Trace Estimate For The Determinant Operators

Paramita Pramanick

Department of Mathematics
Harish-Chandra Research Institute
Prayagraj
Focus Program on Analytic Function Spaces and their Applications

December 1, 2021
(1) Determinant Operator and Generalized Commutator

- Determinant Operator
- The Class $B S_{m, \vartheta}(\Omega)$
- Trace Estimate For Determinant Operator

Determinant Operator

- An operator $T: \mathcal{H} \rightarrow \mathcal{H}$ is said to be in trace-class if there is an orthonormal basis $\left\{e_{n}\right\}$ such that $\sum_{n}\langle | T\left|e_{n}, e_{n}\right\rangle<\infty$, where $|T|$ is the unique square root of $T^{*} T$.
- For $1 \leq i, j \leq d$, let $B_{i j}: \mathcal{H} \rightarrow \mathcal{H}$ be a bounded linear operator on the complex separable Hilbert space \mathcal{H}. Consequently, $\boldsymbol{B}:=\left(\left(B_{i j}\right)\right)$ defines a bounded linear operator from the Hilbert space $\mathcal{H} \otimes \ell_{2}(d)$ to itself. The determinant $\mathrm{dEt}(\boldsymbol{B})$ is the operator given by the formula:

$$
\mathrm{dEt}(\boldsymbol{B}):=\sum_{\sigma, \tau \in \mathfrak{G}_{d}} \operatorname{Sgn}(\sigma) B_{\tau(1) \sigma(\tau(1))} B_{\tau(2) \sigma(\tau(2))} \ldots B_{\tau(n) \sigma(\tau(d))} .
$$

- The determinant of the $d \times d$ block operator $\left[\boldsymbol{T}^{*}, \boldsymbol{T}\right]=\left(\left(\left[T_{j}^{*}, T_{i}\right]\right)\right)$ is then obtained by setting $B_{i j}=\left[T_{j}^{*}, T_{i}\right]$.

Determinant Operator

- \boldsymbol{T} is the commuting pair $\left(T_{1}, T_{2}\right)$, then

$$
\begin{aligned}
\operatorname{dEt}\left(\left[\boldsymbol{T}^{*}, \boldsymbol{T}\right]\right) & =T_{1}^{*} T_{1} T_{2}^{*} T_{2}+T_{2}^{*} T_{2} T_{1}^{*} T_{1}+T_{1} T_{1}^{*} T_{2} T_{2}^{*}+T_{2} T_{2}^{*} T_{1} T_{1}^{*} \\
& -T_{1}^{*} T_{2} T_{2}^{*} T_{1}-T_{2}^{*} T_{1} T_{1}^{*} T_{2}-T_{1} T_{2}^{*} T_{2} T_{1}^{*}-T_{2} T_{1}^{*} T_{1} T_{2}^{*} .
\end{aligned}
$$

- The map dEt: $\mathcal{B}(\mathcal{H})^{d} \times \cdots \times \mathcal{B}(\mathcal{H})^{d} \mapsto \mathcal{B}(\mathcal{H})$ is defined in analogy with the usual definition of the determinant, namely, det : $\mathbb{C}^{d} \times \cdots \times \mathbb{C}^{d} \mapsto \mathbb{C}$, that is, dEt is a multi-linear alternating map. It is not clear if such a map is uniquely determined (up to a scalar multiple).
- The determinant of a positive matrix is positive. However, if $\boldsymbol{B}:=\left(\left(B_{i j}\right)\right)$ is a positive $d \times d$ block operator, then the determinant operator $\mathrm{dEt}(\boldsymbol{B})$ need not be positive. For example let \boldsymbol{B} be the 2×2 block operator with $B_{i j}=E_{i j}$, where $E_{i j}$ is the 2×2 matrix with 1 at the (i, j) entry and 0 everywhere else. The block matrix \boldsymbol{B} is self-adjoint and positive. But $\operatorname{dEt}(\boldsymbol{B})=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ is not positive.

