The Betti map - a survey

Yves André - Paris Sorbonne, CNRS

Fields Institute, Number Theory Seminar, 6/12/2021

Two branches of Diophantine Geometry.

Weil: heights of rational points of algebraic varieties (for long, the only proper concept of Diophantine Geometry), and the height machinery:
$(X / \overline{\mathbb{Q}}, \mathcal{L} \in \operatorname{Pic} X) \mapsto\left(h_{X, \mathcal{L}}: X(\overline{\mathbb{Q}}) \rightarrow \mathbb{R}\right)$ up to $O(1)$, with functoriality and positivity properties.

Normalized heights:

- Néron-Tate height: \hat{h}_{X} when X is an abelian variety [there is a fiberwise variant, for an abelian scheme with a symmetric relatively ample line bundle],
- Faltings height: h_{F} when X is a modular space for abelian varieties.

First branch: study of rational points

Two apex of this first branch:

- Mordell conjecture (Faltings' Thm):
C smooth projective curve of genus >1 over a number field F : then $|C(F)|<\infty$
(uses h_{F} as a main tool; Vojta's proof uses $\hat{h}_{\text {Jac }} C$).
- Bogomolov conjecture (Ullmo-Zhang's Thm): A abelian variety $/ \overline{\mathbb{Q}}, X \subset A$ irreducible, not contained in any proper algebraic subgroup. Then for some $\varepsilon>0,\left\{x \in X(\overline{\mathbb{Q}}), \hat{h}_{A}(x) \leqslant \varepsilon\right\}$ is not Zariski-dense in X.

This branch of Diophantine Geometry has grown up around questions of effectivity and uniformity...

Younger branch: unlikely intersections.

The younger branch grew out of the Manin-Mumford, André-Oort, Zilber-Pink and similar conjectures.
Typically, one considers a countable collection of subvarieties Z_{α} of a variety X defined over a field F of char. 0 , and one looks at the union or the intersection of the Z_{α}.
Unlikely refers to phenomena which occur because the collection Z_{α} is infinite, while standard Algebraic Geometry would rule them out if the collection were finite.
Usual context: X is a subvariety of an ambient variety Y there is a notion of special subvarieties, and one looks at
$\cup Z_{\alpha}$ special $\subset \mathrm{X} Z_{\alpha}$ or $X \cap\left(\cap Z_{\alpha}\right.$ special $\left.Z_{\alpha}\right)$.

New tools.
Using tame geometry:

- Pila-Wilkie counting theorem (Pila-Zannier method)
- Functional transcendence (Ax-Lindeman-Schanuel type theorems)
- bi-algebraicity formalism.

Besides:

- the Betti map (Masser-Zannier, ...).

These powerful methods are reshaping Diophantine Geometry and displacing its frontiers: growing influence of this younger branch (unlikely intersections) on Hodge theory, cf. B. Klingler's talk. Besides, the restriction to varieties defined over $\overline{\mathbb{Q}}$ is no longer a distinctive feature...
Still, this branch remains strongly tied to the circle of conjectures which gave rise to it. Moreover, a unification with the older branch (rational points) is in progress, around questions of uniformity, as we shall see at the end of the talk.

Example: torsion value problems.

$\mathcal{A} \rightarrow S$: abelian scheme/ \mathbb{C} of relative dim. g,
$\xi: S \rightarrow \mathcal{A}$: a section.
Torsion values of $\xi: \xi^{-1} \mathcal{A}_{\text {tor }}\left(\cong \mathcal{A}_{\text {tor }} \cap \xi(S)\right)$.
Heuristic dichotomy: under "natural non-degeneracy conditions", either
i) if $\operatorname{dim} S<g$, then $\xi^{-1} \mathcal{A}_{\text {tor }}$ is algebraic: $\exists n, \xi^{-1} \mathcal{A}_{\text {tor }}=\xi^{-1} \mathcal{A}[n]$, or
ii) if $\operatorname{dim} S \geqslant g$, then $\xi^{-1} \mathcal{A}_{\text {tor }}$ is dense in $S(\mathbb{C})$.

Ex. 1: Poncelet game.

