Shift Operators on Harmonic Hilbert Function Spaces and von Neumann Inequality with Harmonic Polynomials

H. Turgay Kaptanoğlu

Department of Mathematics, Bilkent University, Ankara kaptan@fen.bilkent.edu.tr http://www.fen.bilkent.edu.tr/ ~ kaptan/

Joint work with Daniel Alpay, Chapman University, Orange, CA.

2021

• • = • • = •

Holomorphic von Neumann Inequality

Theorem 1 (von Neumann, 1951)).

If T is a contraction $(||T|| \le 1)$ on a complex Hilbert space and p is a holomorphic polynomial in 1 complex variable, then $||p(T)|| \le \sup_{z \in \mathbb{D}} |p(z)|$.

The sup in this theorem is equal to $||M_p|| = ||p(S)||$, where M_p and $S = M_z$ are multiplication and shift operators on $H^2(\mathbb{D})$.

For a version of this for commuting tuples of operators, let \mathcal{A} be the Drury-Arveson space, the Hilbert space with reproducing kernel $\mathcal{K}_{\mathcal{A}}(z,w) = \frac{1}{1-\langle z,w\rangle} = \sum_{m=0}^{\infty} \langle z,w\rangle^m$ consisting of holomorphic functions on the unit ball \mathbb{B} of \mathbb{C}^N , where $\langle z,w\rangle = z_1\overline{w}_1 + \cdots + z_N\overline{w}_N$ is the inner product of \mathbb{C}^N . When N = 1, $\mathcal{A} = H^2(\mathbb{D})$.

Theorem 2 (Drury 1978, Arveson 1998).

If $(T_1, ..., T_N)$ is a commuting tuple and a row contraction on a complex Hilbert space and p is a holomorphic polynomial in N complex variables, then $\|p(T_1, ..., T_N)\| \le \|p(S_1, ..., S_N)\|$, where the $S_j = M_{z_j}$ act on A.

H. T. Kaptanoğlu (Bilkent, Ankara)

Aim and Some Questions

We would like to have a version of von Neumann inequality in which the polynomial p is harmonic. To do this, we have to first find answers to some questions.

- What are the equivalents of the shift operators? Multiplication by coordinate variables do not preserve harmonicity, so we might have to project on harmonic spaces.
- What is the equivalent of the Drury-Arveson space? We probably should search for a reproducing kernel Hilbert space of harmonic functions. A good place to start might be to find the equivalents of the (z, w)^m for harmonic functions. These are the reproducing kernels of the spaces of holomorphic homogeneous polynomials of degree m.
- For what families of row contractions of operators can we obtain a von Neumann inequality? It turns out we have to restrict further as of now.

We consider the general situation and take $n \ge 2$. We denote the inner product of \mathbb{R}^n by $x \cdot y = x_1y_1 + \cdots + x_ny_n$.

イロト 不得 トイヨト イヨト

Spherical and Zonal Harmonics

Let \mathcal{P}_m and \mathcal{H}_m be the space of complex-valued homogeneous and harmonic homogeneous polynomials in $n \ge 2$ real variables of degree m. The restrictions of elements of \mathcal{H}_m to the unit sphere \mathbb{S} in \mathbb{R}^n are called spherical harmonics.

Point evaluation at $\eta \in \mathbb{S}$ is a bounded linear functional on \mathcal{H}_m , so \mathcal{H}_m is a reproducing kernel Hilbert space. Its reproducing kernel $Z_m(\xi, \eta)$ with respect to $[\cdot, \cdot]_{L^2(\sigma)}$ is called the zonal harmonic of degree m, where σ is the normalized surface measure on \mathbb{S} . Thus Z_m is a positive definite function.

