The Betti map - a survey

Yves André - Paris Sorbonne, CNRS

Fields Institute, Number Theory Seminar, 6/12/2021

イロト イポト イヨト イヨト

Yves André - Paris Sorbonne, CNRS The Betti map

Weil: heights of rational points of algebraic varieties (for long, the only proper concept of Diophantine Geometry), and the height machinery:

 $(X/\bar{\mathbb{Q}}, \mathcal{L} \in \operatorname{Pic} X) \mapsto (h_{X,\mathcal{L}} : X(\bar{\mathbb{Q}}) \to \mathbb{R})$ up to O(1), with functoriality and positivity properties.

Normalized heights:

- Néron-Tate height: \hat{h}_X when X is an abelian variety [there is a fiberwise variant, for an abelian scheme with a symmetric relatively ample line bundle],

- Faltings height: h_F when X is a modular space for abelian varieties.

Two apex of this first branch:

- Mordell conjecture (Faltings' Thm):

C smooth projective curve of genus > 1 over a number field F: then $|C(F)| < \infty$

(uses h_F as a main tool; Vojta's proof uses $\hat{h}_{Jac C}$).

- Bogomolov conjecture (Ullmo-Zhang's Thm): A abelian variety/ $\overline{\mathbb{Q}}$, $X \subset A$ irreducible, not contained in any proper algebraic subgroup. Then for some $\varepsilon > 0$, $\{x \in X(\overline{\mathbb{Q}}), \hat{h}_A(x) \leq \varepsilon\}$ is not Zariski-dense in X.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

This branch of Diophantine Geometry has grown up around questions of effectivity and uniformity...

The younger branch grew out of the Manin-Mumford, André-Oort, Zilber-Pink and similar conjectures.

Typically, one considers a *countable* collection of subvarieties Z_{α} of a variety *X* defined over a field *F* of char. 0, and one looks at the union or the intersection of the Z_{α} .

Unlikely refers to phenomena which occur because the collection Z_{α} is infinite, while standard Algebraic Geometry would rule them out if the collection were finite.

Usual context: X is a subvariety of an ambient variety Y there is a notion of *special subvarieties*, and one looks at

イロト イポト イヨト イヨト

 $\cup_{Z_{\alpha} \text{special} \subset X} Z_{\alpha} \text{ or } X \cap (\cap_{Z_{\alpha} \text{special}} Z_{\alpha}).$

New tools.

Using tame geometry:

- Pila-Wilkie counting theorem (Pila-Zannier method)
- Functional transcendence (Ax-Lindeman-Schanuel type theorems)
- bi-algebraicity formalism.

Besides:

- the Betti map (Masser-Zannier, ...).

イロト イポト イヨト イヨト

э

These powerful methods are reshaping Diophantine Geometry and displacing its frontiers: growing influence of this younger branch (unlikely intersections) on Hodge theory, cf. B. Klingler's talk. Besides, the restriction to varieties defined over $\overline{\mathbb{Q}}$ is no longer a distinctive feature...

Still, this branch remains strongly tied to the circle of conjectures which gave rise to it. Moreover, a unification with the older branch (rational points) is in progress, around questions of uniformity, as we shall see at the end of the talk.

 $\mathcal{A} \rightarrow S$: abelian scheme/ \mathbb{C} of relative dim. g, $\xi : S \rightarrow \mathcal{A}$: a section.

Torsion values of ξ : $\xi^{-1}\mathcal{A}_{tor} \ (\cong \mathcal{A}_{tor} \cap \xi(S)).$

Heuristic dichotomy: under "natural non-degeneracy conditions", either

i) if dim S < g, then $\xi^{-1} A_{tor}$ is algebraic: $\exists n, \ \xi^{-1} A_{tor} = \xi^{-1} A[n]$, or

イロト イポト イヨト イヨト

ii) if dim $S \ge g$, then $\xi^{-1} \mathcal{A}_{tor}$ is dense in $\mathcal{S}(\mathbb{C})$.

Ex. 1: Poncelet game.