Determinant Operator Associated to Different Classes of Operators

- If \boldsymbol{T} is a doubly commuting d - tuple of bounded linear operators on \mathcal{H}, then

$$
\mathrm{dEt}\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)=d!\left[T_{1}^{*}, T_{1}\right] \ldots\left[T_{d}^{*}, T_{d}\right]
$$

In particular, if $\left[T_{1}^{*}, T_{1}\right]$ is compact, then $\mathrm{dEt}\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)$ is compact.

- Hardy Space over \mathbb{D}^{2}

Let P be the projection onto the subspace generated by the constant function in $H^{2}(\mathbb{D})$ and M_{z} be the multiplication operator on $H^{2}(\mathbb{D})$. Let $\boldsymbol{M}:=\left(M_{\mathbf{z}} \otimes \boldsymbol{I}, \boldsymbol{I} \otimes \boldsymbol{M}_{\boldsymbol{z}}\right)$. In this example, we have dEt $\left(\llbracket \boldsymbol{M}^{*}, \boldsymbol{M} \rrbracket\right)=2(P \otimes P)$. Although, none of the non-zero commutators are compact, we see that $\mathrm{dEt}\left(\llbracket \boldsymbol{M}^{*}, \boldsymbol{M} \rrbracket\right)$ is positive with trace $\left(\mathrm{dEt}\left(\llbracket \boldsymbol{M}^{*}, \boldsymbol{M} \rrbracket\right)\right)=2$.

Determinant Operator Associated to Different Classes of Operators

- Hardy Space over Symmetrized Bidisk The usual Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$ is a module over the polynomial ring $\mathbb{C}\left[z_{1}, z_{2}\right]$ equipped with the module multiplication: $m_{p}(f)=p f, p \in \mathbb{C}\left[z_{1}, z_{2}\right], f \in H^{2}\left(\mathbb{D}^{2}\right)$. We consider a different module multiplication defined by the commuting pair of operators $\boldsymbol{T}=\left(T_{1}, T_{2}\right):$

$$
T_{1}=M_{z} \otimes I+I \otimes M_{z} \text { and } T_{2}=M_{z} \otimes M_{z}
$$

acting on the Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$. The Hardy space equipped with the module multiplication: $m_{p}(f)=p(\boldsymbol{T}) f, f \in H^{2}\left(\mathbb{D}^{2}\right), p \in \mathbb{C}\left(\left[z_{1}, z_{2}\right]\right)$, is the Hardy module on the symmetrized bidisc.

$$
\mathrm{dEt}\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)=2 P \otimes P-P M_{z}^{*} \otimes M_{z} P-M_{z} P \otimes P M_{z}^{*}
$$

The operator $\mathrm{dEt}\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)$ on Hardy Space over symmetrized bidisk is nonnegative definite and is in trace class.

Generalized Commutator

Definition 1 (Helton-Howe)

Let $\boldsymbol{A}=\left(A_{1}, A_{2}, \ldots, A_{d}\right)$ be a d - tuple of bounded operators. The generalized commutator $G C(\boldsymbol{A})$ is defined to be the sum

$$
\sum_{\sigma \in \mathfrak{S}_{d}} \operatorname{Sgn}(\sigma) A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(d)}
$$

- For any d-tuple of operators $\boldsymbol{T}=\left(T_{1}, T_{2}, \ldots, T_{d}\right)$ generalised commutator $G C\left(\boldsymbol{T}^{*}, \boldsymbol{T}\right)$ is defined by chosing $A_{1}=T_{1}^{*}, A_{2}=T_{1}, \ldots, A_{2 d-1}=T_{d}^{*}, A_{2 d}=T_{d}$ in the above definition.

Proposition 2

For any d-tuple \boldsymbol{T} of commuting operators, the determinant

$$
\operatorname{dEt}\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)=G C\left(\boldsymbol{T}^{*}, \boldsymbol{T}\right) .
$$

The Class $B S_{m, \vartheta}(\Omega)$

Definition 3

The d - tuple \boldsymbol{T} is said to be m - polynomially cyclic if the smallest cardinality of a linearly independent set of vectors $\boldsymbol{\xi} \subseteq \mathcal{H}$ such that \mathcal{H} is the closed linear span of

$$
\left\{T_{1}^{i_{1}} T_{2}^{i_{2}} \ldots T_{d}^{i_{d}} v \mid v \in \xi \text { and } i_{1}, i_{2}, \ldots, i_{d} \geq 0\right\}
$$

is equal to m. We let $\boldsymbol{\xi}[m]$ denote any such set $\boldsymbol{\xi}$ of m linearly independent vectors.

