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Schwarz’ lemma

Lemma (Schwarz’ lemma). Let ϕ :D→C be analytic, |ϕ(z)| ≤ 1, and
ϕ(0) = 0.
É Then |ϕ(z)| ≤ |z| for all z ∈D and ϕ′(0)≤ 1.
É Equality holds iff ϕ(z) = γz where |γ|= 1.

This is commonly proved using the maximum modulus principle.



Pick’s invariant form of the Schwarz lemma

Let ϕa(z) =
z−a

1−az
, |a|< 1. Then ϕa is analytic for |z|< 1/|a|, |ϕa(eiθ )|= 1, and

ϕ−a(ϕa(z)) = z. That is, ϕa is an automorphism of the unit disk.

Lemma (Pick’s invariant form of the Schwarz lemma). Let ϕ :D→C
be analytic, |ϕ(z)| ≤ 1.

É For all z ∈D, |ϕ′(z)| ≤
1− |ϕ(z)|2

1− |z|2
;

É Equality holds for some z0 ∈D iff ϕ = γϕa where |γ|= 1.

Proved by setting g =ϕa ◦ϕ ◦ϕ−a and applying Schwarz’ lemma to g.



Higher derivatives

Are there similar estimates for the higher order derivatives with ϕ as above?

Yes! Probably the first such is due to Stefan Ruscheweyh (1985). Later work by
MacCluer, Stroethoff, and Zhao; Bénéteau, Dahlner, and Khavinson; Anderson
and Rovnyak.

It is also natural to consider such inequalities in the multivariable case.
MacCluer, Stroethoff, and Zhao and Bénéteau, Dahlner, and Khavinson do this as
well.



The Anderson-Rovnyak result

The following provides optimal inequalities for the Schur class.

Theorem (Anderson-Rovnyak theorem). Let ϕ :D→C be analytic,
|ϕ(z)| ≤ 1.
É For z ∈D, n ∈N,

(1− |z|)n−1

�

�

�

�

ϕ(n)(z)
n!

�

�

�

�

≤
1− |ϕ(z)|2

1− |z|2
;

É For fixed z ∈D, n ∈N,

sup
ϕ
(1− |z|)n−1

�

�

�

�

ϕ(n)(z)
n!

�

�

�

�

1− |z|2

1− |ϕ(z)|2
= 1;

É Equality holds at z= 0 iff for all z ∈D, ϕ(z) = γϕa(zn), |γ|= 1;
É Equality holds for z 6= 0 and n> 1 iff for all z ∈D, ϕ(z) = γ, |γ|= 1.

For ϕ(z) =
∑∞

n=0ϕnzn, this gives a result of F. Wiener:

|ϕn| ≤ 1− |ϕ0|2.



Multivariable results on the ball Bd

Theorem (MacCluer-Stroethoff-Zhao (2003)). If ϕ is analytic and
bounded by 1 on the open unit ball Bd ⊂Cd and n= (n1, . . . , nd) ∈Nd,
n= n1+ · · ·+nd, then

sup
z∈Bd

(1−‖z‖2)
n|ϕ(n)(z)|<∞.

Here, ‖z‖2 = (|z1|2+ · · ·+ |zd |2)1/2 and ϕ(n) =
∂ nϕ

∂ zn1
1 · · ·∂ znd

d

.



Test functions

Let X be a set. The collection Ψ of functions ψ :C→ L(H , C) is a collection of
test tunction if supψ ‖ψ(x)‖< 1 plus a point separation property.

Given a collection of test functions Ψ, define KΨ , the admissible kernels, to be
all of the positive kernels k such that

�

(1−ψ(x)ψ(y)∗)k(x, y)
�

≥ 0 ∀ψ ∈Ψ.

Then set H∞(KΨ ) to be all functions ϕ such that there is some C <∞ and
�

(C −ϕ(x)ϕ(y)∗)k(x, y)
�

≥ 0 ∀k ∈KΨ .

This is a Banach algebra with ‖ϕ‖ the infimum over all such C.