Zonal harmonics can be extended as positive definite functions to all of $\overline{\mathbb{B}} \subset \mathbb{R}^n$ in one or both variables as $Z_m(x, y) := r^m \rho^m Z_m(\xi, \eta)$ by homogeneity. The reproducing property then takes the form

$$u(y) = \int_{\mathbb{S}} u(\xi) Z_m(\xi, y) \, d\sigma(\xi) = \left[u(\cdot), Z_m(\cdot, y) \right]_{L^2(\sigma)} \qquad (y \in \mathbb{B}, u \in \mathcal{H}_m).$$

Zonal harmonics are real-valued and symmetric in their variables and satisfy $|Z_m(x,y)| \leq |Z_m(\xi,\eta)| \leq Z_m(\xi,\xi) = \delta_m := \dim \mathcal{H}_m$, where $x = r\xi$ and $y = \rho\eta$.

<ロト <部ト <注入 < 注入 = 二 =

2021

Zonal Harmonics

The explicit formula for the zonal harmonics is

$$Z_m(x,y) = (n+2m-2) \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{n(n+2)\cdots(n+2m-2k-4)}{(-1)^k 2^k k! (m-2k)!} |x|^{2k} (x \cdot y)^{m-2k} |y|^{2k}$$

= $A_m(x \cdot y)^m + A_{m1} |x|^2 (x \cdot y)^{m-2} |y|^2 + A_{m2} |x|^4 (x \cdot y)^{m-4} |y|^4 + \cdots,$

where $A_m := \frac{n(n+2)\cdots(n+2m-2)}{m!} = \frac{(n/2)_m 2^m}{m!}$ is the coefficient of the first term for k = 0, $\lfloor \cdot \rfloor$ denotes the integer part, and $(a)_b := \Gamma(a+b)/\Gamma(a)$ is the Pochhammer symbol.

We define
$$X_m(x, y) := A_m^{-1} Z_m(x, y) = (x \cdot y)^m + \cdots$$
. We compute $|X_m(x, y)| \le |x|^m |y|^m \frac{\delta_m}{A_m} \le 1$ for all $x, y \in \overline{\mathbb{B}}$.

In the holomorphic setting, the equivalents of A_m and δ_m are equal. It turns out that X_m is the counterpart in \mathbb{R}^n of the quantity $\langle z, w \rangle^m$ in \mathbb{C}^N , which is a constant multiple of the reproducing kernel of holomorphic homogeneous polynomials of degree m with respect to $[\cdot, \cdot]_{L^2(\sigma)}$ (K., 2010).

- 御下 - 日下 - 日下 - 日

Shift Operators

Observe that $\frac{1}{m+1} \frac{\partial}{\partial \overline{w}_j} (\langle z, w \rangle^{m+1}) = z_j \langle z, w \rangle^m$ in the holomorphic setting.

Definition 3.

For j = 1, ..., n, considering $X_m(x, y)$ as a function of x indexed by the parameter y, we define the shift operators $S_j : \mathcal{H}_m \to \mathcal{H}_{m+1}$ acting on x by first

$$S_j X_m(x,y) = \frac{1}{m+1} \frac{\partial}{\partial y_j} X_{m+1}(x,y)$$

and then extending to all of \mathcal{H}_m by linearity and the density of the $X_m(\cdot,y)$ in \mathcal{H}_m .

Recall that $L^{2}(\sigma) = \bigoplus_{m=0}^{\infty} \mathcal{H}_{m}$. The adjoints of the S_{j} with respect to $[\cdot, \cdot]_{L^{2}(\sigma)}$ are $S_{j}^{*}u_{m} = \frac{1}{m} \frac{A_{m-1}}{A_{m}} \partial_{j}u_{m} = \frac{1}{n+2m-2} \partial_{j}u_{m}$ for $u_{m} \in \mathcal{H}_{m}$. Since these adjoints commute with each other, so do the S_{j} .

Projection on \mathcal{H}_m

If $p_m \in \mathcal{P}_m$ and $k = \lfloor m/2 \rfloor$, then there are unique $u_l \in \mathcal{H}_l$ such that

$$p_m(x) = u_m(x) + |x|^2 u_{m-2}(x) + \cdots + |x|^{2k} u_{m-2k}(x).$$

Let the projection $H_m : \mathcal{P}_m \to \mathcal{H}_m$ be given by $H_m(p_m) = u_m$. Let also $\partial = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$.

Theorem 4 (Axler, Bourdon, Ramey, 2001).