For a m-cyclic d-tuple \boldsymbol{T}, let

$$
\mathcal{H}_{N}:=\bigvee\left\{T_{1}^{i_{1}} T_{2}^{i_{2}} \ldots T_{d}^{i_{d}} v \mid v \in \xi(m) \text { and } 0 \leq i_{1}+i_{2}+\ldots i_{d} \leq N\right\}
$$

and P_{N} be the projection onto \mathcal{H}_{N}

Lemma 4

$P_{N} \uparrow$ sot I and $\operatorname{rank}\left(P_{N}^{\perp} T_{j} P_{N}\right) \leq m\binom{N+d-1}{d-1}$ for $j=1, \ldots, d,$.

The Class $B S_{m, \vartheta}(\Omega)$

Definition 5

Fix a bounded domain $\Omega \subset \mathbb{C}^{d}$. A m-cyclic commuting d - tuple of operators with $\sigma(\boldsymbol{T})=\bar{\Omega}$ is said to be in the class $B S_{m, \vartheta}(\Omega)$, if
(i) $P_{N} T_{j} P_{N}^{\perp}=0, j=1, \ldots, d$.
(ii) $\mathrm{dEt}\left(\left[\boldsymbol{T}^{*}, \boldsymbol{T}\right]\right)$ is non-negative definite.
(iii) For a fixed but arbitrary τ in the permutation group \mathfrak{S}_{d} of d symbols, there exists $\vartheta \in \mathbb{N}$, independent of N, such that

$$
\begin{aligned}
\| P_{N}\left(\sum_{\eta \in \mathfrak{S}_{d}} \operatorname{Sgn}(\eta) T_{\eta(1)}^{*} T_{\tau(1)} T_{\eta(2)}^{*} \ldots T_{\eta(d)}^{*}\right) & P_{N}^{\perp} T_{\tau(d)} P_{N} \| \\
& \leq \vartheta\binom{N+d-1}{d-1}^{-1} \prod_{i=1}^{d}\left\|T_{i}\right\|^{2}
\end{aligned}
$$

For a single operator T on a Hilbert space \mathcal{H}, condition (iii) of the Definition reduces to $\left\|P_{N} T^{*} P_{N}^{\perp} T P_{N}\right\| \leq \vartheta\|T\|^{2}$, which is true with $\vartheta=1$. It follows that a m-cyclic hyponormal operator T with $\sigma(T)=\bar{\Omega}$ is in the class $B S_{m, 1}(\Omega)$, if $P_{N} T P_{N}^{\perp}=0$.

Operators $\ln B S_{m, \vartheta}(\Omega)$

- Let $\mathbb{B}_{2,1}=\left\{\boldsymbol{z} \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{1}<1\right\}$ The volume measure ν restricted to $\mathbb{B}_{2,1}$ is of the form $d \nu(\boldsymbol{z})=r_{1} r_{2} d r_{1} d r_{2} d \theta_{1} d \theta_{2}, z_{k}=r_{k} \exp \left(i \theta_{k}\right), k=1,2$ and set

$$
d \mu_{\lambda}(z):=\left(1-r_{1}^{2}-r_{2}\right)^{\lambda-4} r_{1} r_{2} d r_{1} d r_{2} d \theta_{1} d \theta_{2} .
$$

The measure $d \mu_{\lambda}$ defines an inner product on the space $\mathbb{C}[z]$ of polynomials in two variables by integration over $\mathbb{B}_{2,1}$:

$$
\langle p, q\rangle_{\lambda}:=\int_{\mathbb{B}_{2,1}} p \bar{q} d \mu_{\lambda} .
$$

Let $\mathbb{A}^{(\lambda)}\left(\mathbb{B}_{2,1}\right)$ denote the Hilbert space obtained by taking the completion of the inner product space $\left(\mathbb{C}[z],\langle\cdot, \cdot\rangle_{\lambda}\right)$.

