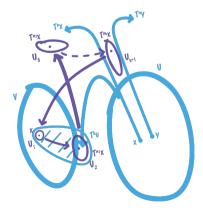
The Dynamics of Weighted Composition Operators on Fock Spaces

Clifford Gilmore

University of Manchester

Focus Program on Analytic Function Spaces and their Applications, 9 Nov 2021



Joint work with Tom Carroll (University College Cork)

T. Carroll and C. Gilmore.

Weighted composition operators on Fock spaces and their dynamics.

J. Math. Anal. Appl., 502(1):125234, 2021.

The Fock Spaces \mathcal{F}^p_{α}

1

For $\alpha > 0$, the Fock space \mathcal{F}^p_{α} contains entire functions f such that

$$||f||_{p,\alpha}^p = \frac{\alpha p}{2\pi} \int_{\mathbb{C}} |f(z)|^p e^{-\frac{\alpha p}{2}|z|^2} dm(z) < \infty.$$

- ▶ \mathcal{F}^p_{α} is a separable Banach space for $1 \leq p < \infty$, containing the entire functions in $L^p(\mathbb{C})$ with Gaussian weight $e^{-\frac{\alpha p}{2}|z|^2}$.
- $ightharpoonup \mathcal{F}_{\alpha}^2$ is a reproducing kernel Hilbert space, with inner product

$$\langle f,g\rangle = \frac{\alpha}{\pi} \int_{\mathbb{C}} f(z) \, \overline{g(z)} \, e^{-\alpha |z|^2} \, \mathrm{d}m(z),$$

and reproducing kernel at $z \in \mathbb{C}$ given by

$$k_{z}(w) = e^{\alpha \overline{z}w} \quad \text{with} \quad ||k_{z}|| = e^{\frac{\alpha|z|^{2}}{2}}.$$

$$f(2) = e^{b2} \in f_{x}(w) = e^{\frac{\alpha|z|^{2}}{2}}.$$

The Fock Space $\mathcal{F}_{\alpha}^{\infty}$

► For $\alpha > 0$, the Fock space $\mathcal{F}_{\alpha}^{\infty}$ consists of entire functions f such that

$$||f||_{\infty,\alpha}=\sup\left\{|f(z)|\,e^{-rac{lpha}{2}|z|^2}:z\in\mathbb{C}\right\}<\infty.$$

$$f(z) = e^{bz^2} \in \mathcal{F}_{\alpha}^{\infty} \Longleftrightarrow |b| \leq \frac{\alpha}{2}.$$

▶ The closed subspace $\mathcal{F}_{\alpha,0}^{\infty}$ of $\mathcal{F}_{\alpha}^{\infty}$ consists of the entire functions f such that

$$\lim_{z\to\infty} f(z)e^{-\frac{\alpha}{2}|z|^2}=0.$$

- $\mathcal{F}_{\alpha,0}^{\infty}$ is the closure in $\mathcal{F}_{\alpha}^{\infty}$ of the set of polynomials. So in particular this gives that $\mathcal{F}_{\alpha,0}^{\infty}$ is separable, while $\mathcal{F}_{\alpha}^{\infty}$ is non-separable.
- Note: $f(z) = e^{bz^2} \in \mathcal{F}_{\alpha,0}^{\infty} \iff |b| < \frac{\alpha}{2}$.

Composition Operators

Notation

▶ Let \mathcal{F} denote \mathcal{F}_{α}^{p} , $1 \leq p \leq \infty$, or $\mathcal{F}_{\alpha,0}^{\infty}$.

Definition

The *composition operator* C_{φ} , with symbol φ , is defined as

$$C_{\varphi}: f \mapsto f \circ \varphi, \quad f \in \mathcal{F}.$$

$$\left(C_{\varphi}(f)(\mathcal{F})\right) = \left\{C_{\varphi}(\mathcal{F})\right\} = \left\{C_{\varphi}(\mathcal{F$$

5 / 18

Definition

The weighted composition operator $W_{\psi,\varphi}$, with symbol φ and multiplier ψ , is defined as

$$W_{\psi,\varphi}\colon f\mapsto \psi\cdot (f\circ\varphi), \quad f\in\mathcal{F}.$$

$$(W_{\psi,\varphi}f)(\mathcal{L}) = \psi(\mathcal{L}) f(\varphi(\mathcal{L})).$$

Weighted Composition Operators on Fock Spaces

Boundedness

- ightharpoonup Ueki (2007): characterised the bounded and compact $W_{\psi,\varphi}$ on \mathcal{F}_{α}^2 in terms of a particular integral transform.
- For $z \in \mathbb{C}$ and entire functions ψ and φ , set

$$M_z(\psi,\varphi) := |\psi(z)|^2 e^{\alpha(|\varphi(z)|^2 - |z|^2)},$$

and

$$M(\psi,\varphi) := \sup \{M_z(\psi,\varphi) : z \in \mathbb{C}\}.$$

Theorem (Le, 2014; Hai and Khoi, 2016)

$$W_{\psi,arphi}$$
 is bounded on ${\mathcal F} \iff$

$$V \in \mathcal{F}$$

 $V \in \mathcal{F}$
 $V \in \mathcal{F}$

Weighted Composition Operators on Fock Spaces Compactness

$$M_z(\psi,\varphi) := |\psi(z)|^2 e^{\alpha(|\varphi(z)|^2 - |z|^2)}, \quad z \in \mathbb{C}.$$

Theorem (Le, 2014; Hai and Khoi, 2016; Tien and Khoi, 2019)

$$W_{\psi, \varphi}$$
 is compact on $\mathcal{F} \iff$

Linear Dynamical Systems

Question

Does $W_{\psi,\varphi} \colon \mathcal{F} \to \mathcal{F}$ have interesting linear dynamics?

