G : e2 = e} [all identity morphisms ≃ all objects].

The source of g ∈ G is sg = g−1g ∈ B(G) [source object].

The target of g ∈ G is tg = gg−1 ∈ B(G) [target object].

B(G) is a singleton if and only if (G, ·,−1) is a group.

De�nition

A topological groupoid is a groupoid equipped with a topology, such that the composition (on its
domain) and inversion are continuous.
It is open if in addition, the source map s : G → B(G) is open (equivalently, the target map,
equivalent, the composition law).
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Easy case: non-ℵ0-categorical reconstruction in Boolean logic

Theorem (B.)

To every theory T (complete, in a countable language L, in Boolean logic) we can associate a
topological groupoid G(T ) such that:

G(T ) is an open topological groupoid over the Cantor space: B(G) ≃ 2N.

It is a complete bi-interpretation invariant for T :

T and T ′ are bi-interpretable if and only if G(T ) ≃ G(T ′).

Moreover, from G = G(T ), given as a topological groupoid, we can explicitly construct a theory T ′

that is bi-interpretable with T .
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Main di�culty: constructing G(T ) (in Boolean logic, for the while)

ℵ0-categorical case, reformulated

Say a = (ai : i ∈ N) enumerates M ⊨ T . Then a �codes� M, and as a topological group

G (T ) = Aut(M) ≃
{
tp(a, b) : tp(a) = tp(b) and dcl(a) = dcl(b)

}
⊆ S2×N(T )

g 7→ tp(ga, a)

Group law: tp(a, b) · tp(b, c) = tp(a, c).

General approach: a �good� set D of codes for models =⇒ a topological groupoid

GD (T ) =
{
tp(a, b) : a, b ∈ D and dcl(a) = dcl(b)

}
⊆ S(T ).

law tp(a, b) · tp(b, c) = tp(a, c)

basis BD (T ) =
{
tp(a, a) : a ∈ D

}
≃

{
tp(a) : a ∈ D

}
= SD (T )

All that's left is to �nd D. . .
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Codes for models, via the Tarski-Vaught test

De�nition

Fix a sequence of formulas Φ =
(

φn
)
, such that ∀x<n ∃y φn(x<n, y) is valid. De�ne DΦ ⊆ MN:

a = (an : n ∈ N) ∈ DΦ ⇐⇒ φn(a<n, an) for all n.

Assuming Φ is rich enough: DΦ is a good set of codes for models!

Every a ∈ DΦ enumerates a model.

Every countable model is enumerated by a member of DΦ.

DΦ is type-de�nable, in in�nitely many variables.

In fact it is de�nable in the sense of continuous logic (AKA strictly pro-de�nable by
Hrushovski-Loeser): every projection of DΦ to �nitely many coordinates is de�nable.
(The projection to the �rst n coordinates is de�ned

∧
k<n φk (x<k , xk ).)

Do DΦ and GDΦ (T ) depend on Φ?
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De�nition of G(T )

Proposition (Uniqueness of DΦ and GDΦ(T ))

If Φ and Ψ are both rich, then there exists a de�nable bijection DΦ ≃ DΨ. Consequently,
GDΦ (T ) ≃ GDΨ (T ).

=⇒ canonical topological groupoid

G(T ) = GDΦ (T ) =
{
tp(a, b) : a, b ∈ DΦ and dcl(a) = dcl(b)

}
basis: B(T ) =

{
tp(a, a) : a ∈ DΦ

}
≃ SDΦ (T ) ≃ Cantor.

It is Polish (dcl(a) = dcl(b) is Gδ) and open (since DΦ is de�nable).

Theorem (Restated)

The topological groupoid G(T ) is a complete bi-interpretation invariant for T .
Moreover, a theory bi-interpretable with T can be explicitly reconstructed from G(T ).
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Now, let's just generalise this to continuous logic.

Recall the construction of DΦ

Each ∃yφn(x<n, y) is valid, and
a = (an : n ∈ N) ∈ DΦ ⇐⇒ φn(a<n, an) for all n.

This, or something similar, must also work in continuous logic. . . right?

WRONG

Boolean logic: if ∃yφ(x , y) is valid, then
{
(a, b) : φ(a, b)

}
is a de�nable set, that projects onto

the �rst coordinate.

Continuous logic: if infy φ(x , y) = 0, then
{
(a, b) : φ(a, b) = 0

}
need not be a de�nable set, and

(in a non-saturated model) the projection need not be onto.
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First solution for a continuous theory T : cheat our way around the problem

De�nition

Let D an interpretable sort in T . It is a universal Skolem sort if it is �like the set DΦ� , i.e., if �it is easy
to construct de�nable Skolem functions from D�.

Proposition

If T admits two universal Skolem sorts D and D ′, then there exists a de�nable bijection σ : D ≃ D ′.