 $C \neq C'$: two conics.

Take a point $P_0 \in C$ and a line L_0 passing through P_0 and tangent to C'; it cuts C at P_1 . Iterate:

$$(*) \quad (L_i, P_i) \rightsquigarrow (L_i, P_{i+1}) \rightsquigarrow (L_{i+1}, P_{i+1}) \dots$$

The game ends when one comes back to the initial (L_0, P_0) . Poncelet proved that whether the game ends or not does not depend on (L_0, P_0) .

Sketch of proof (Jacobi): the incidence curve

$$D \subset C^{\vee} \times C, \{(L, P), P \in L\}$$

is of genus 1, hence a torsor under an elliptic curve *A*. (*) is a composition of involutions, hence a translation by some $\xi \in A$ independent of the initial data. Clearly the game ends iff $\xi \in A_{tor}$. Now let (C, C') move (up to iso): the parameter space *S* is open in \mathbb{P}^2 . The elliptic curve *A* is replaced by an elliptic scheme $\mathcal{A} \to S$ and ξ by a section.

Here dim S = 2 > g = 1, and it turns out that $\xi^{-1}A_{tor}$ is dense in $S(\mathbb{C})$: for almost all (C, C'), the Poncelet game ends.

On the contrary, if one considers simultaneous games, with (C_1, C_2) fixed and C' varying in a pencil, one gets $\mathcal{A} \times \mathcal{A}$ restricted to a line in $S \times S$, and expects that there are only finitely many C' such that this simultaneous Poncelet game ends.

Y: K3 surface, C: curve on Y.

If C is rational, any two points are obviously rationally equivalent on Y. But there are other such curves with this property (so-called "constant cycle curves").

Let *D* be a very ample divisor on *Y*, $\overline{S} \to |D|$ the universal curve, $S \to |D|^0$ the restriction over the regular locus, and $\mathcal{A} = \operatorname{Pic}^0(S/|D|^0) \times_{|D|^0} S$ the pull-back of the jacobian fibration. Let $\xi : S \to \mathcal{A}$ be the section

$$s = (C, x \in C) \mapsto \xi(s) := [(D.D)x - D_{|C}].$$

One can show that the torsion-value locus is 1-dimensional. One conjectures that this locus projects via $S \rightarrow Y$ to a countable union of constant cycle curves *C*.

Dichotomy: *i*) (Fekete-Szegö): if b - a < 4, there are finitely many algebraic integers whose conjugates are in [a, b],

ii) (Robinson): if b - a > 4, there are infinitely many of those. Robinson generalized *ii*) to the union of disjoint intervals $[a_i, b_i]$.

He introduced the hyperelliptic curve *C* with affine equation $y^2 = \Pi(x - a_i)(x - b_i)$, its jacobian *A* (an abelian scheme parametrized by the space *S* of tuples (a_i, b_i)), and the section $\xi := [\infty_+] - [\infty_-]$ (cf. Serre's Bourbaki talk). The main point is that $\xi^{-1}A_{tor}$ is dense in $S(\mathbb{R})$.

The Betti map is the natural tool to study such questions and many others in the cadet branch of unlikely intersections.

Setting:

 $\mathcal{A} \to \mathcal{S}$: abelian scheme of relative dim. g, with a given section $\xi : \mathcal{S} \to \mathcal{A}$.

The Betti map of (\mathcal{A}, ξ) is a *real-analytic multivalued map* from $\mathcal{S}(\mathbb{C})$ to \mathbb{R}^{2g} .

- when *S* is a point, this is just the coordinates of a point of $\mathcal{A}(\mathbb{C}) \cong H_1(A, \mathbb{R})/H_1(A, \mathbb{Z})$ in a mesh of the lattice $H_1(A, \mathbb{Z})$. NB. These coordinates are in \mathbb{Q} iff ξ is a torsion point.

- in general, let $\Gamma \triangleleft \pi_1(S(\mathbb{C}), s)$ maximal acting trivially on $H_1(\mathcal{A}_s)$. $S_{\Gamma} := \widetilde{S}/\Gamma$.

