On reconstruction of non- \aleph_0 -categorical continuous theories, groupoids, Skolem functions and the Lelek fan

Conference in honour of Ehud Hrushoski, Fields Institute

Itaï Ben Yaacov

Université Claude Bernard Lyon 1

Institut Camille Jordan

2021-12-13

Continuous logic

Continuous first order logic is to Boolean first order logic as [a, b] is to $\{T, F\}$

- Structures are complete bounded metric spaces, d(x, y) replaces x = y.
- Formulas are real-valued, uniformly continuous, bounded.
- Connectives are continuous, quantifiers are sup and inf.
- Contains Boolean first order logic: $\{0,1\}$ -valued structures.

Abstract continuous model theory: generalise classical results/tools – and deal with "surprises"

Compactness, Löwenheim-Skolem, stability, \aleph_0 -stability, Morley,	✓	
Strongly minimal sets, Baldwin-Lachlan		
Omitting types, Ryll-Nardzewski	/	
\aleph_0 -categorical reconstruction (Coquand, a.k.a. Ahlbrandt-Ziegler)		
No 2 models	X	
Skolem functions: "choosing witnesses"	X	
My topic today: non-ℵ₀-categorical reconstruction		

The Coquand / Ahlbrandt-Ziegler reconstruction

Definition

Let T be an \aleph_0 -categorical theory (complete in a countable language). Let M be any countable model of T and $G(T) = \operatorname{Aut}(M)$, equipped with the topology of pointwise convergence.

Theorem (Coquand, published by Ahlbrandt & Ziegler; B. & Kaïchouh)

- Let T and T' be \aleph_0 -categorical. Then $G(T)\simeq G(T')$ as topological groups if and only if T and T' are bi-interpretable.
- Same, for continuous logic (replace countable with separable).

Moreover:

- ullet We can characterise groups of the form G(T) (Polish, Roeolcke precompact, ...)
- From G = G(T) we can explicitly reconstruct a theory T' bi-interpretable with T.

What is good and what is less good about \aleph_0 -categorical reconstruction

Theorem (Coquand, published by Ahlbrandt & Ziegler; B. & Kaïchouh)

" \aleph_0 -categorical T (up to bi-interpretation)" equals "Roelcke-precompact Polish group G = G(T)".

- ullet Connection between model theory (in T) and dynamics (of G(T)) Ibarlucía, Tsankov, B., and others.
- In one direction: subjects many non-locally-compact Polish groups "of interest" to model-theoretic treatment, e.g., Property (T) for Roelcke-precompact groups (Ibarlucía).
- In the other direction: Ibarlucía's (re-)proof of the preservation of NIP under randomisation: if T is countably/separably categorical and NIP (or stable), then so is T^R .

What is good and what is less good about \aleph_0 -categorical reconstruction

Theorem (Coquand, published by Ahlbrandt & Ziegler; B. & Kaïchouh)

" \aleph_0 -categorical T (up to bi-interpretation)" equals "Roelcke-precompact Polish group G = G(T)".

- ullet Connection between model theory (in T) and dynamics (of G(T)) Ibarlucía, Tsankov, B., and others.
- In one direction: subjects many non-locally-compact Polish groups "of interest" to model-theoretic treatment, e.g., Property (T) for Roelcke-precompact groups (Ibarlucía).
- In the other direction: Ibarlucía's (re-)proof of the preservation of NIP under randomisation: if T is countably/separably categorical and NIP (or stable), then so is T^R.

But:

• Specific to \aleph_0 -categorical theories.

In order to cover non- \aleph_0 -categorical theories, we need topological groupoids of isomorphisms between countable / separable structures.

Topological groupoids

Definition

- A groupoid is a set G equipped with a partial composition law and total inversion map, satisfying appropriate axioms [e.g., all isomorphisms of a small category].
- Its basis is $\mathbb{B}(\mathbb{G}) = \{e \in \mathbb{G} : e^2 = e\}$ [all identity morphisms \simeq all objects].
- ullet The source of $g\in \mathbb{G}$ is $s_g=g^{-1}g\in \mathbb{B}(\mathbb{G})$ [source object].
- The target of $g \in G$ is $t_g = gg^{-1} \in \mathbb{B}(G)$ [target object].