Theorem 6

Let $\boldsymbol{M}=\left(M_{z_{1}}, M_{z_{2}}\right)$ be a pair of multiplication operators on $\mathbb{A}^{(\lambda)}\left(\mathbb{B}_{2,1}\right)$. If $\lambda \geq 4$, then \boldsymbol{M} is in $B S_{1,2}\left(\mathbb{B}_{2,1}\right)$.

Operators in $B S_{m, \vartheta}(\Omega)$

The group of unitary linear transformations $\mathcal{U}(d)$ acts on any commuting d-tuple of operators \boldsymbol{T}, namely,
$U \cdot \boldsymbol{T}:=\left(\sum_{j=1}^{d} U_{1 j} T_{j}, \ldots, \sum_{j=1}^{d} U_{d j} T_{j}\right), U=\left(\left(U_{i j}\right)\right) \in \mathcal{U}(d)$. The d-tuple \boldsymbol{T} is said to be spherical if there is a map $\Gamma: \mathcal{U}(d) \rightarrow \mathcal{U}(\mathcal{H})$ such that

$$
\begin{equation*}
\Gamma_{U} \boldsymbol{T} \Gamma_{U}^{*}:=\left(\Gamma_{U} T_{1} \Gamma_{U}^{*}, \ldots, \Gamma_{U} T_{d} \Gamma_{U}^{*}\right)=U \cdot \boldsymbol{T} \text { for all } U \in \mathcal{U}(d) . \tag{1}
\end{equation*}
$$

Theorem 7

Let \boldsymbol{T} be a d-tuple of spherical joint weighted shift operators and T_{δ} be the one variable weighted shift corresponding to \boldsymbol{T}. If T_{δ} is hyponormal, then \boldsymbol{T} is in $B S_{1,1}(\mathbb{B}[r])$, where $\mathbb{B}[r]=\left\{\boldsymbol{z} \in \mathbb{C}^{d}:\|\boldsymbol{z}\|_{2}<r\right\}, r>0$.

Theorem 8

For the d-tuple \boldsymbol{S} of multiplication by the coordinate functions on the Hardy space $H^{2}\left(\mathbb{B}_{d}\right)$, the operator $d E t\left(\llbracket \boldsymbol{S}^{*}, \boldsymbol{S} \rrbracket\right)$ is non negative definite and $\operatorname{trace}\left(d E t\left(\left[\mathbf{S}^{*}, \boldsymbol{S}\right]\right)\right)=1$.

Main Theorem

Theorem 9

Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{d}\right)$ be a commuting tuple of operators on a Hilbert space \mathcal{H} such that \boldsymbol{T} is in the class $B S_{m, \vartheta}(\Omega)$. Then the determinant operator $\operatorname{dEt}\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)$ is in trace-class and

$$
\operatorname{trace}\left(d E t\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)\right) \leq m \vartheta d!\prod_{i=1}^{d}\left\|T_{i}\right\|^{2}
$$

Conjecture 10

Let $\boldsymbol{T}=\left(T_{1}, \ldots, T_{d}\right)$ be a commuting tuple of operators on a Hilbert space \mathcal{H} such that \boldsymbol{T} is in the class $B S_{m, \vartheta}(\Omega)$. Then the determinant operator $\operatorname{dEt}\left(\left[\boldsymbol{T}^{*}, \boldsymbol{T}\right]\right)\left(=G C\left(\boldsymbol{T}, \boldsymbol{T}^{*}\right)\right)$ is in trace-class, moreover, we have

$$
\operatorname{trace}\left(d E t\left(\llbracket \boldsymbol{T}^{*}, \boldsymbol{T} \rrbracket\right)\right) \leq \frac{m d!}{\pi^{d}} \nu(\bar{\Omega})
$$

where ν is the Lebesgue measure.

Thank You