There is a real-analytic splitting

$$\mathcal{A}_{\mathcal{S}_{\Gamma}} \cong \mathcal{S}_{\Gamma} \times (\mathcal{H}_{1}(\mathcal{A}_{s}, \mathbb{R})/\mathcal{H}_{1}(\mathcal{A}_{s}, \mathbb{Z})),$$

and ξ gives rise to

$$\beta_{\Gamma}: S_{\Gamma} \longrightarrow H_1(\mathcal{A}_s, \mathbb{R})/H_1(\mathcal{A}_s, \mathbb{Z})$$

which lifts to the real-analytic multivalued map

$$\beta: S \cdots \longrightarrow H_1(\mathcal{A}_s, \mathbb{R}) \cong \mathbb{R}^{2g}$$

イロト イポト イヨト イヨト

with complex-analytic fibers. This is the Betti map.

NB: $\xi^{-1}\mathcal{A}_{tor} \cong \beta^{-1}\mathbb{Q}^{2g}$. Therefore, if dim $S \ge g$ and β is generically submersive, i.e. rk. d $\beta = 2g$, then $\xi^{-1}\mathcal{A}_{tor}$ is dense in $S(\mathbb{C})$. Remarks.

- Manin (when proving Mordell in the function field case): *rk.* $d\beta = 0$ *iff* ξ *is torsion.*

- monodromy of $\beta_{\Gamma} \colon \Gamma \to H_1(A_s, \mathbb{Z})$:

Thm (A.) Assume (**) : A/S has no fixed part, and $\mathbb{Z}\xi$ is Zariski-dense in A.

Then Im Γ is Zariski-dense in $H_1(A_s)$.

Q.: is actually Im Γ a subgroup of finite index of $H_1(A_s, \mathbb{Z})$? (natural question directly related to the congruence subgroup problem).

イロト イポト イヨト イヨト

3

One cannot expect any direct relation between the Betti map (which is only multivalued and real-analytic) and classical maps from Algebraic Geometry, but...

what is relevant is not the Betti map itself, but its generic rank.

It makes sense to compare for instance rk d β and the rank of the Kodaira-Spencer map attached to $\mathcal{A} \to S$

(or better, to the Kodaira-Spencer map attached to the relative 1-motive $[\mathbb{Z} \xrightarrow{\xi} \mathcal{A}]/S$ - the name "Betti map" refers to the "Betti realization" of Deligne 1-motives).

 $\theta: T_S \to Lie \mathcal{A} \otimes Lie \mathcal{A}^{\vee}$, the Kodaira-Spencer map (*S* affine). Any invariant relative 1-form ω provides by contraction a map

$$\theta^{\omega}: T_{\mathcal{S}} \longrightarrow Lie \mathcal{A}^{\vee}.$$

Thm (A., Corvaja, Zannier): under condition (**), if for some ω , rk $\theta^{\omega} = g$, then rk d $\beta = 2g$.

(the proof takes advantage of the fact that β is only real-analytic, by using the double action of monodromy on the holomorphic and anti-holomorphic part).

Generic submersivity of the Betti map (sequel).

To go further, one needs functional transcendence (Ax-Schanuel).

Thm (A., Corvaja, Gao, Zannier): Assume End $\mathcal{A} = \mathbb{Z}$, d := dimIm $(S \to \mathscr{A}_g) \ge g$, and ξ non-torsion. Then rk d $\beta = 2g$; a fortiori $\xi^{-1}\mathcal{A}_{tor}$ is dense in $S(\mathbb{C})$.