 $\mathbb{B}(\mathbb{G})$ is a singleton if and only if $(\mathbb{G}, \cdot, ^{-1})$ is a group.

Definition

A topological groupoid is a groupoid equipped with a topology, such that the composition (on its domain) and inversion are continuous.

It is open if in addition, the source map $s: \mathbb{G} \to \mathbb{B}(\mathbb{G})$ is open (equivalently, the target map, equivalent, the composition law).

Easy case: non-%0-categorical reconstruction in Boolean logic

Theorem (B.)

To every theory T (complete, in a countable language \mathcal{L} , in Boolean logic) we can associate a topological groupoid $\mathbb{G}(T)$ such that:

- ullet $\mathbb{G}(T)$ is an open topological groupoid over the Cantor space: $\mathbb{B}(\mathbb{G})\simeq 2^{\mathbb{N}}.$
- It is a complete bi-interpretation invariant for T: T and T' are bi-interpretable if and only if $\mathbb{G}(T)\simeq\mathbb{G}(T')$.

Moreover, from $\mathbb{G}=\mathbb{G}(T)$, given as a topological groupoid, we can explicitly construct a theory T' that is bi-interpretable with T.

Main difficulty: constructing $\mathbb{G}(T)$ (in Boolean logic, for the while)

\aleph_0 -categorical case, reformulated

Say
$$a=(a_i:i\in\mathbb{N})$$
 enumerates $M\vDash T$. Then a "codes" M , and as a topological group

$$\begin{array}{ccc} \textit{G}(\textit{T}) = \textit{Aut}(\textit{M}) & \simeq & \big\{ \mathsf{tp}(\textit{a},\textit{b}) : \mathsf{tp}(\textit{a}) = \mathsf{tp}(\textit{b}) \text{ and } \mathsf{dcl}(\textit{a}) = \mathsf{dcl}(\textit{b}) \big\} \subseteq \mathsf{S}_{2 \times \mathbb{N}}(\textit{T}) \\ & & & \mathsf{tp}(\textit{ga},\textit{a}) \end{array}$$

Group law:
$$tp(a, b) \cdot tp(b, c) = tp(a, c)$$
.

Main difficulty: constructing G(T) (in Boolean logic, for the while)

\aleph_0 -categorical case, reformulated

Say
$$a=(a_i:i\in\mathbb{N})$$
 enumerates $M\vDash T$. Then a "codes" M , and as a topological group

$$G(T) = Aut(M)$$
 \simeq $\{ \operatorname{tp}(a, b) : \operatorname{tp}(a) = \operatorname{tp}(b) \text{ and } \operatorname{dcl}(a) = \operatorname{dcl}(b) \} \subseteq S_{2 \times \mathbb{N}}(T)$

Group law:
$$tp(a, b) \cdot tp(b, c) = tp(a, c)$$
.

General approach: a "good" set D of codes for models \Longrightarrow a topological groupoid

$$\mathbb{G}_D(T) = \big\{\mathsf{tp}(a,b) : a,b \in D \text{ and } \mathsf{dcl}(a) = \mathsf{dcl}(b)\big\} \subseteq \mathsf{S}(T).$$
 law
$$\mathsf{tp}(a,b) \cdot \mathsf{tp}(b,c) = \mathsf{tp}(a,c)$$
 basis
$$\mathbb{B}_D(T) = \big\{\mathsf{tp}(a,a) : a \in D\big\} \simeq \big\{\mathsf{tp}(a) : a \in D\big\} = \mathsf{S}_D(T)$$

All that's left is to find D...

Codes for models, via the Tarski-Vaught test

Definition

Fix a sequence of formulas $\Phi = (\varphi_n)$, such that $\forall x_{\leq n} \exists y \ \varphi_n(x_{\leq n}, y)$ is valid. Define $D_{\Phi} \subseteq M^{\mathbb{N}}$: $a = (a_n : n \in \mathbb{N}) \in D_{\Phi} \iff \varphi_n(a_{\leq n}, a_n) \text{ for all } n.$

Assuming Φ is rich enough: D_{Φ} is a good set of codes for models!

- ullet Every $a\in D_\Phi$ enumerates a model.
- ullet Every countable model is enumerated by a member of $D_{\Phi}.$
- ullet D_{Φ} is type-definable, in infinitely many variables.