$C \neq C^{\prime}$: two conics.
Take a point $P_{0} \in C$ and a line L_{0} passing through P_{0} and tangent to C^{\prime}; it cuts C at P_{1}. Iterate:

$$
(*) \quad\left(L_{i}, P_{i}\right) \rightsquigarrow\left(L_{i}, P_{i+1}\right) \rightsquigarrow\left(L_{i+1}, P_{i+1}\right) \ldots
$$

The game ends when one comes back to the initial (L_{0}, P_{0}).
Poncelet proved that whether the game ends or not does not depend on (L_{0}, P_{0}).
Sketch of proof (Jacobi): the incidence curve

$$
D \subset C^{\vee} \times C,\{(L, P), P \in L\}
$$

is of genus 1 , hence a torsor under an elliptic curve A.
$(*)$ is a composition of involutions, hence a translation by some $\xi \in A$ independent of the initial data. Clearly the game ends iff $\xi \in A_{\text {tor }}$.

Now let (C, C^{\prime}) move (up to iso): the parameter space S is open in \mathbb{P}^{2}. The elliptic curve A is replaced by an elliptic scheme $\mathcal{A} \rightarrow S$ and ξ by a section.
Here $\operatorname{dim} S=2>g=1$, and it turns out that $\xi^{-1} \mathcal{A}_{\text {tor }}$ is dense in $S(\mathbb{C})$: for almost all $\left(C, C^{\prime}\right)$, the Poncelet game ends.

On the contrary, if one considers simultaneous games, with $\left(C_{1}, C_{2}\right)$ fixed and C^{\prime} varying in a pencil, one gets $\mathcal{A} \times \mathcal{A}$ restricted to a line in $S \times S$, and expects that there are only finitely many C^{\prime} such that this simultaneous Poncelet game ends.

Ex. 2: curves on K3 surfaces.

Y : $K 3$ surface, C : curve on Y.
If C is rational, any two points are obviously rationally equivalent on Y. But there are other such curves with this property (so-called "constant cycle curves").
Let D be a very ample divisor on $Y, \bar{S} \rightarrow|D|$ the universal curve, $S \rightarrow|D|^{0}$ the restriction over the regular locus, and $\mathcal{A}=\operatorname{Pic}^{0}\left(S /|D|^{0}\right) \times{ }_{|D|^{0}} S$ the pull-back of the jacobian fibration. Let $\xi: S \rightarrow \mathcal{A}$ be the section

$$
s=(C, x \in C) \mapsto \xi(s):=\left[(D . D) x-D_{\mid C}\right]
$$

One can show that the torsion-value locus is 1-dimensional. One conjectures that this locus projects via $S \rightarrow Y$ to a countable union of constant cycle curves C.

Ex. 3: Confinement of real algebraic integers.

Dichotomy: i) (Fekete-Szegö): if $b-a<4$, there are finitely many algebraic integers whose conjugates are in $[a, b]$,
ii) (Robinson): if $b-a>4$, there are infinitely many of those. Robinson generalized $i i$) to the union of disjoint intervals $\left[a_{i}, b_{i}\right]$. He introduced the hyperelliptic curve C with affine equation $y^{2}=\Pi\left(x-a_{i}\right)\left(x-b_{i}\right)$, its jacobian \mathcal{A} (an abelian scheme parametrized by the space S of tuples $\left(a_{i}, b_{i}\right)$), and the section $\xi:=\left[\infty_{+}\right]-\left[\infty_{-}\right]$(cf. Serre's Bourbaki talk).
The main point is that $\xi^{-1} A_{\text {tor }}$ is dense in $S(\mathbb{R})$.

The Betti map.

The Betti map is the natural tool to study such questions and many others in the cadet branch of unlikely intersections.
Setting:
$\mathcal{A} \rightarrow S$: abelian scheme of relative dim. g, with a given section $\xi: S \rightarrow \mathcal{A}$.
The Betti map of (\mathcal{A}, ξ) is a real-analytic multivalued map from $S(\mathbb{C})$ to $\mathbb{R}^{2 g}$.

- when S is a point, this is just the coordinates of a point of $\mathcal{A}(\mathbb{C}) \cong H_{1}(A, \mathbb{R}) / H_{1}(A, \mathbb{Z})$ in a mesh of the lattice $H_{1}(A, \mathbb{Z})$.
NB. These coordinates are in \mathbb{Q} iff ξ is a torsion point.
- in general, let $\Gamma \triangleleft \pi_{1}(S(\mathbb{C}), s)$ maximal acting trivially on $H_{1}\left(\mathcal{A}_{s}\right)$. $S_{\Gamma}:=\widetilde{S} / \Gamma$.
There is a real-analytic splitting