Theorem (B.)

Assume that T admits a universal Skolem sort D. Then it is a set of codes for models, (i.e.,
dcl(a) = dcl(M)), and the topological groupoid G(T ) is a complete bi-interpretation invariant for T :

G(T ) = GD (T ) =
{
tp(a, b) : a, b ∈ D and dcl(a) = dcl(b)

}
basis: B(T ) ≃ SD (T ) ≃ Cantor.
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Universal Skolem sorts deliver the goods. . . partially

Theorem (B.)

Assume that T admits a universal Skolem sort D. Then G(T ) = GD (T ) is a complete
bi-interpretation invariant for T .

If T is Boolean, then DΦ is universal Skolem (case already covered).

If T is ℵ0-categorical, and dcl(a) = dcl(M), then D0 =
{
b : tp(a) = tp(b)

}
is de�nable, and

D0 × 2N is universal Skolem. Consequently,

G(T ) = 2N × G (T )× 2N.

[J. Muñoz] If T admits a universal Skolem sort, then so does its Keisler randomisation TR .

But:

There exist theories which do not admit one (e.g., the theory of [0, 1] equipped with the unary
identity predicate and the 0/1 distance).
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Second (new) solution: solve the problem

The problem(s)

In continuous logic, if infy φ(x , y) = 0, then

A the set
{
(a, b) : φ(a, b) = 0

}
need not be a de�nable set, and

B the projection on the �rst coordinate need not be onto (in a non-saturated model).

The solution (almost)

B allow an error, considering
{
(a, b) : φ(a, b) ≤ 1

}
.

A allow a variable error, considering D =
{
(r , a, b) : φ(a, b) ≤ r

}
. This set D is de�nable:

if (r , a, b) is logically close to D (i.e., φ(a, b) ≤ r + ε),
then it is metrically close to D (e.g., to (r + ε, a, b) ∈ D).

New problem

For this to work, r must not bounded, and by compactness, we must allow r = ∞.
But. . . with in�nite error, the condition φ(a, b) ≤ r is meaningless.
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Cones, stars, fans, and friends

De�nition (Reminiscing of Summer 2004. . . )

Let X be a set. We de�ne

∗X =
(
[0, 1]× X

)
/∼ =

{
[α, x ] : α ∈ [0, 1], x ∈ X

}
where we identify [0, x ] = 0 regardless of x .

De�nition

Say infy φn(x<n, y) = 0 for each n, and Φ = (φn) is su�ciently rich. De�ne D∗
Φ ⊆ ∗MN by:

[α, a] ∈ D∗
Φ ⇐⇒ φn(a<n, an) ≤ 1/nα.

D∗
Φ is de�nable (same argument as in the previous slide)

If [α, a] ∈ D∗
Φ and α > 0 (�nite error), then [α, a] codes a model: dcl

(
[α, a]

)
= dcl(M).

There exists a unique root 0 = [0, a] ∈ D∗
Φ. It codes nothing: dcl(0) = dcl(∅).
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The general reconstruction theorem

De�nition

Say infy φn(x<n, y) = 0 for each n, and Φ = (φn) is su�ciently rich. De�ne D∗
Φ ⊆ ∗MN by:

[α, a] ∈ D∗
Φ ⇐⇒ φn(a<n, an) ≤ 1/α.

Theorem (B.)

The de�nable set D∗ = D∗
Φ is unique, up to de�nable bijection. The groupoid G∗(T ) = GD∗ (T ) is a

complete bi-interpretation invariant for T :

G∗(T ) = GD∗ (T ) =
{
tp(a, b) : a, b ∈ D∗ and dcl(a) = dcl(b)

}
basis: B∗(T ) ≃ SD∗ (T ) ≃ the Lelek fan L.
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A quick reminder about the Lelek fan?

A fan is a connected subset of ∗2N.

If the endpoints are dense, then it is a Lelek fan, and is unique up to homeomorphism.
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Summary of the 3 constructions

Hypothesis ℵ0-categorical T a universal Skolem General case
D0 = type of a model sort D exists

Groupoid G (T ) = Aut(M) = GD0
(T ) G(T ) = GD (T ) G∗(T ) = GD∗ (T )

invariant (group)

Basis SD0
(T ) = Point SD (T ) = Cantor SD∗ (T ) = Lelek fan

Reconstruction recover Th(D0) recover Th(D) recover Th(D∗)

Each case generalises the previous ones

ℵ0-categorical ⇝ a Universal Skolem sort D:

D = 2N ×D0

G(T ) = 2N × G (T )× 2N.

Universal Skolem sort D ⇝ general case

D∗ =
(
L×D

)
/∼

(
=

(
L×D0

)
/∼

)
.

G∗(T ) =
(
L× G(T )× L

)
/∼ (almost).
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Thank you
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