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Toeplitz operators on Hardy space over the polydisk

• Consider the space L2
µ(T), with respect to the normalized Lebesgue measure µ of the unit circle

T, and define

H2(T) :=
{

f ∈ L2
µ(T) :

∫ 2π

0
f · einθdµ = 0, for all n > 1

}
.

• The Hardy space over the polydisk is defined to be H2(Tn) :=
n⊗

j=1
Kj where each Kj = H2(T).

• The Hardy space over the polydisk is H2(Tn) is a closed Lzi -invariant subspace (for i = 1, · · · , n)
of L2

σ(T
n), where σ, is the normalised Lebesgue measure on Tn. Denote

H∞(Tn) := L∞
σ (Tn) ∩ H2(Tn).

Definition 1 (Toeplitz operator with a bounded symbol).
Let Lϕ denote the Laurent (or the multiplication) operator on L2

σ(T
n), for some ϕ ∈ L∞

σ (Tn).
Then, the Toeplitz operator Tϕ with symbol ϕ, on H2(Tn) is defined as

Tϕ := PH2(Tn)Lϕ|H2(Tn).

2 / 13



Algebraic properties of Toeplitz operators

Theorem 2 (Brown-Halmos, Maji-Sarkar-Sarkar).
An operator T on H2(Tn) is a Toeplitz operator with a symbol ϕ ∈ L∞

σ (Tn) if and only if
T∗

zi TTzi = T for i = 1, . . . , n.

Theorem 3 (Brown-Halmos).
For ϕ1, ϕ2 ∈ L∞

µ (T) the Toeplitz operators Tϕ1 ,Tϕ2 commute if and only if either both ϕ1, ϕ2 are
analytic or co-analytic or one be a linear function of the other.

Theorem 4 (Beurling’s Theorem).
A subspace M ⊂ H2(T) is invariant under Tz if and only if M = TϕH2(T), some iner function
function ϕ ∈ H∞(T) i.e. |ϕ| = 1 µ-a.e. on T.

Definition 5 (Partial Isometry).
Let H be a Hilbert space.Then, an operator U ∈ B(H) is said to be a partial isometry if
∥U(f)∥ = ∥f∥, whenever f ∈ ker(U)⊥. And we denote D(U) := {f | ∥U(f)∥ = ∥f∥} and
R(U) := {g | g = U(f), f ∈ H}.

Problem 6.
What are all partially isometric Toeplitz operators on H2(Tn)?
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Partially isometric Toeplitz operators on Hardy space over disc

Theorem 7 (Douglas-Brown).
Let Tϕ be a non-zero toeplitz operator. Then, Tϕ is partially isometric if and only if either ϕ or ϕ
is an inner function.
A sketch proof of Brown and Douglas, let Tϕ is partially isometric Toeplitz operator on H2(T).

1. D(Tϕ) := {f ∈ H2(T) : ∥Tϕf∥ = ∥f∥ } is z-invariant.
2. Hence by Beurling’s theorem D(Tϕ) = TθH2(T), where θ ∈ H∞(T) and |θ| = 1 µ-a.e.
3. Hence there exists inner function ψ ∈ H∞(T) such that Tϕ = TθTψ. Also note

H2(T)⊖D(Tϕ) = ker(T∗
θ).

4. Note that, f ∈ H2(T)⊖D(Tϕ), then Tϕ(f) = 0 = Tθ(Tψf). Hence Tψ(ker(T∗
θ)) ⊂ ker(T∗

θ).

5. [Tθ,Tψ] = 0 = [T∗
θ ,Tψ], hence either θ or ψ is a constant.

6. Brown-Halmos theorem for commuting Toeplitz operators.
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Quotients of inner functions

Let M1,M2 be two z-invariant subspaces of H2(T) then there exist a unimodular ψ ∈ L∞(T) such
that

M1 = TψM2.

That is, if M1 = Tθ1 H2(T) and M2 = Tθ2 H2(T), then ψ can be chosen to be
Tψ := Tθ1

Tθ2 = Tθ1θ2
.

Theorem 8 (Re-statement of Brown-Halmos).
Let M1 and M2 be z-invariant subspaces of H2(T), and let ψ ∈ L∞

µ (T) be as above then the
following are equivalent

1. Tψ is a partial ismoetry,
2. Tψ is either an isometry or co-isometry,
3. Either M1 = H2(T), or M2 = H2(T).
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Difficulties in several variables

Proposition 9 (K.D., - , Sarkar).
Let Tϕ be a partial isometry, then R(Tφ) (and hence D(Tϕ) as well) is invariant under Tzi ,
i = 1, . . . , n.
• Rudin’s counterexamples: For n > 1 there exist M1,M2, two closed zi invariant subspaces of
H2(Tn), such that M1 = TψM2, for some unimodular ψ ∈ L∞

σ (Tn) and ψ ̸= g1
g2

for any g1, g2

inner in H∞(Tn). Rudin also provides invariant subspaces which are not of Beurling-type.