Test functions, some examples

Examples:
É X =D, Ψ = {z}, H∞(KΨ ) =H∞(D);
É X =Dd, Ψ = {z1, . . . , zd}, H∞(KΨ ) =H∞(Dd) only if d = 1, 2;
É X =Bd, Ψ = {ψ(z) = (z1, . . . , zd)}, H∞(KΨ ) =H∞(Bd) only if d = 1;
É Generalised Cartan domains of Ball and Bolotnikov (also Ambrozie and

Timotin), Ψ = {ψj(z) = (bj1, . . . , bjd)}, X = {z ∈Cd : 1−ψj(z)ψ∗j (z), ∀j}.

Since the admissible kernels in these domains include the Szegő kernel,
H∞(KΨ )⊆H∞(X ) and for ϕ ∈H∞(KΨ ), ‖ϕ‖ ≥ ‖ϕ‖∞. Hence, since our inequalities
always involve something less than a positive expression times 1−‖ϕ‖2, they can
also be interpreted in terms of the H∞(X )-norm, though this may not be optimal.



More on the ball Bd

É Let X =Bd and Ψ = {ψ(z) = (z1, . . . , zd)};
É In this case, any admissible kernel is conjugate equivalent to

k(z, w) =
1

1−〈z, w〉
, so it suffices to restrict attention to this kernel alone;

É Then ϕ in the unit ball of H∞(KΨ ) means that the kernel
�

1−ϕ(z)ϕ(w)
1−〈z, w〉

�

is non-negative;
É The kernel k has a Kolmogorov factorization, k(z, w) = kzk∗w. This factors

through the Hilbert space Hk =
∨

wran k∗w, the Drury-Arveson space;
É Hence any ϕ as above defines a contractive operator Mϕ on H∞(KΨ ) by

M∗
ϕk∗w = k∗wϕ(w), referred to as a contractive multiplier of the Drury-Arveson

space.
É For operator valued functions, we will need to tensor with the appropriate

Hilbert space.
É As noted on the last slide, for d > 1, the unit ball of the multiplier algebra

(that is, the set of contractive multipliers) is a proper subset of the unit ball
of H∞(Bd).



The transfer function

Assume Ψ is finite. Z(x) =
⊕

ψ(x)Pψ, where Pψ is an orthogonal projection and
⊕

Pψ = IE , U =

�

A B
C D

�

unitary on E ⊕C. Then

W (x) =D+CZ(x)(I −AZ(x))−1B

is called a transfer function.

The realization theorem says that ϕ is in the unit ball of H∞(KΨ ) iff it has a
transfer function representation.

This also works for operator valued functions with obvious modifications.



Conditions and notation

To simplify things, from here on we generically assume X ⊂Cd and that the test
functions are linear in the coordinate variables.

Notation: For z= (z1, . . . , zd),

‖z‖2 = 〈z, z〉
1
2 =

Æ

|z1|2+ · · ·+ |zd |2 and ẑj = (z1, . . . , zj−1, 0, zj+1, . . . , zd).



Schwarz-Pick inequalities on the ball Bd

Theorem (ADR). Let ϕ(z) be a complex-valued function in the Schur-Agler
class on the unit ball (ie, the multiplier algebra of the Drury-Arveson space). For
each z ∈Bd and any nonnegative integers n1, . . . , nd and n= n1+ · · ·+nd > 0,

�

�

�

�

∂ nϕ

∂ znd
d · · ·∂ zn1

1

�

�

�

�

≤ (n−1)!
1− |ϕ(z)|2

(1−‖z‖2
2)(1−‖z‖2)n−1

d
∑

j=1

nj

q

1−‖ẑj‖2
2 .

We also have
�

�

�

�

∂ nϕ

∂ znd
d · · ·∂ zn1

1

�

�

�

�

≤ d (n−1)/2 n1!n2! · · ·nd !
1− |ϕ(z)|2

(1−‖z‖2
2)(1−‖z‖2)n−1

.

By the second inequality,

sup
z∈Bd

(1−‖z‖2)
n|ϕ(n)(z)| ≤ d (n−1)/2 n1!n2! · · ·nd ! sup

z∈Bd

1− |ϕ(z)|2

1+ ‖z‖2
<∞,

so the MacCluer, Stroethoff, and Zhao result is recovered in this setting.