Setting

- X separable, infinite-dimensional Hilbert or Banach space.
- $ightharpoonup T: X \to X$ a bounded linear operator.
- \triangleright Interested in the long term evolution of iterates of T.

$$T^n = \underbrace{T \circ \cdots \circ T}_{n-\text{fold}}$$

Definition

T is a *hypercyclic operator* if there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X.$$

Such an $x \in X$ called a *hypercyclic vector* for T.

Linear Dynamical Systems

Definition

 $T: X \to X$ is *supercyclic* if there exists $x \in X$ such that its projective orbit is dense in X, i.e.

$$\overline{\{\zeta T^n x : \zeta \in \mathbb{C}, n \in \mathbb{N}\}} = X.$$

Such an x is called a *supercyclic vector* for T.

Hypercyclicity \Longrightarrow supercyclicity.

First observation:

- $\triangleright \mathcal{F}_{\alpha}^{\infty}$ non-separable.
- ▶ Interested in dynamics on \mathcal{F}^p_α for $1 \leq p < \infty$, or $\mathcal{F}^\infty_{\alpha,0}$.

Theorem (Bourdon and Shapiro, 1990, 1997)

$$C_{\varphi}$$
 is hypercyclic on the Hardy space $H^2(\mathbb{D})$
 $\iff \varphi \in \operatorname{Aut}(\mathbb{D})$ has no fixed point in \mathbb{D} .

Linear Dynamics when $|\lambda| = 1$?

$$Q(2) = at dt$$

$$|d| \leq 1$$

For $|\lambda| = 1$:

 $lackbox{ When } W_{\psi, arphi}$ is bounded on ${\mathcal F}$ then

$$\varphi(z)=a+\lambda z.$$

Le (2014): the multiplier ψ is of the form

$$\psi(z) = \psi(0)e^{-\alpha \overline{a}\lambda z}, \quad z \in \mathbb{C}.$$

Le (2014): If $|\lambda| = 1 \Longrightarrow W_{\psi,\varphi}$ is a *normal* operator on \mathcal{F}^2_{α} . By a well known result, normal operators cannot be supercyclic.

Linear Dynamics when $|\lambda| = 1$?

Question

What about the case $|\lambda|=1$ for $W_{\psi,\varphi}$ acting on \mathcal{F}^p_{α} , for $p\neq 2$?

Theorem (Carroll and G., 2021)

Let $W_{\psi,\varphi} \colon \mathcal{F} \to \mathcal{F}$ be a bounded weighted composition operator, with $\varphi(z) = a + \lambda z$ and $|\lambda| = 1$. Then $W_{\psi,\varphi}$ is a constant multiple of an isometry.

Corollary (Carroll and G., 2021)

If $|\lambda|=1$, then $W_{\psi,\varphi}$ cannot be supercyclic on \mathcal{F}_{α}^{p} , $1\leq p<\infty$, or $\mathcal{F}_{\alpha,0}^{\infty}$.

Duality of Fock Spaces

Approach when $|\lambda| < 1$

▶ Point evaluations k_z : $\mathcal{F} \to \mathbb{C}$ are continuous linear functionals. Follows from the (sharp) pointwise estimate:

$$|f(z)| \leq ||f||e^{\alpha|z|^2/2}, \quad f \in \mathcal{F}, z \in \mathbb{C}.$$

For $1 \le p < \infty$, the *dual space of* \mathcal{F}^p_{α} can be identified with \mathcal{F}^q_{α} via the integral pairing

$$\langle f, g \rangle = \frac{\alpha}{\pi} \int_{\mathbb{C}} f(w) \overline{g(w)} e^{-\alpha |w|^2} dm(w)$$

for $g \in \mathcal{F}^{q}_{\alpha}$ and $f \in \mathcal{F}^{p}_{\alpha}$. As usual 1/p + 1/q = 1.

 \blacktriangleright $\left(\mathcal{F}_{\alpha,0}^{\infty}\right)^*$ identified with \mathcal{F}_{α}^1 .