Codes for models, via the Tarski-Vaught test

Definition

Fix a sequence of formulas $\Phi = (\varphi_n)$, such that $\forall x_{\leq n} \exists y \ \varphi_n(x_{\leq n}, y)$ is valid. Define $D_{\Phi} \subseteq M^{\mathbb{N}}$: $a = (a_n : n \in \mathbb{N}) \in D_{\Phi} \iff \varphi_n(a_{\leq n}, a_n) \text{ for all } n.$

Assuming Φ is rich enough: D_{Φ} is a good set of codes for models!

- ullet Every $a\in D_\Phi$ enumerates a model.
- ullet Every countable model is enumerated by a member of D_{Φ} .
- ullet D_{Φ} is type-definable, in infinitely many variables.
- In fact it is definable in the sense of continuous logic (AKA strictly pro-definable by Hrushovski-Loeser): every projection of D_{Φ} to finitely many coordinates is definable. (The projection to the first n coordinates is defined $\bigwedge_{k < n} \varphi_k(x_{< k}, x_k)$.)

Codes for models, via the Tarski-Vaught test

Definition

Fix a sequence of formulas $\Phi = (\varphi_n)$, such that $\forall x_{\leq n} \exists y \ \varphi_n(x_{\leq n}, y)$ is valid. Define $D_{\Phi} \subseteq M^{\mathbb{N}}$: $a = (a_n : n \in \mathbb{N}) \in D_{\Phi} \iff \varphi_n(a_{\leq n}, a_n)$ for all n.

Assuming Φ is rich enough: D_{Φ} is a good set of codes for models!

- ullet Every $a\in D_{\Phi}$ enumerates a model.
- ullet Every countable model is enumerated by a member of D_{Φ} .
- D_{Φ} is type-definable, in infinitely many variables.
- In fact it is definable in the sense of continuous logic (AKA strictly pro-definable by Hrushovski-Loeser): every projection of D_{Φ} to finitely many coordinates is definable. (The projection to the first n coordinates is defined $\bigwedge_{k < n} \varphi_k(x_{< k}, x_k)$.)

Do D_{Φ} and $\mathbb{G}_{D_{\Phi}}(T)$ depend on Φ ?

Definition of G(T)

Proposition (Uniqueness of D_{Φ} and $\mathbb{G}_{D_{\Phi}}(T)$)

If Φ and Ψ are both rich, then there exists a definable bijection $D_\Phi \simeq D_\Psi$. Consequently, $\mathbb{G}_{D_\Phi}(T) \simeq \mathbb{G}_{D_\Psi}(T)$.

⇒ canonical topological groupoid

$$\mathbb{G}(T) = \mathbb{G}_{D_{\Phi}}(T) = \big\{ \mathsf{tp}(a,b) : a,b \in D_{\Phi} \text{ and } \mathsf{dcl}(a) = \mathsf{dcl}(b) \big\}$$

basis: $\mathbb{B}(T) = \{\mathsf{tp}(\mathsf{a},\mathsf{a}) : \mathsf{a} \in D_{\Phi}\} \simeq \mathsf{S}_{D_{\Phi}}(T) \simeq \mathsf{Cantor}.$

It is Polish $(\operatorname{dcl}(a)=\operatorname{dcl}(b)$ is $G_\delta)$ and open (since D_Φ is definable).

Theorem (Restated)

The topological groupoid $\mathbb{G}(T)$ is a complete bi-interpretation invariant for T. Moreover, a theory bi-interpretable with T can be explicitly reconstructed from $\mathbb{G}(T)$.

Now, let's just generalise this to continuous logic.

Recall the construction of D_{Φ}

Each $\exists y \varphi_n(x_{< n}, y)$ is valid, and $a = (a_n : n \in \mathbb{N}) \in D_{\Phi} \iff \varphi_n(a_{< n}, a_n)$ for all n.

This, or something similar, must also work in continuous logic...right?

Now, let's just generalise this to continuous logic.

Recall the construction of D_{Φ}

Each $\exists y \varphi_n(x_{< n}, y)$ is valid, and $a = (a_n : n \in \mathbb{N}) \in D_{\Phi} \iff \varphi_n(a_{< n}, a_n)$ for all n.

This, or something similar, must also work in continuous logic...right?