Idea of the proofs

Three steps in the proof:

É Differentiate the transfer function, recalling that Z is assumed to be linear in
the coordinate functions;
É Make norm estimates based upon the fact that A, B, C, D are entries in a

unitary matrix;
É Some combinatorics to improve the estimates.



Step 1: Differentiate the transfer function

É Recall that U =

�

A B
C D

�

:H ⊕F →K ⊕G is unitary.

É We assume as usual that ‖Z(z)‖< 1 and that henceforth,

Z(z1, . . . , zd) = z1E1+ · · ·+ zdEd, Ej ∈L (K ,H ).

É In the case of the ball Bd, K =
⊕d

1H and the E ∗j s are isometries with
orthogonal ranges isomorphic to H .
É Later we use that on the ball,

A=







A1

...
Ad






, B=







B1

...
Bd







and

ϕ(z) =D+CZ(z)(IK −AZ(z))−1B=D+C(IH −Z(z)A)−1Z(z)B

=D+C

 

IH −
∑

j

zjAj

!−1

zjBj



Step 1, continued

É In the general case, algebraic manipulations, using that U is unitary, give

IF −ϕ(z)∗ϕ(w)
=B∗(IK −Z(z)∗A∗)−1(IK −Z(z)∗Z(w))(IK −AZ(w))−1B,

IG −ϕ(w)ϕ(z)∗

=C(IH −Z(w)A)−1(IH −Z(w)Z(z)∗)(IH −A∗Z(z)∗)−1C ∗.

É Set L= (IK −AZ)−1A= A(IH −ZA)−1. Then for j= 1, . . . , d,

∂ ϕ

∂ zj
=C(IH −ZA)−1Ej(IK −AZ)−1B,

and

∂ nϕ

∂ zkn
· · ·∂ zk1

=C(IH −ZA)−1
∑

σ

Ekσ(1)LEkσ(2)L · · ·LEkσ(n) (IK −AZ)−1B,

the summation running over all permutations σ of {1, 2, . . . , n}.



Step 2: Norm estimates

É Recall

IF −ϕ(z)∗ϕ(z) =B∗(IK −Z(z)∗A∗)−1(IK −Z(z)∗Z(z))(IK −AZ(z))−1B,

É Then
‖(I −ϕ∗ϕ)1/2‖= ‖(I −Z ∗Z)1/2(I −AZ)−1B‖.

So

‖Ej(I −AZ)−1B‖= ‖Ej(I −Z ∗Z)−1/2(I −Z ∗Z)1/2(I −AZ)−1B‖

≤ ‖I −ϕ∗ϕ‖1/2‖Ej(I −Z ∗Z)−1E ∗j ‖
1/2,

and likewise, ‖C(I −ZA)−1Ej‖ ≤ (‖I −ϕϕ∗‖)1/2‖E ∗j (I −ZZ ∗)−1Ej‖1/2. Note that for
scalar valued ϕ, ‖I −ϕ∗ϕ‖= ‖I −ϕϕ∗‖= 1− |ϕ|2.
É Also

‖(1−Z ∗Z)−1/2‖2 = ‖(1−Z ∗Z)−1‖ ≤
1

1−‖Z‖2,

and ‖(1−ZZ ∗)−1/2‖2 ≤
1

1−‖Z‖2
as well.



Step 2, continued

É Summarizing,

‖Ej(I −AZ)−1B‖ ≤ ‖I −ϕ∗ϕ‖1/2‖Ej(I −Z ∗Z)−1E ∗j ‖
1/2,

‖C(I −ZA)−1Ej‖ ≤ ‖I −ϕϕ∗‖1/2‖E ∗j (I −ZZ ∗)−1Ej‖1/2

and so

‖Ej(I −AZ)−1B‖ ≤
√

√‖I −ϕ∗ϕ‖
1−‖Z‖2

,

‖C(I −ZA)−1Ej‖ ≤
√

√‖I −ϕϕ∗‖
1−‖Z‖2

.

É Since ‖A‖ ≤ 1, ‖L‖= ‖A
∑

j(ZA)j‖ ≤ 1/(1−‖Z‖).



Step 2, continued

É Remember that generically, Z linear and Ej is a contraction for all j, so

∂ nϕ

∂ zkn
· · ·∂ zk1

=C(IH −ZA)−1
∑

σ

Ekσ(1)LEkσ(2)L · · ·LEkσ(n) (IK −AZ)−1B.

