Partially isometric Toeplitz operators on the polydisc Contributed talk at the Fields Program on Analytic Function Spaces and their Applications.

Dr. Deepak Kumar Pradhan

Indian Statistical Institute, Bangalore Center

November 27, 2021

Toeplitz operators on Hardy space over the polydisk

• Consider the space $L^2_{\mu}(\mathbb{T})$, with respect to the normalized Lebesgue measure μ of the unit circle \mathbb{T} , and define

$$\mathrm{H}^{2}(\mathbb{T}):=\Big\{\mathrm{f}\in\mathrm{L}^{2}_{\mu}(\mathrm{T})\ :\ \int_{0}^{2\pi}\mathrm{f}\cdot\mathrm{e}^{\mathrm{i}\mathrm{n}\theta}\mathrm{d}\mu=0,\ \mathrm{for\ all}\ \mathrm{n}>1\Big\}.$$

• The Hardy space over the polydisk is defined to be $H^2(\mathbb{T}^n) := \bigotimes_{j=1}^n K_j$ where each $K_j = H^2(\mathbb{T})$.

• The Hardy space over the polydisk is $H^2(\mathbb{T}^n)$ is a closed L_{z_i} -invariant subspace (for $i = 1, \dots, n$) of $L^2_{\sigma}(\mathbb{T}^n)$, where σ , is the normalised Lebesgue measure on \mathbb{T}^n . Denote $H^{\infty}(\mathbb{T}^n) := L^{\infty}_{\sigma}(\mathbb{T}^n) \cap H^2(\mathbb{T}^n)$.

Definition 1 (Toeplitz operator with a bounded symbol).

Let L_{ϕ} denote the Laurent (or the multiplication) operator on $L^{2}_{\sigma}(\mathbb{T}^{n})$, for some $\phi \in L^{\infty}_{\sigma}(\mathbb{T}^{n})$. Then, the Toeplitz operator T_{ϕ} with symbol ϕ , on $H^{2}(\mathbb{T}^{n})$ is defined as

 $T_{\phi} := P_{H^2(\mathbb{T}^n)} L_{\phi}|_{H^2(\mathbb{T}^n)}.$

Algebraic properties of Toeplitz operators

Theorem 2 (Brown-Halmos, Maji-Sarkar-Sarkar).

An operator T on $H^2(\mathbb{T}^n)$ is a Toeplitz operator with a symbol $\phi \in L^{\infty}_{\sigma}(\mathbb{T}^n)$ if and only if $T^*_{z_i}TT_{z_i} = T$ for i = 1, ..., n.

Theorem 3 (Brown-Halmos).

For $\phi_1, \phi_2 \in L^{\infty}_{\mu}(\mathbb{T})$ the Toeplitz operators T_{ϕ_1}, T_{ϕ_2} commute if and only if either both ϕ_1, ϕ_2 are analytic or co-analytic or one be a linear function of the other.

Theorem 4 (Beurling's Theorem).

A subspace $\mathcal{M} \subset H^2(\mathbb{T})$ is invariant under T_z if and only if $\mathcal{M} = T_{\phi}H^2(\mathbb{T})$, some iner function function $\phi \in H^{\infty}(\mathbb{T})$ i.e. $|\phi| = 1$ μ -a.e. on \mathbb{T} .

Definition 5 (Partial Isometry).

Let \mathcal{H} be a Hilbert space. Then, an operator $U \in \mathcal{B}(\mathcal{H})$ is said to be a partial isometry if ||U(f)|| = ||f||, whenever $f \in \text{ker}(U)^{\perp}$. And we denote $\mathcal{D}(U) := \{f \mid ||U(f)|| = ||f||\}$ and $\mathcal{R}(U) := \{g \mid g = U(f), f \in \mathcal{H}\}.$

Problem 6.

What are all partially isometric Toeplitz operators on $H^2(\mathbb{T}^n)$?

Partially isometric Toeplitz operators on Hardy space over disc

Theorem 7 (Douglas-Brown).

Let T_{ϕ} be a non-zero toeplitz operator. Then, T_{ϕ} is partially isometric if and only if either ϕ or $\overline{\phi}$ is an inner function.

A sketch proof of Brown and Douglas, let T_{ϕ} is partially isometric Toeplitz operator on $H^{2}(\mathbb{T})$.

- 1. $\mathcal{D}(T_{\phi}) := \{ f \in H^2(\mathbb{T}) : ||T_{\phi}f|| = ||f|| \}$ is z-invariant.
- 2. Hence by Beurling's theorem $\mathcal{D}(T_{\phi}) = T_{\theta}H^2(\mathbb{T})$, where $\theta \in H^{\infty}(\mathbb{T})$ and $|\theta| = 1$ μ -a.e.
- 3. Hence there exists inner function $\psi \in H^{\infty}(\mathbb{T})$ such that $T_{\phi} = T_{\overline{\theta}}T_{\psi}$. Also note $H^{2}(\mathbb{T}) \ominus \mathcal{D}(T_{\phi}) = \text{ker}(T_{\theta}^{*}).$
- 4. Note that, $f \in H^2(\mathbb{T}) \ominus \mathcal{D}(T_{\phi})$, then $T_{\phi}(f) = 0 = T_{\overline{\theta}}(T_{\psi}f)$. Hence $T_{\psi}(\mathsf{ker}(T^*_{\theta})) \subset \mathsf{ker}(T^*_{\theta})$.
- 5. $[T_{\theta}, T_{\psi}] = 0 = [T_{\theta}^*, T_{\psi}]$, hence either θ or ψ is a constant.
- 6. Brown-Halmos theorem for commuting Toeplitz operators.