If
$$p_m \in \mathcal{P}_m$$
, then $H_m(p_m)(x) = \frac{1}{c_m} \begin{cases} K[p_m(\partial)|x|^{2-n}], & n \ge 3, \\ K[p_m(\partial)\log|x|], & n = 2. \end{cases}$ When p_m is

restricted to S, then this projection is orthogonal with respect to $[\cdot, \cdot]_{L^2(\sigma)}$. Here the c_m are constants depending on n and m, and K is the Kelvin transform.

The Kelvin transform is given by $K[u](x) = |x|^{2-n} u\left(\frac{x}{|x|^2}\right)$ for $x \neq 0$, which is $K[u](x) = u(x/|x|^2)$ for n = 2. Note that K[u] = u on \mathbb{S} and $K^{-1} = K$. A function is harmonic if and only if its Kelvin transform is harmonic.

Shifts and Multiplications by Coordinate Variables

Theorem 5.

For
$$j=1,\ldots,n$$
 , if $S_j:\mathcal{H}_m\to\mathcal{H}_{m+1}$, then $S_j=H_{m+1}M_{x_j}$.

Lemma 6.

For
$$n \ge 3$$
, we have $(y \cdot \partial)^m |x|^{2-n} = c_m \frac{X_m(x, y)}{|x|^{n+2m-2}}$ and $K[(y \cdot \partial)^m |x|^{2-n}] = c_m X_m(x, y)$. In the formulas for $n = 2$, $|x|^{2-n}$ is replaced by $\log |x|$ on the left and by nothing on the right.

Corollary 7.

For $n \geq 3$ and m = 0, 1, 2, ..., we have $K(\eta \cdot \partial)^m K[1](\xi) = (-1)^m m! C_m^{n/2-1}(\xi \cdot \eta)$, where C_m^{λ} is the Gegenbauer (ultraspherical) polynomial of degree m with parameter λ . For n = 2 and m = 1, 2, ..., we have $K(\eta \cdot \partial)^m K[\log | \cdot |](\xi) = (-1)^m (m-1)! T_m(\xi \cdot \eta)$, where T_m is the Chebyshev polynomial of the first kind of degree m.

2021

(日)

Harmonic Hilbert Function Spaces

Let $\{\beta_m > 0 : \beta_0 = 1, m = 0, 1, 2, ...\}$ be a coefficient sequence satisfying $\limsup (\delta_m \beta_m / A_m)^{1/m} \le 1$. We define kernels by $G_{\beta}(x, y) := \sum_{m=1}^{\infty} \beta_m X_m(x, y)$ $m \rightarrow \infty$ for $x, y \in \mathbb{B}$ and spaces \mathcal{G}_{β} as the reproducing kernel Hilbert spaces generated by these kernels. The series of the G_{β} converge absolutely and uniformly on compact subsets of $\mathbb{B} \times \mathbb{B}$, hence define harmonic functions of $x, y \in \mathbb{B}$. Thus also $\mathcal{G}_{\beta} \subset h(\mathbb{B})$, the space of harmonic functions on \mathbb{B} .

Theorem 8.

The space \mathcal{G}_{β} coincides with the space of $u \in h(\mathbb{B})$ having homogeneous expansions $u = \sum_{m=1}^{\infty} u_m$ with $u_m \in \mathcal{H}_m$ satisfying $\|u\|_{\mathcal{G}_{\beta}}^{2} = \sum_{m=0}^{\infty} \|u_{m}\|_{\mathcal{G}_{\beta}}^{2} = \sum_{m=0}^{\infty} \frac{A_{m}}{\beta_{m}} \|u_{m}\|_{L^{2}(\sigma)} < \infty \text{ equipped with the inner product}$ $\left[u,v\right]_{\mathcal{G}_{\beta}} = \sum_{m=0}^{\infty} \left[u_m,v_m\right]_{\mathcal{G}_{\beta}} = \sum_{m=0}^{\infty} \frac{A_m}{\beta_m} \left[u_m,v_m\right]_{L^2(\sigma)}.$

Linear combinations of $\{X_m(\cdot, y)\}$ and also the harmonic polynomials are dense in every \mathcal{G}_{β} . (日) 2021 9/1