Behaviour when $|\lambda| < 1$

Tool: spectral properties

Two observations

▶ For the adjoint $W_{\psi,\varphi}^*$, we have for k_z

$$W_{\psi,\varphi}^* k_z = \psi(z) k_{\varphi(z)}.$$

▶ For $|\lambda| < 1$, the function $\varphi(z) = a + \lambda z$ has a fixed point at

$$z_0 = \frac{a}{1-\lambda}$$

Hence

$$W_{\psi,\varphi}^*k_{z_0}=\psi(z_0)k_{z_0}.$$

- $W_{\psi,\varphi}$ cannot be hypercyclic by the well known fact that the adjoint of a hypercyclic operator has *empty point spectrum*.
- Moreover, it also follows that compact $W_{\psi,\varphi}$ cannot be supercyclic since $W_{\psi,\varphi}^*$ has an *eigenvalue*.

What's Left?

Tools: order and type of the multiplier ψ

Question

What about the case $|\lambda| < 1$ for $W_{\psi,\varphi}$ bounded but non-compact?

Example

Let $0 < \lambda < 1$, set $\beta := 1 - \lambda^2$. Then $\psi(z) = e^{\frac{\alpha}{2}\beta z^2}$ and $\varphi(z) = \lambda z$, for $z \in \mathbb{C}$, gives $W_{\psi,\varphi}$ is bounded but not compact.

Definition

The *order* ρ of an entire function f is defined as

where $M_f(r) = \sup\{|f(z)| : |z| = r\}.$

If f is of finite order ρ , its type σ is defined to be

$$\sigma := \limsup_{r \to \infty} \frac{\log M_f(r)}{r^{\rho}}.$$

Refined characterisation of boundedness and compactness

For $0 < |\lambda| < 1$ we set

$$\beta := 1 - |\lambda|^2$$

which in particular gives that $0 < \beta < 1$.

Theorem (Carroll and G., 2021)

Let $\varphi(z) = a + \lambda z$ with $|\lambda| < 1$. If ψ has order strictly less than 2, or if ψ has order 2 and type strictly less than $\alpha\beta/2$, then $W_{\psi,\varphi}$ is compact on \mathcal{F} .

If ψ has order greater than 2, or if ψ has order 2 and type strictly greater than $\alpha\beta/2$, then $W_{\psi,\varphi}$ not bounded on \mathcal{F} .

Refined characterisation of boundedness and compactness

For $0 < |\lambda| < 1$, $\beta := 1 - |\lambda|^2$.

Theorem (Carroll and G., 2021)

Let $\varphi(z) = a + \lambda z$ with $|\lambda| < 1$, and assume ψ is non-vanishing. Consider $W_{\psi,\varphi}$ acting on \mathcal{F} .

1. $W_{\psi,\varphi}$ is compact if and only if ψ has the form

$$\psi(z) = e^{a_0 + a_1 z + a_2 z^2} \tag{\ddagger}$$

and $|a_2| < \frac{\alpha}{2}\beta$.

2. $W_{\psi,\varphi}$ is bounded but not compact if and only if ψ has the form (\ddagger) with $|a_2| = \frac{\alpha}{2}\beta$, and either

$$t := a_1 + \alpha \overline{a}\lambda = 0,$$

or

$$t \neq 0$$
 and $a_2 = -\frac{\alpha}{2}\beta \frac{t^2}{|t|^2}$.

$W_{\psi,\varphi}$ bounded and non-compact

What's left?

Consider $\varphi(z) = a + \lambda z$, with $0 < |\lambda| < 1$ and

$$\psi(z) = e^{a_0 + a_1 z + a_2 z^2}, \quad \text{for } |a_2| = \frac{\alpha}{2}\beta.$$

Different approach depending on the cases:

- 1. $\lambda \in \mathbb{R}, p = \infty$: explicitly prove projective orbit not dense.
- 2. $\lambda \in \mathbb{R}, p < \infty$: $W_{\psi,\varphi}$ fails a necessary condition (angle criterion).
- 3. $\lambda \in \mathbb{C} \setminus \mathbb{R}$: $W_{\psi,\varphi}^2$ is a compact weighted composition operator. Ansari (1995): powers of a supercyclic operator are supercyclic, with the same supercyclic vectors.

Theorem (Carroll and G., 2021)

Let $W_{\psi,\varphi}$ be a bounded weighted composition operator acting on \mathcal{F}^p_{α} , $1 \leq p < \infty$, or $\mathcal{F}^{\infty}_{\alpha,0}$. Then $W_{\psi,\varphi}$ cannot be supercyclic.

Thank you for your attention! ©

T. Carroll and C. Gilmore.

Weighted composition operators on the Fock space and their dynamics. J. Math. Anal. Appl., 502(1):125234, 2021.

P. V. Hai and L. H. Khoi.

Boundedness and compactness of weighted composition operators on Fock spaces $\mathcal{F}^p(\mathbb{C})$.

Acta Math. Vietnam., 41(3):531-537, 2016.

T. Le.

Normal and isometric weighted composition operators on the Fock space. *Bull. Lond. Math. Soc.*, 46(4):847–856, 2014.

P. T. Tien and L. H. Khoi.

Weighted composition operators between different Fock spaces. *Potential Anal.*, 50(2):171–195, 2019.

S.-I. Ueki.

Weighted composition operator on the Fock space.

Proc. Amer. Math. Soc., 135(5):1405-1410, 2007.