Quotients of inner functions

Let $\mathcal{M}_1, \mathcal{M}_2$ be two z-invariant subspaces of $H^2(\mathbb{T})$ then there exist a unimodular $\psi \in L^{\infty}(\mathbb{T})$ such that

$$\mathcal{M}_1 = \mathrm{T}_{\psi} \mathcal{M}_2.$$

That is, if $\mathcal{M}_1 = T_{\theta_1} H^2(\mathbb{T})$ and $\mathcal{M}_2 = T_{\theta_2} H^2(\mathbb{T})$, then ψ can be chosen to be $T_{\psi} := T_{\overline{\theta_1}} T_{\theta_2} = T_{\overline{\theta_1}\theta_2}$.

Theorem 8 (Re-statement of Brown-Halmos).

Let \mathcal{M}_1 and \mathcal{M}_2 be z-invariant subspaces of $\mathrm{H}^2(\mathbb{T})$, and let $\psi \in \mathrm{L}^{\infty}_{\mu}(\mathbb{T})$ be as above then the following are equivalent

- 1. T_{ψ} is a partial isometry,
- 2. T_{ψ} is either an isometry or co-isometry,
- 3. Either $\mathcal{M}_1 = \mathrm{H}^2(\mathbb{T})$, or $\mathcal{M}_2 = \mathrm{H}^2(\mathbb{T})$.

Proposition 9 (K.D., - , Sarkar).

Let T_{ϕ} be a partial isometry, then $\mathcal{R}(T_{\phi})$ (and hence $\mathcal{D}(T_{\phi})$ as well) is invariant under T_{z_i} , i = 1, ..., n.

• Rudin's counterexamples: For n > 1 there exist $\mathcal{M}_1, \mathcal{M}_2$, two closed z_i invariant subspaces of $H^2(\mathbb{T}^n)$, such that $\mathcal{M}_1 = T_{\psi}\mathcal{M}_2$, for some unimodular $\psi \in L^{\infty}_{\sigma}(\mathbb{T}^n)$ and $\psi \neq \frac{g_1}{g_2}$ for any g_1, g_2 inner in $H^{\infty}(\mathbb{T}^n)$. Rudin also provides invariant subspaces which are not of Beurling-type.

Theorem 10 (Tao Yu).

For $\phi_1, \phi_2 \in L^{\infty}_{\sigma}(\mathbb{T}^n)$ the Toeplitz operators T_{ϕ_1}, T_{ϕ_2} commute if and only if the Berezin transform, $B[T_{\phi_1}, T_{\phi_2}]$, of the commutator is n-harmonic.

Partially isometric Toeplitz operators on polydisc

Lemma 11 (K.D., - , Sarkar).

For each i = 1, ..., n, the function φ cannot depend on both z_i and \overline{z}_i variables at a time.

Theorem 12 (K.D., - , Sarkar).

Let φ be a nonzero function in $L^{\infty}(\mathbb{T}^n)$. Then T_{φ} is a partial isometry if and only if there exist inner functions $\varphi_1, \varphi_2 \in H^{\infty}(\mathbb{T}^n)$ such that φ_1 and φ_2 depends on different variables and

$$T_{\varphi} = T_{\varphi_1}^* T_{\varphi_2}$$

Example 13 (A simple example).

On the Hardy space of bidisc $H^2(\mathbb{T}^2)$, consider the Toeplitz operator $T_{\overline{z_1}z_2}$. Then

- 1. $T_{\overline{z_1}z_2} = T_{z_1}^*T_{z_2}$, is partially isometric.
- 2. $\mathcal{D}(T_{\overline{z_1}z_2}) = z_1 H^2(\mathbb{T}^2)$ and $\mathcal{R}(T_{\overline{z_1}z_2}) = z_2 H^2(\mathbb{T}^2)$.

• For any partial isometric Toeplitz operator are of Beurling type, in particular if $T_{\phi} = T_{\overline{\phi_1}} T_{\phi_2}$ then $\mathcal{D}(T_{\phi}) = \phi_1 H^2(\mathbb{T}^n)$ and $\mathcal{R}(T_{\phi}) = \phi_2 H^2(\mathbb{T}^n)$.

