Trace Estimate For The Determinant Operators

Paramita Pramanick

Department of Mathematics Harish-Chandra Research Institute Prayagraj

Focus Program on Analytic Function Spaces and their Applications

December 1, 2021

1 Determinant Operator and Generalized Commutator

- Determinant Operator
- The Class $BS_{m,\vartheta}(\Omega)$
- Trace Estimate For Determinant Operator

Determinant Operator

- An operator $T : \mathcal{H} \to \mathcal{H}$ is said to be in trace-class if there is an orthonormal basis $\{e_n\}$ such that $\sum_n \langle |T|e_n, e_n \rangle < \infty$, where |T| is the unique square root of T^*T .
- For 1 ≤ i, j ≤ d, let B_{ij} : H → H be a bounded linear operator on the complex separable Hilbert space H. Consequently, B := ((B_{ij})) defines a bounded linear operator from the Hilbert space H ⊗ l₂(d) to itself. The *determinant* dEt (B) is the operator given by the formula:

$$\mathsf{dEt}(\boldsymbol{B}) := \sum_{\sigma,\tau \in \mathfrak{S}_d} \mathsf{Sgn}(\sigma) B_{\tau(1)\sigma(\tau(1))} B_{\tau(2)\sigma(\tau(2))} \dots B_{\tau(n)\sigma(\tau(d))}.$$

The determinant of the d × d block operator [T*, T] = (([T_j*, T_i])) is then obtained by setting B_{ij} = [T_j*, T_i].

Determinant Operator

• T is the commuting pair (T_1, T_2) , then

$$dEt\left(\left[\boldsymbol{T}^{*}, \boldsymbol{T}\right]\right) = T_{1}^{*}T_{1}T_{2}^{*}T_{2} + T_{2}^{*}T_{2}T_{1}^{*}T_{1} + T_{1}T_{1}^{*}T_{2}T_{2}^{*} + T_{2}T_{2}^{*}T_{1}T_{1}^{*} - T_{1}^{*}T_{2}T_{2}^{*}T_{1} - T_{2}^{*}T_{1}T_{1}^{*}T_{2} - T_{1}T_{2}^{*}T_{2}T_{1}^{*} - T_{2}T_{1}^{*}T_{1}T_{2}^{*}.$$

- The map dEt : B(H)^d × · · · × B(H)^d → B(H) is defined in analogy with the usual definition of the determinant, namely, det : C^d × · · · × C^d → C, that is, dEt is a multi-linear alternating map. It is not clear if such a map is uniquely determined (up to a scalar multiple).
- The determinant of a positive matrix is positive. However, if $\boldsymbol{B} := (\!(\boldsymbol{B}_{ij})\!)$ is a positive $d \times d$ block operator, then the determinant operator dEt (\boldsymbol{B}) need not be positive. For example let \boldsymbol{B} be the 2 × 2 block operator with $B_{ij} = E_{ij}$, where E_{ij} is the 2 × 2 matrix with 1 at the (i, j) entry and 0 everywhere else. The block matrix \boldsymbol{B} is self-adjoint and positive. But dEt $(\boldsymbol{B}) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ is not positive.

Determinant Operator Associated to Different Classes of Operators

• If T is a doubly commuting d - tuple of bounded linear operators on \mathcal{H} , then

$$\mathsf{dEt}\left(\llbracket \boldsymbol{T}^*, \boldsymbol{T} \rrbracket\right) = d! [T_1^*, T_1] \dots [T_d^*, T_d].$$

In particular, if $[T_1^*, T_1]$ is compact, then dEt $([\mathbf{T}^*, \mathbf{T}])$ is compact.

• Hardy Space over \mathbb{D}^2

Let *P* be the projection onto the subspace generated by the constant function in $H^2(\mathbb{D})$ and M_z be the multiplication operator on $H^2(\mathbb{D})$. Let $\boldsymbol{M} := (M_z \otimes I, I \otimes M_z)$. In this example, we have dEt $(\llbracket \boldsymbol{M}^*, \boldsymbol{M} \rrbracket) = 2(P \otimes P)$. Although, none of the non-zero commutators are compact, we see that dEt $(\llbracket \boldsymbol{M}^*, \boldsymbol{M} \rrbracket)$ is positive with trace $(dEt (\llbracket \boldsymbol{M}^*, \boldsymbol{M} \rrbracket)) = 2$.