WRONG

- Boolean logic: if $\exists y \varphi(x,y)$ is valid, then $\{(a,b): \varphi(a,b)\}$ is a definable set, that projects onto the first coordinate.
- Continuous logic: if $\inf_y \varphi(x,y) = 0$, then $\{(a,b): \varphi(a,b) = 0\}$ need not be a definable set, and (in a non-saturated model) the projection need not be onto.

First solution for a continuous theory T: cheat our way around the problem

Definition

Let D an interpretable sort in T. It is a universal Skolem sort if it is "like the set D_{Φ} ", i.e., if "it is easy to construct definable Skolem functions from D".

Proposition

If T admits two universal Skolem sorts D and D', then there exists a definable bijection $\sigma\colon D\simeq D'$.

Theorem (B.)

Assume that T admits a universal Skolem sort D. Then it is a set of codes for models, (i.e., dcl(a) = dcl(M)), and the topological groupoid $\mathbb{G}(T)$ is a complete bi-interpretation invariant for T:

$$G(T) = G_D(T) = \{ \operatorname{tp}(a, b) : a, b \in D \text{ and } \operatorname{dcl}(a) = \operatorname{dcl}(b) \}$$

basis: $\mathbb{B}(T) \simeq \mathsf{S}_D(T) \simeq \mathsf{Cantor}.$

Universal Skolem sorts deliver the goods...partially

Theorem (B.)

Assume that T admits a universal Skolem sort D. Then $\mathbb{G}(T)=\mathbb{G}_D(T)$ is a complete bi-interpretation invariant for T.

- If T is Boolean, then D_{Φ} is universal Skolem (case already covered).
- If T is \aleph_0 -categorical, and dcl(a) = dcl(M), then $D_0 = \{b : \mathsf{tp}(a) = \mathsf{tp}(b)\}$ is definable, and $D_0 \times 2^{\mathbb{N}}$ is universal Skolem. Consequently,

$$\mathbb{G}(T) = 2^{\mathbb{N}} \times G(T) \times 2^{\mathbb{N}}.$$

ullet [J. Muñoz] If T admits a universal Skolem sort, then so does its Keisler randomisation T^R .

But:

• There exist theories which do not admit one (e.g., the theory of [0,1] equipped with the unary identity predicate and the 0/1 distance).

Second (new) solution: solve the problem

The problem(s)

In continuous logic, if $\inf_{y} \varphi(x, y) = 0$, then

A the set $\{(a,b): \varphi(a,b)=0\}$ need not be a definable set, and

B the projection on the first coordinate need not be onto (in a non-saturated model).

Second (new) solution: solve the problem

The problem(s)

In continuous logic, if $\inf_{y} \varphi(x, y) = 0$, then

A the set $\{(a,b): \varphi(a,b)=0\}$ need not be a definable set, and

B the projection on the first coordinate need not be onto (in a non-saturated model).

The solution (almost)

B allow an error, considering $\{(a,b): \varphi(a,b) \leq 1\}$.

A allow a variable error, considering $D = \{(r, a, b) : \varphi(a, b) \le r\}$. This set D is definable: if (r, a, b) is logically close to D (i.e., $\varphi(a, b) \le r + \varepsilon$).

then it is metrically close to D (e.g., to $(r + \varepsilon, a, b) \in D$).

Second (new) solution: solve the problem

The problem(s)

In continuous logic, if $\inf_{y} \varphi(x, y) = 0$, then

- A the set $\{(a,b): \varphi(a,b)=0\}$ need not be a definable set, and
- B the projection on the first coordinate need not be onto (in a non-saturated model).

The solution (almost)

- B allow an error, considering $\{(a,b): \varphi(a,b) \leq 1\}$.
- A allow a variable error, considering $D = \{(r, a, b) : \varphi(a, b) \le r\}$. This set D is definable:
 - if (r, a, b) is logically close to D (i.e., $\varphi(a, b) \le r + \varepsilon$), then it is metrically close to D (e.g., to $(r + \varepsilon, a, b) \in D$).

New problem

For this to work, r must not bounded, and by compactness, we must allow $r = \infty$.

But... with infinite error, the condition $\varphi(a,b) < r$ is meaningless.

Cones, stars, fans, and friends

Definition (Reminiscing of Summer 2004...)

Let X be a set. We define

$$*X = ([0,1] \times X) / \sim = \{ [\alpha, x] : \alpha \in [0,1], x \in X \}$$

where we identify [0, x] = 0 regardless of x.