Hyponormal Toeplitz operators

Recall for the one variable classification T_{ϕ} is either a isometry or co-isometry. Suppose that T_{ϕ} is isometry then

$$[\mathrm{T}_{\phi}^*,\mathrm{T}_{\phi}] = (\mathrm{T}_{\phi}^*\mathrm{T}_{\phi} - \mathrm{T}_{\phi}\mathrm{T}_{\phi}^*) = (\mathrm{I} - \mathrm{P}_{\mathcal{R}(\mathrm{T}_{\phi})}) \ge 0.$$

Definition 14.

A bounded operator T is said to be hyponormal if $[T^*, T] \ge 0$.

We have the following observation,

$$[T_{\phi}^*, T_{\phi}] \ge 0 \Rightarrow T_{\phi_2} T_{\phi_2}^* \le T_{\phi_1} T_{\phi_1}^* \Rightarrow T_{\phi_2} = T_{\phi_1} X$$

for some contraction $X \in \mathcal{B}(H^2(\mathbb{D}^n))$. Observe that

$$T_{\phi_1}T_{z_i}X = T_{z_i}T_{\phi_1}X = T_{z_i}T_{\phi_2} = T_{\phi_2}T_{z_i} = T_{\phi_1}XT_{z_i},$$

Hence, we conclude that $\phi_2 = \phi_1 \psi$.

Theorem 15.

A partially isometric Toeplitz operator T_{ϕ} on $H^2(\mathbb{T}^n)$ is hyponormal if and only if ϕ is an inner function.

The simple example

- Consider $H^2(\mathbb{T}^2)$ and the operator $T^*_{z_1}T_{z_2} = T_{\bar{z_1}}T_{z_2} = T_{\bar{z_1}z_2}$.
- The homogenous decomposition of $H^2(\mathbb{T}^2)$ is denoted as $H^2(\mathbb{T}^2) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n$, where

$$\mathcal{H}_n = \{\sum_{\substack{(i,j) \in \mathbb{N}^2 \\ i+j=n}} a_{ij} z_1^i z_2^j \mid a_{ij} \in \mathbb{C}\}$$

• Each \mathcal{H}_n is reducing for $T_{\bar{z_1}z_2}$.

$$T_{\tilde{z_1} z_2}|_{\mathcal{H}_n} = \begin{pmatrix} z_1^n & z_1^{n-1} z_2 & z_1^{n-2} z_2^2 & \cdots & z_1 z_2^{n-1} & z_2^n \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} z_1^n \\ z_1^{n-1} z_2 \\ z_1^{n-2} z_2^2 \\ z_1^{n-2} z_2^2 \\ z_1^{n-2} z_2^2 \\ z_1^{n-2} z_2^2 \end{pmatrix}$$

Truncated shifts

Proposition 16 (K.D., - ,Sarkar).

If ϕ is an inner function in $H^{\infty}(\mathbb{T}^n)$, then T_{ϕ} is pure, i.e. T_{ϕ} is unitarily equivalent to a shift.

Definition 17.

An operator T on Hilbert space is called a power partial isometry if T^m is a partial isometry for every $m \in \mathbb{N}$.

Corollary 18.

Every partially isometric Toeplitz operator on $H^2(\mathbb{T}^n)$ is a power partial isometry.

 \bullet Recall that a truncated shift S of index p, $p\in\mathbb{N},$ on some Hilbert space $\mathcal H$ is an operator of the form

$$S = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ I_{\mathcal{H}_0} & 0 & 0 & \cdots & 0 & 0 \\ 0 & I_{\mathcal{H}_0} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & I_{\mathcal{H}_0} & 0 \end{bmatrix}_{p \times p},$$

where \mathcal{H}_0 is a Hilbert space, and $\mathcal{H} = \underbrace{\mathcal{H}_0 \oplus \cdots \oplus \mathcal{H}_0}_{\mathcal{H}_0}$.

Theorem 19 (Halmos-Wallen).

Every power partial isometry is a direct sum of unitary operators, pure isomteries, pure co-isometries and truncated shifts. The direct sum representation can be expressed so that each type of summand (and in particular, index of each truncated shift) occurs at most once; the representation is unique.

Theorem 20 (K.D.,-,Sarkar).

Up to unitary equivalence, a partially isometric Toeplitz operator on Hardy space over the polydisc is either a shift, or a co-shift, or a direct sum of truncated shifts.

- A. Brown and R. Douglas, Partially isometric Toeplitz operators, Proc. Amer. Math. Soc. (1965), 681–682.
- A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963–64), 89–102.
- K. D. Deepak, D. Pradhan, J. Sarkar, Partially isometric Toeplitz operators on the polydisc. arXiv:2102.01062v1
- A. Maji, J. Sarkar and S. Sarkar, Toeplitz and asymptotic Toeplitz operators on H²(Dⁿ), Bull. Sci. Math. 146 (2018), 33–49.
- W. Rudin, Invariant subspaces of H2 on a torus. J. Funct. Anal. 61 (1985), no. 3, 378–384.
- T. Yu, Sum of Toeplitz products on the Hardy space over the polydisk. Illinois J. Math. 61 (2017), no. 1-2, 225–241.

Thank You!