$$
\mathcal{A}_{S_{\Gamma}} \cong S_{\Gamma} \times\left(H_{1}\left(\mathcal{A}_{s}, \mathbb{R}\right) / H_{1}\left(\mathcal{A}_{s}, \mathbb{Z}\right)\right)
$$

and ξ gives rise to

$$
\beta_{\Gamma}: S_{\Gamma} \longrightarrow H_{1}\left(\mathcal{A}_{s}, \mathbb{R}\right) / H_{1}\left(\mathcal{A}_{s}, \mathbb{Z}\right)
$$

which lifts to the real-analytic multivalued map

$$
\beta: S \cdots \longrightarrow H_{1}\left(\mathcal{A}_{s}, \mathbb{R}\right) \cong \mathbb{R}^{2 g}
$$

with complex-analytic fibers. This is the Betti map.
NB: $\xi^{-1} \mathcal{A}_{\text {tor }} \cong \beta^{-1} \mathbb{Q}^{2 g}$.
Therefore, if $\operatorname{dim} S \geqslant g$ and β is generically submersive, i.e. rk. $\mathrm{d} \beta=2 \mathrm{~g}$, then $\xi^{-1} \mathcal{A}_{\text {tor }}$ is dense in $S(\mathbb{C})$.

Remarks.

- Manin (when proving Mordell in the function field case): rk. $d \beta=0$ iff ξ is torsion.
- monodromy of $\beta_{\Gamma}: \Gamma \rightarrow H_{1}\left(A_{s}, \mathbb{Z}\right)$:

Thm (A.) Assume (**) : \mathcal{A} / S has no fixed part, and $\mathbb{Z} \xi$ is Zariski-dense in \mathcal{A}.
Then Im 「 is Zariski-dense in $H_{1}\left(A_{s}\right)$.
Q.: is actually $\operatorname{Im} \Gamma$ a subgroup of finite index of $H_{1}\left(A_{s}, \mathbb{Z}\right)$? (natural question directly related to the congruence subgroup problem).

Relation to the Kodaira-Spencer map.

One cannot expect any direct relation between the Betti map (which is only multivalued and real-analytic) and classical maps from Algebraic Geometry, but...
what is relevant is not the Betti map itself, but its generic rank.
It makes sense to compare for instance rk $\mathrm{d} \beta$ and the rank of the Kodaira-Spencer map attached to $\mathcal{A} \rightarrow S$
(or better, to the Kodaira-Spencer map attached to the relative 1-motive $[\mathbb{Z} \xrightarrow{\xi} \mathcal{A}] / S$ - the name "Betti map" refers to the "Betti realization" of Deligne 1-motives).
$\theta: T_{S} \rightarrow$ Lie $\mathcal{A} \otimes \operatorname{Lie} \mathcal{A}^{\vee}$, the Kodaira-Spencer map (S affine). Any invariant relative 1-form ω provides by contraction a map

$$
\theta^{\omega}: T_{S} \longrightarrow \operatorname{Lie} \mathcal{A}^{\vee}
$$

Thm (A., Corvaja, Zannier): under condition (**), if for some ω, rk $\theta^{\omega}=\mathrm{g}$, then $\mathrm{rkd} \beta=2 \mathrm{~g}$.
(the proof takes advantage of the fact that β is only real-analytic, by using the double action of monodromy on the holomorphic and anti-holomorphic part).

Generic submersivity of the Betti map (sequel).

To go further, one needs functional transcendence (Ax-Schanuel).
Thm (A., Corvaja, Gao, Zannier): Assume End $\mathcal{A}=\mathbb{Z}, d:=\operatorname{dim}$ $\operatorname{Im}\left(S \rightarrow \mathscr{A}_{g}\right) \geqslant g$, and ξ non-torsion.
Then $\mathrm{rk} \mathrm{d} \beta=2 \mathrm{~g}$; a fortiori $\xi^{-1} \mathcal{A}_{\text {tor }}$ is dense in $S(\mathbb{C})$.
Sketch: i) End $\mathcal{A}=\mathbb{Z}$ and $d \geqslant g \Rightarrow \operatorname{Im}\left(S \rightarrow \mathscr{A}_{g}\right)$ is not contained in any special subvariety $\neq \mathscr{A}_{g}$.
ii) If rk $\mathrm{d} \beta<2 \mathrm{~g}$, by the previous theorem and an analysis of the Kodaira-Spencer map, one can find an analytic subvariety
$Z \subset \mathscr{H}_{g} \subset \mathscr{H}_{g}^{\vee}$ (Siegel space and its compact dual), Z lying above Im $\left(S \rightarrow \mathscr{A}_{g}\right), \quad \operatorname{dim} Z=d-g+1, \quad \operatorname{dim} Z^{Z a r} \leqslant \operatorname{dim} \mathscr{H}_{g}-g$.
iii) This contradicts the Ax-Schanuel theorem (à la Mok-Pila-Tsimerman) in the bi-algebraic situation
$Z \subset \mathscr{A}_{g} \times \mathscr{H}_{g}^{\vee}: \quad \operatorname{dim} Z_{\mathscr{A}_{g} \times \mathscr{H}_{g}^{\vee}}^{Z a r} \geqslant \operatorname{dim} Z+\operatorname{dim} Z^{\text {biZar }}$.
By using a mixed version of Ax-Schanuel, Gao later obtained the optimal statement.