H. T. Kaptanoğlu (Bilkent, Ankara)

A New Family of Harmonic Hilbert Function Spaces

Motivated by $\frac{1}{(1-\langle z,w\rangle)^{1+N+q}} = \sum_{m=0}^{\infty} \frac{(1+N+q)_m}{m!} \langle z,w\rangle^m$ when q > -(1+N) and $z,w \in \mathbb{B} \subset \mathbb{C}^N$, for $q \in \mathbb{R}$, we consider the sequence

$$eta_m(q) := egin{cases} rac{(1+n/2+q)_m}{m!}, & ext{if } q > -(1+n/2), \ rac{m!}{(1-(n/2+q))_m}, & ext{if } q \leq -(1+n/2), \end{cases}$$

and call the corresponding reproducing kernel and the reproducing kernel Hilbert space G_q and \mathcal{G}_q . Functions in every \mathcal{G}_q are actually harmonic on $2\mathbb{B}$.

When q = -n/2, all the $\beta_m(-n/2) = 1$, and we name the corresponding kernel and the space \breve{G} and \breve{G} . So

$$\breve{G}(x,y) = \sum_{m=0}^{\infty} ((x \cdot y)^m + \cdots) = \frac{1}{1 - x \cdot y} + \cdots,$$

and $\check{\mathcal{G}}$ is our candidate for the harmonic Drury-Arveson space.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Another Family of Harmonic Hilbert Function Spaces

As another example, for $\ q\in\mathbb{R}$, we let

$$\gamma_m(q) := egin{cases} rac{2^m(1+n/2+q)_m}{m!}, & ext{if } q > -(1+n/2), \ rac{2^mm!}{(1-(n/2+q))_m}, & ext{if } q \leq -(1+n/2), \end{cases}$$

and call the corresponding reproducing kernel and the reproducing kernel Hilbert space R_q and b_q^2 .

The Poisson kernel $P(x,\eta) := \frac{1-|x|^2}{|x-\eta|^n} = \sum_{m=0}^{\infty} Z_m(x,\eta)$, where $x \in \mathbb{B}$, $\eta \in \mathbb{S}$ is obtained for q = -1 and it reproduces the harmonic Hardy space $b_{-1}^2 = h^2$. If q > -1, the b_q^2 are harmonic weighted Bergman spaces. If q < -1, the b_q^2 are harmonic Bergman-Besov (Bergman Sobolev) spaces. If q = -n, the b_{-n}^2 is the harmonic Dirichlet space.

All these spaces have inner products given by integrals on $\,\mathbb B$. These are studied by Gergün, K., Üreyen (2016).

2021

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト …

Properties of Shifts

When we extend the S_j to all of \mathcal{G}_{β} or \mathcal{G}_q , we write S_{β_j} or S_{q_j} . The adjoints with respect to $[\cdot, \cdot]_{\mathcal{G}_{\beta}}$ are $S^*_{\beta_j}u_m = \frac{1}{m}\frac{\beta_{m-1}}{\beta_m}\partial_j u_m$ for $u_m \in \mathcal{H}_m$. In particular, $\check{S}^*_j u_m = \frac{1}{m}\partial_j u_m$, and $\check{S}^*_j u_m(x) = \int_0^1 (\partial_j u_m)(tx) dt$ by homogeneity. The last formula is used by Alpay, Shapiro, Volok (2005) to define the backward shift operators on a Drury-Arveson space in a quaternionic setting.

Using the notation $T \cdot U = T_1 U_1 + \dots + T_n U_n$ for tuples of operators, also $(S_{\beta} \cdot S_{\beta}^*)u_m = \sum_{j=1}^n S_{\beta_j} \frac{1}{m} \frac{\beta_{m-1}}{\beta_m} \partial_j u_m = \frac{1}{m} \frac{\beta_{m-1}}{\beta_m} H_m(x \cdot \partial) u_m = \frac{\beta_{m-1}}{\beta_m} u_m$. So if $\theta = \sup_m (\beta_{m-1}/\beta_m) < \infty$, which holds true for $\beta_m(q)$ for all $q \in \mathbb{R}$, then each S_{β_j} is bounded and $\|S_{\beta_j}\| \le \sqrt{\theta}$.