Determinant Operator Associated to Different Classes of Operators

• Hardy Space over Symmetrized Bidisk The usual Hardy space $H^2(\mathbb{D}^2)$ is a module over the polynomial ring $\mathbb{C}[z_1, z_2]$ equipped with the module multiplication: $m_p(f) = pf$, $p \in \mathbb{C}[z_1, z_2]$, $f \in H^2(\mathbb{D}^2)$. We consider a different module multiplication defined by the commuting pair of operators $T = (T_1, T_2)$:

$$T_1 = M_z \otimes I + I \otimes M_z$$
 and $T_2 = M_z \otimes M_z$

acting on the Hardy space $H^2(\mathbb{D}^2)$. The Hardy space equipped with the module multiplication: $m_p(f) = p(\mathbf{T})f$, $f \in H^2(\mathbb{D}^2)$, $p \in \mathbb{C}([z_1, z_2])$, is the Hardy module on the symmetrized bidisc.

$$\mathsf{dEt}\left(\llbracket \boldsymbol{T}^*, \boldsymbol{T} \rrbracket\right) = 2P \otimes P - PM_z^* \otimes M_z P - M_z P \otimes PM_z^*.$$

The operator dEt $([[\boldsymbol{T}^*, \boldsymbol{T}]])$ on Hardy Space over symmetrized bidisk is nonnegative definite and is in trace class.

Generalized Commutator

Definition 1 (Helton-Howe)

Let $\mathbf{A} = (A_1, A_2, \dots, A_d)$ be a d - tuple of bounded operators. The generalized commutator $GC(\mathbf{A})$ is defined to be the sum

$$\sum_{\sigma \in \mathfrak{S}_d} \mathsf{Sgn}(\sigma) A_{\sigma(1)} A_{\sigma(2)} \cdots A_{\sigma(d)}.$$

• For any d-tuple of operators $T = (T_1, T_2, ..., T_d)$ generalised commutator $GC(T^*, T)$ is defined by chosing $A_1 = T_1^*, A_2 = T_1, ..., A_{2d-1} = T_d^*, A_{2d} = T_d$ in the above definition.

Proposition 2

For any d-tuple \boldsymbol{T} of commuting operators, the determinant

$$\operatorname{dEt}\left(\left[\!\left[\boldsymbol{T}^*,\,\boldsymbol{T}\right]\!\right]\right)=\mathit{GC}(\boldsymbol{T}^*,\,\boldsymbol{T}).$$

The Class $BS_{m,\vartheta}(\Omega)$

Definition 3

The *d* - tuple T is said to be *m* - polynomially cyclic if the smallest cardinality of a linearly independent set of vectors $\xi \subseteq H$ such that H is the closed linear span of

$$\left\{ \left. T_1^{i_1} \, T_2^{i_2} \ldots \, T_d^{i_d} v \right| \, v \in oldsymbol{\xi} \, \, ext{and} \, \, i_1, i_2, \ldots, i_d \geq 0
ight\}$$

is equal to *m*. We let $\xi[m]$ denote any such set ξ of *m* linearly independent vectors.

For a *m*-cyclic *d*-tuple T, let

$$\mathcal{H}_N := \bigvee \left\{ \left. T_1^{i_1} \, T_2^{i_2} \dots \, T_d^{i_d} \, v
ight| \, v \in oldsymbol{\xi}(m) ext{ and } 0 \leq i_1 + i_2 + \dots i_d \leq N
ight\}$$

and P_N be the projection onto \mathcal{H}_N

Lemma 4

$$P_N \uparrow_{SOT} I$$
 and rank $(P_N^{\perp} T_j P_N) \leq m \binom{N+d-1}{d-1}$ for $j = 1, \ldots, d$,.

The Class $BS_{m,\vartheta}(\Omega)$

Definition 5

Fix a bounded domain $\Omega \subset \mathbb{C}^d$. A *m*-cyclic commuting *d* - tuple of operators with $\sigma(\mathbf{T}) = \overline{\Omega}$ is said to be in the class $BS_{m,\vartheta}(\Omega)$, if

- (i) $P_N T_j P_N^{\perp} = 0, j = 1, \dots, d.$
- (ii) dEt ($[\![\boldsymbol{T}^*, \boldsymbol{T}]\!]$) is non-negative definite.
- (iii) For a fixed but arbitrary τ in the permutation group \mathfrak{S}_d of d symbols, there exists $\vartheta \in \mathbb{N}$, independent of N, such that

$$\begin{split} \big\| P_N \big(\sum_{\eta \in \mathfrak{S}_d} \operatorname{Sgn}(\eta) \, T_{\eta(1)}^* \, T_{\tau(1)} \, T_{\eta(2)}^* \cdots \, T_{\eta(d)}^* \big) P_N^{\perp} \, T_{\tau(d)} P_N \big\| \\ & \leq \vartheta \, \binom{N+d-1}{d-1}^{-1} \prod_{i=1}^d \big\| \, T_i \big\|^2. \end{split}$$

For a single operator T on a Hilbert space \mathcal{H} , condition (iii) of the Definition reduces to $||P_N T^* P_N^{\perp} T P_N|| \leq \vartheta ||T||^2$, which is true with $\vartheta = 1$. It follows that a *m*-cyclic hyponormal operator T with $\sigma(T) = \overline{\Omega}$ is in the class $BS_{m,1}(\Omega)$, if $P_N T P_N^{\perp} = 0$.