É Then








∂ nϕ

∂ zkn
· · ·∂ zk1









≤‖L‖n−1
∑

σ

‖C(I −ZA)−1Ekσ(1)‖‖Ekσ(n) (I −AZ)−1B‖

≤
p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
(1−‖Z‖)n−1

∑

σ

‖E ∗kσ(1) (1−ZZ ∗)−1Ekσ(1)‖
1/2‖Ekσ(n) (1−Z ∗Z)−1E ∗kσ(n)‖

1/2

=(n−2)!

p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
(1−‖Z‖)n−1

∑

p 6=q

‖E ∗kp
(1−ZZ ∗)−1Ekp

‖1/2‖Ekq
(1−Z ∗Z)−1E ∗kq

‖1/2 .

É Similarly,








∂ ϕ

∂ zj









≤
p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
(1−‖Z‖2)1/2

·min
¦

‖Ej(I −Z ∗Z)−1E ∗j ‖
1/2,‖E ∗j (I −ZZ ∗)−1Ej‖1/2

©

.

É In particular, these estimates hold for products of Cartan domains.



Step 2, continued, but now on Bd

É On Bd, Z(z)Z(z)∗ = ‖z‖2
2IH , and so ‖E∗j (I −Z(z)Z(z)∗)−1Ej‖=

1

1−‖z‖2
2

.

É Since EjZ(z)∗ = zjIH and EjE
∗
j = IH ,

Ej(IK −Z(z)∗Z(z))−1E∗j = IH + |zj|2(IH −Z(z)Z(z)∗)−1 =
1− (‖z‖2

2− |zj|2)
1−‖z‖2

2

IH =
1−‖ẑj‖2

2

1−‖z‖2
2

IH ,

which has norm less than or equal to that of E∗j (I −Z(z)Z(z)∗)−1Ej.
É Since









∂ ϕ

∂ zj









≤
p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
1−‖z‖2

2

·min
¦

‖Ej(I −Z ∗Z)−1E ∗j ‖
1/2,‖E ∗j (I −ZZ ∗)−1Ej‖1/2

©

,

it follows that on the ball,








∂ ϕ

∂ zj









≤
p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
1−‖z‖2

2

q

1−‖ẑj‖2
2

É When n> 1, similar (but more involved) calculations give
�

�

�

�

∂ nϕ

∂ znd
d · · ·∂ zn1

1

�

�

�

�

≤ (n−1)!

p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
(1−‖z‖2

2)(1−‖z‖2)n−1

d
∑

j=1

nj

q

1−‖ẑj‖2
2 .



Step 3: Combinatorial improvements on the ball Bd

É Recall that by linearity of Z, the expansion given earlier for a higher order
derivative contains

∑

σ Ekσ(1)LEkσ(2)L · · ·LEkσ(n) .
É If there are nj derivatives with respect to zj, j= 1, . . . , d, and n=

∑

j nj > 1, then
by taking account the number of permutations of 1s, of 2s, etc, in (k1, . . . , kn),
this sum can be written as n1! · · ·nd ! times

K =
∑

Ej1
LEj2

L · · ·Ejn−1
LEjn

,

where this new summation is over distinct arrangements of the tuple

(

n1
︷ ︸︸ ︷

1, . . . , 1,

n2
︷ ︸︸ ︷

2, . . . , 2, . . . ,

nd
︷ ︸︸ ︷

d, . . . , d ) .

É Thus generically,

∂ nϕ

∂ znd
d · · ·∂ zn1

1

=
∂ nϕ

∂ zkn
· · ·∂ zk1

=C(I −Z(z)A)−1
∑

σ

Ekσ(1)L(z)Ekσ(2)L(z) · · ·L(z)Ekσ(n) (I −AZ(z))−1B

=n1!n2! · · ·nd ! C(I −Z(z)A)−1K (I −AZ(z))−1B .