Sketch: *i*) End $\mathcal{A} = \mathbb{Z}$ and $d \ge g \Rightarrow \text{Im} (S \to \mathscr{A}_g)$ is not contained in any special subvariety $\neq \mathscr{A}_g$.

ii) If rk d β < 2g, by the previous theorem and an analysis of the Kodaira-Spencer map, one can find an analytic subvariety $Z \subset \mathscr{H}_g \subset \mathscr{H}_g^{\vee}$ (Siegel space and its compact dual), Z lying above Im $(S \to \mathscr{A}_g)$, dim Z = d - g + 1, dim $Z^{Zar} \leq \dim \mathscr{H}_g - g$. *iii*) This contradicts the Ax-Schanuel theorem (à la Mok-Pila-Tsimerman) in the bi-algebraic situation $Z \subset \mathscr{A}_g \times \mathscr{H}_g^{\vee}$: dim $Z_{\mathscr{A}_g \times \mathscr{H}_g^{\vee}}^{Zar} \geq \dim Z + \dim Z^{biZar}$.

By using a mixed version of Ax-Schanuel, Gao later obtained the optimal statement.

 $\mathcal{A} \to S$: abelian scheme of relative dim. *g*. One of the most important application of the Betti map in Diophantine Geometry is the notion of *non-degenerate* closed subvariety *X* of dimension $d \leq g$ of \mathcal{A} (Habegger, Gao).

Another look at the Betti map: the Betti foliation

$$b: \mathcal{A} \cdots \longrightarrow \mathbb{T}^{2g} = \mathbb{R}^{2g} / \mathbb{Z}^{2g}$$

(real-analytic multivalued rigidification of \mathcal{A} , viewed as a fixed torus).

Here, there is no section, but by base-change $X \to S$ one gets one and $b_{|X}$ is then the same as the previous betti map β ; conversely, starting from (\mathcal{A}, ξ) , one may take $X = \xi(S)$ and again $b_{|X} \equiv \beta$.

 $X \subset A$ is a *nondegenerate subvariety* when db_{|X} has generically maximal rank 2*d*, i.e. $b_{|X}$ is *generically immersive*.

One can analyse the locus where $rk db_{|X}$ is not maximal - in simple cases, in terms of special subvarieties (i.e. in terms of torsion cosets in fibers) (Gao).

Nondegeneracy may be seen as a (substitute of a) *bigness* condition for some appropriate line bundle (essentially the polarization restricted to X).

1. The geometric Bogomolov conjecture

 $\mathcal{A} \to S/\overline{\mathbb{Q}}$: abelian scheme without fixed part (for simplicity). $\hat{h}_{\mathcal{A}}$: fiberwise Néron-Tate height (associated to a symmetric relatively ample line bundle).

 $X \subset A$, closed irreducible subvariety, not generically contained in any proper algebraic subgroup.

Thm (Cantat-Gao-Habegger-Xie). For some $\varepsilon > 0$, $\{x \in X(\overline{\mathbb{Q}}), \hat{h}_{\mathcal{A}}(x) \leq \varepsilon\}$ is not Zariski-dense in X.

Relies upon a height inequality (à la Silverman). $\mathcal{A} \xrightarrow{\pi} S, X \subset \mathcal{A}$ of dim. $d \leq g$ as before, h_S : a height on S.

Thm (Dimitrov-Gao-Habegger). There are constants c, c' s. t.

$$\hat{h}_{\mathcal{A}}(x) \geqslant c \, h_{\mathcal{S}}(\pi(x)) - c'$$

イロト イボト イヨト イヨト

for every x where the Betti map $b_{|X}$ has maximal rank 2d.

2. Uniform Mordell conjecture

C: smooth projective curve of genus g > 1 over a number field F.

Thm (Dimitrov-Gao-Habegger/Kühne). $|C(F)| \leq c(g)^{1+rk \operatorname{Jac} C(F)}$.

Vojta's approach +

i) Geometric criterion of nondegenerate subvarieties applied to the universal Jacobian and to related constructions (à la Faltings-Zhang).

ii) The height inequality (à la Silverman) on any given nondegenerate subvariety, as before,

iii) An equidistribution result (à la Ullmo-Zhang) on any given nondegenerate subvariety.

[In fact, the thm. is deduced from a uniform Mordell-Lang conjecture for curves embedded in their jacobians over any field of char. 0.]