Non-degenerate subvarieties of \mathcal{A}.

$\mathcal{A} \rightarrow S$: abelian scheme of relative dim. g. One of the most important application of the Betti map in Diophantine Geometry is the notion of non-degenerate closed subvariety X of dimension $d \leqslant g$ of \mathcal{A} (Habegger, Gao).
Another look at the Betti map: the Betti foliation

$$
b: \mathcal{A} \cdots \longrightarrow \mathbb{T}^{2 g}=\mathbb{R}^{2 g} / \mathbb{Z}^{2 g}
$$

(real-analytic multivalued rigidification of \mathcal{A}, viewed as a fixed torus).
Here, there is no section, but by base-change $X \rightarrow S$ one gets one and $b_{\mid X}$ is then the same as the previous betti map β; conversely, starting from (\mathcal{A}, ξ), one may take $X=\xi(S)$ and again $b_{\mid X} \equiv \beta$.
$X \subset \mathcal{A}$ is a nondegenerate subvariety when $\mathrm{db}_{\mid \mathrm{x}}$ has generically maximal rank $2 d$, i.e. $b_{\mid X}$ is generically immersive.

One can analyse the locus where $\mathrm{rk}_{\mid \mathrm{X}}$ is not maximal - in simple cases, in terms of special subvarieties (i.e. in terms of torsion cosets in fibers) (Gao).
Nondegeneracy may be seen as a (substitute of a) bigness condition for some appropriate line bundle (essentially the polarization restricted to X).

When the two branches of Diophantine Geometry meet

1. The geometric Bogomolov conjecture
$\mathcal{A} \rightarrow S / \overline{\mathbb{Q}}$: abelian scheme without fixed part (for simplicity).
$\hat{h}_{\mathcal{A}}$: fiberwise Néron-Tate height (associated to a symmetric relatively ample line bundle).
$X \subset \mathcal{A}$, closed irreducible subvariety, not generically contained in any proper algebraic subgroup.

Thm (Cantat-Gao-Habegger-Xie). For some $\varepsilon>0$, $\left\{x \in X(\overline{\mathbb{Q}}), \hat{h}_{\mathcal{A}}(x) \leqslant \varepsilon\right\}$ is not Zariski-dense in X.

Relies upon a height inequality (à la Silverman).
$\mathcal{A} \xrightarrow{\pi} S, X \subset \mathcal{A}$ of dim. $d \leqslant g$ as before, h_{S} : a height on S.
Thm (Dimitrov-Gao-Habegger). There are constants c, c^{\prime} s. t.

$$
\hat{h}_{\mathcal{A}}(x) \geqslant c h_{S}(\pi(x))-c^{\prime}
$$

for every x where the Betti map $b_{\mid X}$ has maximal rank $2 d$.

When the two branches of Diophantine Geometry meet

2. Uniform Mordell conjecture
C : smooth projective curve of genus $g>1$ over a number field F.
Thm (Dimitrov-Gao-Habegger/Kühne). $|C(F)| \leqslant c(g)^{1+r k J a c} C(F)$.
Vojta's approach +
i) Geometric criterion of nondegenerate subvarieties applied to the universal Jacobian and to related constructions (à la
Faltings-Zhang),
ii) The height inequality (à la Silverman) on any given
nondegenerate subvariety, as before,
iii) An equidistribution result (à la Ullmo-Zhang) on any given
nondegenerate subvariety.
[In fact, the thm. is deduced from a uniform Mordell-Lang conjecture for curves embedded in their jacobians over any field of char. 0.]