Further, $(I - S_{\beta} \cdot S_{\beta}^*)u = u_0 + \sum_{m=1}^{\infty} \left(1 - \frac{\beta_{m-1}}{\beta_m}\right)u_m$ for $u \in \mathcal{G}_{\beta}$. In particular, $(I - \breve{S} \cdot \breve{S}^*)u = u_0$. which is also true for the shift on the holomorphic Drury-Arveson space.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Row Contractions

Definition 9.

Let $T = (T_1, ..., T_n)$ be a commuting tuple of operators on a Hilbert space H. We call T a row contraction if $||T_1u_1 + \cdots + T_nu_n||_H^2 \le ||u_1||_H^2 + \cdots + ||u_n||_H^2$ for all $u_1, \ldots, u_n \in H$. Equivalently, T is a row contraction if and only if $I - T \cdot T^*$ is a positive operator.

For a row contraction T, we call $D_T = (I - T \cdot T^*)^{1/2} : H \to H$, which is the unique positive square root, the defect operator of T. By above, $D_{\check{S}}u = u_0$.

When is S_{β} a row contraction? The operator $I - S_{\beta} \cdot S_{\beta}^*$ is a diagonal operator, so it is positive precisely when the coefficients in its expansion above are all positive.

Proposition 10.

So S_{β} is a row contraction if and only if $\{\beta_m\}$ is an increasing sequence. In particular, S_q is a row contraction if and only if $q \ge -n/2$.

13/1

イロト 不得 トイヨト イヨト

2021

Maps on $\mathcal{B}(H)$

Let's denote as usual bounded linear operators on a Hilbert space H by $\mathcal{B}(H)$.

Let $T = (T_1, \ldots, T_n)$ be an operator tuple on a Hilbert space H. Define $J_T(B) := T_1BT_1^* + \cdots + T_nBT_n^*$ for $B \in \mathcal{B}(H)$, which has proved useful in operator theory. Using the explicit formula for the zonal harmonics, define also for $m = 0, 1, 2, \ldots$,

$$\boldsymbol{V}_T^m(B) := \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{A_{mk}}{A_m} (T \cdot T)^k J_T^{m-2k}(B) (T^* \cdot T^*)^k \qquad (B \in \mathcal{B}(H)),$$

where $J_T^{\ell}(B) := J_T(J_T^{\ell-1}(B)) = \sum_{|\alpha|=\ell} \frac{\ell!}{\alpha!} T^{\alpha} B(T^*)^{\alpha}$ is the ℓ -fold composition of maps which is associative. Both $J_T^0 = V_T^0 = I$. In particular, $J_T^{\ell}(I) = (T \cdot T^*)^{\ell}$ and

$$V_T^m(I) = \sum_{k=0}^{\lfloor m/2 \rfloor} \frac{A_{mk}}{A_m} (T \cdot T)^k (T \cdot T^*)^{m-2k} (T^* \cdot T^*)^k = X_m(T, T^*).$$

イロト 不得 トイヨト イヨト 二日

Action of
$$V_T^m(I)$$

 $(S^*_{\beta} \cdot S^*_{\beta})u_m = \frac{1}{m} \frac{\beta_{m-1}}{\beta_m} \sum_{j=1}^n S^*_{\beta_j} \partial_j u_m = \frac{1}{m(m-1)} \frac{\beta_{m-2}}{\beta_m} \sum_{j=1}^n \partial_j^2 u_m = 0$ for $u_m \in \mathcal{H}_m$.

Definition 11.

We call an operator tuple $T = (T_1, ..., T_n)$ on a Hilbert space harmonic type if $T^* \cdot T^* = 0$, or equivalently, if $T \cdot T = 0$.

If T is harmonic type, then $V_T^m = J_T^m$ and $V_T^m(V_T^1) = V_T^{m+1}$.

Lemma 12.

If $T = (T_1, ..., T_n)$ is a row contraction and harmonic type on a Hilbert space, then $\lim_{m \to \infty} V_T^m(I) = \lim_{m \to \infty} J_T^m(I) =: T_\infty$ exists in the strong operator topology and satisfies $0 \le T_\infty \le I$.