Operators In $BS_{m,\vartheta}(\Omega)$

• Let $\mathbb{B}_{2,1} = \{ \boldsymbol{z} \in \mathbb{C}^2 : |z_1|^2 + |z_2|^1 < 1 \}$ The volume measure ν restricted to $\mathbb{B}_{2,1}$ is of the form $d\nu(\boldsymbol{z}) = r_1 r_2 dr_1 dr_2 d\theta_1 d\theta_2$, $z_k = r_k \exp(i\theta_k)$, k = 1, 2 and set

$$d\mu_{\lambda}(z):=(1-r_1^2-r_2)^{\lambda-4}r_1r_2dr_1dr_2d\theta_1d\theta_2.$$

The measure $d\mu_{\lambda}$ defines an inner product on the space $\mathbb{C}[\mathbf{z}]$ of polynomials in two variables by integration over $\mathbb{B}_{2,1}$:

$$\langle p,q
angle_{\lambda}:=\int_{\mathbb{B}_{2,1}}par{q}d\mu_{\lambda}.$$

Let $\mathbb{A}^{(\lambda)}(\mathbb{B}_{2,1})$ denote the Hilbert space obtained by taking the completion of the inner product space $(\mathbb{C}[\mathbf{z}], \langle \cdot, \cdot \rangle_{\lambda})$.

Theorem 6

Let $\mathbf{M} = (M_{z_1}, M_{z_2})$ be a pair of multiplication operators on $\mathbb{A}^{(\lambda)}(\mathbb{B}_{2,1})$. If $\lambda \geq 4$, then \mathbf{M} is in $BS_{1,2}(\mathbb{B}_{2,1})$.

Operators in $BS_{m,\vartheta}(\Omega)$

The group of unitary linear transformations $\mathcal{U}(d)$ acts on any commuting *d*-tuple of operators \boldsymbol{T} , namely,

 $U \cdot \boldsymbol{T} := \left(\sum_{j=1}^{d} U_{1j}T_j, \dots, \sum_{j=1}^{d} U_{dj}T_j\right), \ U = \left((U_{ij})\right) \in \mathcal{U}(d).$ The *d*-tuple \boldsymbol{T} is said to be *spherical* if there is a map $\Gamma : \mathcal{U}(d) \to \mathcal{U}(\mathcal{H})$ such that

$$\Gamma_U \boldsymbol{T} \Gamma_U^* := (\Gamma_U T_1 \Gamma_U^*, \dots, \Gamma_U T_d \Gamma_U^*) = U \cdot \boldsymbol{T} \text{ for all } U \in \mathcal{U}(d).$$
(1)

Theorem 7

Let **T** be a *d*- tuple of spherical joint weighted shift operators and T_{δ} be the one variable weighted shift corresponding to **T**. If T_{δ} is hyponormal, then **T** is in $BS_{1,1}(\mathbb{B}[r])$, where $\mathbb{B}[r] = \{ z \in \mathbb{C}^d : ||z||_2 < r \}$, r > 0.

Theorem 8

For the d-tuple **S** of multiplication by the coordinate functions on the Hardy space $H^2(\mathbb{B}_d)$, the operator $dEt([S^*, S])$ is non negative definite and trace $(dEt([S^*, S])) = 1$.

Main Theorem

Theorem 9

Let $\mathbf{T} = (T_1, \ldots, T_d)$ be a commuting tuple of operators on a Hilbert space \mathcal{H} such that **T** is in the class $BS_{m,\vartheta}(\Omega)$. Then the determinant operator $dEt([\mathbf{T}^*, \mathbf{T}])$ is in trace-class and

trace
$$\left(\mathsf{dEt}\left(\left[\boldsymbol{T}^*, \, \boldsymbol{T} \right] \right)
ight) \leq m \, \vartheta \, \mathsf{d}! \prod_{i=1}^d \| T_i \|^2.$$

Conjecture 10

Let $\mathbf{T} = (T_1, \ldots, T_d)$ be a commuting tuple of operators on a Hilbert space \mathcal{H} such that **T** is in the class $BS_{m,\vartheta}(\Omega)$. Then the determinant operator $dEt([\mathbf{T}^*,\mathbf{T}]) (= GC(\mathbf{T},\mathbf{T}^*))$ is in trace-class, moreover, we have

trace
$$\left(dEt\left(\left[\mathbf{T}^{*}, \mathbf{T} \right] \right) \right) \leq \frac{md!}{\pi^{d}} \nu(\overline{\Omega})$$

where ν is the Lebesgue measure.

Thank You