Theorem 10 (Tao Yu).
For ϕ1, ϕ2 ∈ L∞

σ (Tn) the Toeplitz operators Tϕ1 ,Tϕ2 commute if and only if the Berezin
transform, B[Tϕ1 ,Tϕ2 ], of the commutator is n-harmonic.
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Partially isometric Toeplitz operators on polydisc

Lemma 11 (K.D., - , Sarkar).
For each i = 1, . . . , n, the function φ cannot depend on both zi and z̄i variables at a time.

Theorem 12 (K.D., - , Sarkar).
Let φ be a nonzero function in L∞(Tn). Then Tφ is a partial isometry if and only if there exist
inner functions φ1, φ2 ∈ H∞(Tn) such that φ1 and φ2 depends on different variables and

Tφ = T∗
φ1 Tφ2 .

Example 13 (A simple example).
On the Hardy space of bidisc H2(T2), consider the Toeplitz operator Tz1z2 . Then

1. Tz1z2 = T∗
z1 Tz2 , is partially isometric.

2. D(Tz1z2) = z1H2(T2) and R(Tz1z2) = z2H2(T2).

• For any partial isometric Toeplitz operator are of Beurling type, in particular if Tϕ = Tϕ1
Tϕ2

then D(Tϕ) = ϕ1H2(Tn) and R(Tϕ) = ϕ2H2(Tn).
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Hyponormal Toeplitz operators
Recall for the one variable classification Tϕ is either a isometry or co-isometry. Suppose that Tϕ is
isometry then

[T∗
ϕ,Tϕ] = (T∗

ϕTϕ − TϕT∗
ϕ) = (I − PR(Tϕ)) ≥ 0.

Definition 14.
A bounded operator T is said to be hyponormal if [T∗,T] ≥ 0.
We have the following observation,

[T∗
ϕ,Tϕ] ≥ 0 ⇒ Tϕ2 T∗

ϕ2 ≤ Tϕ1 T∗
ϕ1 ⇒ Tϕ2 = Tϕ1 X

for some contraction X ∈ B(H2(Dn)). Observe that

Tϕ1 Tzi X = Tzi Tϕ1 X = Tzi Tϕ2 = Tϕ2 Tzi = Tϕ1 XTzi ,

Hence, we conclude that ϕ2 = ϕ1ψ.

Theorem 15.
A partially isometric Toeplitz operator Tϕ on H2(Tn) is hyponormal if and only if ϕ is an inner
function.
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The simple example
• Consider H2(T2) and the operator T∗

z1 Tz2 = Tz̄1 Tz2 = Tz̄1z2 .

• The homogenous decomposition of H2(T2) is denoted as H2(T2) =
∞⊕

n=0
Hn, where

Hn = {
∑

(i,j)∈N2
i+j=n

aijzi
1zj

2 | aij ∈ C}

• Each Hn is reducing for Tz̄1z2 .

Tz̄1z2 |Hn =

zn
1 zn−1

1 z2 zn−2
1 z2

2 · · · z1zn−1
2 zn

2



0 0 0 · · · 0 0 zn
1

1 0 0 · · · 0 0 zn−1
1 z2

0 1 0 · · · 0 0 zn−2
1 z2

2
...

...
...

. . .
...

...
0 0 0 · · · 0 0 z1zn−1

2
0 0 0 · · · 1 0 zn

2

.
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Truncated shifts
Proposition 16 (K.D., - ,Sarkar).
If ϕ is an inner function in H∞(Tn), then Tϕ is pure, i.e. Tϕ is unitarily equivalent to a shift.

Definition 17.
An operator T on Hilbert space is called a power partial isometry if Tm is a partial isometry for
every m ∈ N.

Corollary 18.
Every partially isometric Toeplitz operator on H2(Tn) is a power partial isometry.
• Recall that a truncated shift S of index p, p ∈ N, on some Hilbert space H is an operator of the
form

S =


0 0 0 · · · 0 0

IH0 0 0 · · · 0 0
0 IH0 0 · · · 0 0
...

...
... · · · 0 0

0 0 0 · · · IH0 0


p×p

,

where H0 is a Hilbert space, and H = H0 ⊕ · · · ⊕ H0︸ ︷︷ ︸
p

.
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The classification result

Theorem 19 (Halmos-Wallen).
Every power partial isometry is a direct sum of unitary operators, pure isomteries, pure
co-isometries and truncated shifts. The direct sum representation can be expressed so that each
type of summand (and in particular, index of each truncated shift) occurs at most once; the
representation is unique.

Theorem 20 (K.D.,-,Sarkar).
Up to unitary equivalence, a partially isometric Toeplitz operator on Hardy space over the
polydisc is either a shift, or a co-shift, or a direct sum of truncated shifts.
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Thank You!
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