If $T_{\infty} = 0$, then T is called pure. In particular, S_q is pure when $q \ge -n/2$. Also $V_{\check{S}}^m(I)u = \sum_{\ell=m}^{\infty} u_\ell = u - (u_0 + u_1 + \dots + u_{m-1})$.

2021

Passage from $T \in \mathcal{B}(H)$ to \breve{S} **Theorem 13.**

Let T be a harmonic-type row contraction on a Hilbert space H. Then there exists a unique bounded linear operator $L: \breve{\mathcal{G}} \otimes \overline{D_T H} \to H$ satisfying $||L|| \leq 1$ and $L(u \otimes \omega) = u(T) D_T \omega$ for a harmonic polynomial u and $\omega \in \overline{D_T H}$. In particular, $L(1 \otimes \omega) = D_T \omega$. Moreover, $L \cdot L^* = I - T_\infty$, so if T is pure, then L is a coisometry, that is, $L \cdot L^* = I$ on H.

f T is self-adjoint, i.e.,
$$T_j^* = T_j$$
 for $j = 1, ..., n$, then $V_T^m(I) = \frac{\delta_m}{A_m} J_T^m(I)$.

Lemma 14.

Let T be a self-adjoint row contraction on a Hilbert space and define $R_{M} = \sum_{m=1}^{M} \left(\frac{\delta_{m}}{A_{m}} - \frac{\delta_{m+1}}{A_{m+1}} \right) J_{T}^{m+1}(I) . \text{ Then } \lim_{M \to \infty} R_{M} =: R_{\infty} \text{ exists in the strong operator topology and } 0 \le R_{\infty} \le I .$

Theorem 15.

Theorem **??** also holds for self-adjoint row contractions on a Hilbert space.

16/1

2021

Maximality of Norm of $\breve{\mathcal{G}}$ and a von Neumann Inequality

A norm on harmonic polynomials derived from an inner product that respects the orthogonality in $L^2(\sigma)$ is called contractive if the shift operator is a row contraction in this norm.

Theorem 16.

Let $\|\cdot\|$ be a contractive norm on harmonic polynomials. Then $\|u\| \le \|u\|_{\check{\mathcal{G}}} \|1\|$ for harmonic polynomials u.

Theorem 17.

Let T be a harmonic-type row contraction on a Hilbert space H. If u is a harmonic polynomial, then $||u(T)|| \le ||u(\check{S})||$.

Remark 18.

Unlike the holomorphic case in which the Drury-Arveson space generalizes the Hardy space to several variables for operator-theoretic considerations, there is no connection between the harmonic Hardy space and the harmonic Drury-Arveson space.

References

- D. Alpay & H. T. Kaptanoğlu, Shift Operators on Harmonic Hilbert Function Spaces on Real Balls and von Neumann Inequality, J. Funct. Anal. 281 (2021), #109058, 32 pp.
- D. Alpay, M. Shapiro, & D. Volok, *Rational Hyperholomorphic Functions in* \mathbb{R}^d , J. Funct. Anal. **221** (2005), 122–149.

- W. Arveson, *Subalgebras of C*^{*} -*Algebras III: Multivariable Operator Theory*, Acta Math. **181** (1998), 159–228.
- S. Axler, P. Bourdon, & W. Ramey, *Harmonic Function Theory*, 2nd ed., Grad. Texts in Math., vol. 137, Springer, New York, 2001.

- S. W. Drury, A Generalization of von Neumann's Inequality to the Complex Ball, Proc. Amer. Math. Soc. **68** (1978), 300–304.
- S. Gergün, H. T. Kaptanoğlu, & A. E. Üreyen, *Harmonic Besov Spaces on the Ball*, Internat. J. Math. **27** (2016), #1650070, 59 pp.
- H. T. Kaptanoğlu, Reproducing Kernels and Radial Differential Operators for Holomorphic and Harmonic Besov Spaces on Unit Balls: A Unified View, Comput. Methods Funct. Theory 10 (2010), 483–500.