Step 3: Combinatorial improvements, continued

É Since K has
�

n
n1 ,n2 ,...,nd

�

terms, each with n−1 L s, then again generically,








∂ nϕ

∂ znd
d · · ·∂ zn1

1









≤ n1! · · ·nd !‖C(I −Z(z)A)−1‖‖K‖‖(I −AZ(z))−1B‖

≤ n!

p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
(1−‖Z‖2)(1−‖Z‖)n−1

.

É As noted, on the ball each E ∗j is an isometry and the ranges are orthogonal.
É Manipulations in this situation then yield

‖K‖ ≤ d (n−1)/2‖L‖n−1 ≤
d (n−1)/2

(1−‖Z‖)n−1
.

É Hence for a contractive multiplier of the Drury-Arveson space,








∂ nϕ

∂ znd
d · · ·∂ zn1

1









≤ n1! · · ·nd !‖C(I −Z(z)A)−1‖‖K‖‖(I −AZ(z))−1B‖

≤ d (n−1)/2n1! · · ·nd !

p

‖I −ϕ∗ϕ‖‖I −ϕϕ∗‖
(1−‖z‖2

2)(1−‖z‖2)n−1
.



Comments

É Generalized Schwarz-Pick inequalities have also been explicitly determined for
the Schur-Agler class on the polydisk:

�

�

�

�

∂ ϕ

∂ zj

�

�

�

�

≤
1− |ϕ(z)|2

1− |zj|2
,

and for n> 1,
�

�

�

�

∂ nϕ

∂ zkn
· · ·∂ zk1

�

�

�

�

≤ (n−2)!
1− |ϕ(z)|2

(1−‖z‖∞)n−1

n
∑

p,q=1
p6=q

1
q

1− |zkp
|2
q

1− |zkq
|2

,

as well as
�

�

�

�

∂ nϕ

∂ znd
d · · ·∂ zn1

1

�

�

�

�

≤ n1! · · ·nd !
1− |ϕ(z)|2

(1−‖z‖2
∞)(1−‖z‖∞)n−1

,

É There are also operator valued function versions.
É Are these estimates optimal? Also, in H∞(Dd), Knese has characterised

equality in Rudin’s first derivative estimate — the function belongs to the
Agler-Schur class and the unitary operator in the colligation is equal to its
transpose. Is there something similar for H∞(Bd)?



More comments

É In “The Schwarz-Pick lemma of high order in several variables” by Dai, Chen,
and Pan, the estimate

�

�

�

�

∂ nϕ(z)
∂ znd

d · · ·∂ zn1
1

�

�

�

�

≤
√

√ nn

nn1
1 · · ·n

nd
d

n!
1− |ϕ(z)|2

(1−‖z‖2
2)(1−‖z‖2)n−1

was derived for functions in the unit ball of H∞(Bd) (i.e., the Schur class).
É Comparison with the formulas given above for functions which are multipliers

of the Drury-Arverson space is often not straightforward.
É For example, if n1 = · · ·= nd = 1, n= d,

r

nn

n
n1
1 ···n

nd
d

n!= d n/2d!, which is larger than

d (n−1)/21! · · ·1!= d (n−1)/2 from our second inequality.
É The term in this case for our first inequality is (d−1)!

∑d
1

Æ

1−‖ẑj‖2
2 ≤ d!, which

is worse than the constant from the second inequality, but still better than
the one from above.
É On the other hand, if n1 = n, and nj = 0 for j 6= 1, then the coefficient in the

above evaluates to n!, while our second is d (n−1)/2n!> n! if d 6= 1 and n 6= 1.
É However, with our first inequality, n!

Æ

1−‖ẑ1‖2
2 < n! if zj 6= 0, j 6= 1. Is our first

inequality always better?
É What’s best seems to depend on the particular derivatives and where you are!



Even more comments

É Alpay and Kaptanoğlu have shown that functions of the form
ϕ(z) = z1+c1z2

2+c2z4
2+ · · ·+cmz2m are in the Schur class but not the Schur-Agler

class over B2, the coefficients coming from the Taylor expansion of 1−
p

1− t.
É It is not difficult to see that for any higher order derivative our second

inequality will hold for such functions, since the Dai, Chen, and Pan
inequality holds.
É What about our first inequality? Perhaps there are different examples of

Schur class functions for which our second inequality fails? Or maybe they
both hold for Schur class functions as well?



The End