Definition

Say $\inf_y \varphi_n(x_{< n}, y) = 0$ for each n, and $\Phi = (\varphi_n)$ is sufficiently rich. Define $D_\Phi^* \subseteq *M^\mathbb{N}$ by:

$$[\alpha,a] \in D_{\Phi}^* \iff \varphi_n(a_{\leq n},a_n) \leq 1/\frac{n\alpha}{n\alpha}.$$

- D_{Φ}^* is definable (same argument as in the previous slide)
- If $[\alpha, a] \in D_{\Phi}^*$ and $\alpha > 0$ (finite error), then $[\alpha, a]$ codes a model: $dcl([\alpha, a]) = dcl(M)$.
- ullet There exists a unique root $0=[0,a]\in D_\Phi^*$. It codes nothing: $dcl(0)=dcl(\varnothing)$.

The general reconstruction theorem

Definition

Say $\inf_y \varphi_n(x_{< n}, y) = 0$ for each n, and $\Phi = (\varphi_n)$ is sufficiently rich. Define $D_\Phi^* \subseteq *M^\mathbb{N}$ by:

$$[\alpha,a] \in D_{\Phi}^* \iff \varphi_n(a_{\leq n},a_n) \leq 1/\alpha.$$

Theorem (B.)

The definable set $D^* = D_{\Phi}^*$ is unique, up to definable bijection. The groupoid $\mathbb{G}^*(T) = \mathbb{G}_{D^*}(T)$ is a complete bi-interpretation invariant for T:

$$\mathbb{G}^*(T) = \mathbb{G}_{D^*}(T) = \big\{ \operatorname{tp}(a, b) : a, b \in D^* \text{ and } \operatorname{dcl}(a) = \operatorname{dcl}(b) \big\}$$

basis:

$$\mathbb{B}^*(T) \simeq \mathsf{S}_{D^*}(T) \simeq \mathsf{the} \ \mathsf{Lelek} \ \mathsf{fan} \ \mathsf{L}.$$

A quick reminder about the Lelek fan?

- A fan is a connected subset of $*2^{\mathbb{N}}$.
- If the endpoints are dense, then it is a Lelek fan, and is unique up to homeomorphism.

Summary of the 3 constructions

Hypothesis	$leph_0$ -categorical T	a universal Skolem	General case
	$D_0={\sf type}\;{\sf of}\;{\sf a}\;{\sf mode}$	sort <i>D</i> exists	
Groupoid	$G(T) = \operatorname{Aut}(M) = \mathbb{G}_{D_0}(T)$	$G(T) = G_D(T)$	$\mathbb{G}^*(T) = \mathbb{G}_{D^*}(T)$
invariant	(group)		
Basis	$S_{D_{0}}(T) = Point$	$S_D(T) = Cantor$	$S_{D^*}(T) = Lelek \; fan$
Reconstruction	recover $Th(D_0)$	recover $Th(D)$	recover $Th(D^*)$

Summary of the 3 constructions

Hypothesis	$leph_0$ -categorical T	a universal Skolem	General case
	$D_0={\sf type}$ of a model	sort D exists	
Groupoid	$G(T) = \operatorname{Aut}(M) = \mathbb{G}_{D_0}(T)$	$\mathbb{G}(T) = \mathbb{G}_D(T)$	$\mathbb{G}^*(T) = \mathbb{G}_{D^*}(T)$
invariant	(group)		
Basis	$S_{D_{0}}(\mathcal{T}) = Point$	$S_{D}(T) = Cantor$	$S_{D^*}(T) = Lelek \; fan$
Reconstruction	recover $Th(D_0)$	recover $Th(D)$	recover $Th(D^*)$

Each case generalises the previous ones

• \aleph_0 -categorical \rightsquigarrow a Universal Skolem sort D:

$$D = 2^{\mathbb{N}} \times D_0$$

$$G(T) = 2^{\mathbb{N}} \times G(T) \times 2^{\mathbb{N}}.$$

ullet Universal Skolem sort $D \leadsto \text{general case}$

$$D^* = (L \times D)/\sim \quad (= (L \times D_0)/\sim).$$

$$G^*(T) = (L \times G(T) \times L)/\sim \quad (\text{almost}).$$

2021-12-13 17 / 18

Thank you