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Background

Let T be the unit circle in the complex plane. Let m be the
normalised Lebesgue measure on T. We denote C (T) to be the
space of continuous functions on T.

For 1 6 p <∞, define the Hardy space Hp to be closed subspace
of Lp(T,m) = Lp consisting of all functions f ∈ Lp such that the
negative Fourier coefficients of f are 0.
If the Fourier coefficients of f are given by (an)n∈N0 , then we
extend f to an analytic function in the unit disc, given by
f (z) =

∑∞
n=0 anz

n.
With this construction, one can show that if we take radial limits
to extend our analytic function in the disc, f (z) =

∑∞
n=0 anz

n, to
the boundary, T, then we recover our original Lp function with all
negative Fourier coefficients equal to 0.
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We say a function I ∈ Hp is inner if |I | = 1 a.e. on T.

Define Hp
0 := {f ∈ Hp : f (0) = 0}. Define Kp

I = IHp
0 ∩ Hp. (Note

for p = 2, L2 = H2
0 ⊕ K 2

I ⊕ IH2.)

Let PI be the orthogonal projection L2 → K 2
I .

E.g. If I = zn, then K 2
I = span{1, z , ..., zn−1}.
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The truncated Toeplitz operator

Recall the truncated Toeplitz operator (we abbreviate to TTO)
AI
g : K 2

I → K 2
I having symbol g ∈ L2 is the densely defined

operator
AI
g (f ) = PI (gf )

having domain
{f ∈ K 2

I : gf ∈ L2}.

A TTO with a bounded symbol is bounded.

Unlike Toeplitz operators, symbols of TTOs are not unique.
Indeed, for any g ∈ IH2 + IH2 we have AI

g = 0.

Unlike Toeplitz operators, some unbounded symbols give bounded
TTOs. Indeed, by the above any g ∈ L∞ + IH2 + IH2 will give a
bounded TTO, AI

g .
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Question - Does every bounded TTO have a bounded symbol? [4]

Answer - No

Theorem 5.3 [2]. Suppose that Θ is an inner function which has an
angular derivative at ζ ∈ T. Let kΘ

ζ ∈ K 2
Θ be the reproducing

kernel at ζ and let p ∈ (2,+∞). Then the following are equivalent:
(1) the bounded truncated Toeplitz operator kΘ

ζ ⊗ kΘ
ζ (i.e the map

f 7→ 〈f , kΘ
ζ 〉kΘ

ζ ) has a symbol ψ ∈ Lp;

(2) kΘ
ζ ∈ Lp.

In particular, if kΘ
ζ /∈ Lp for some p ∈ (2,∞), then kΘ

ζ ⊗ kΘ
ζ is a

bounded truncated Toeplitz operator with no bounded symbol.
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Question - When does every bounded TTO on K 2
I have a bounded

symbol?

Answer - [1] Theorem 2.4. The following are equivalent:
1) any bounded truncated Toeplitz operator on K 2

I admits a
bounded symbol;
2) C1

(
I 2
)

= C2

(
I 2
)
;

3) for any f ∈ H1 ∩ z̄ I 2H1
0 there exist xk , yk ∈ K 2

I with∑
k ‖xk‖2 · ‖yk‖2 <∞ such that f =

∑
k xkyk .

In the above, Cp (I ) is the set of all complex Borel measures on T,
µ, such that the embedding Kp

I → Lp(|µ|) is continuous.
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Open problem

The inner function I is said to be one-component if and only if
there exists an η ∈ (0, 1) such that

{z ∈ D : |I (z)| < η}

is connected.

A long standing open conjecture regarding symbols
of bounded truncated Toeplitz operators is the following.

Conjecture

Every bounded truncated Toeplitz operator on K 2
I has a bounded

symbol if and only if I is one-component.

A result originally due to Aleksandrov, states that if I is
one-component if and only if the classes Cp (I ) coincide for all
p ∈ (0,∞). Thus, by the previous Theorem, if I is one-component
then every bounded truncated Toeplitz operator on K 2

I has a
bounded symbol.
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From bounded TTOs to compact TTOs

For compact TTOs the role of bounded symbols seems to replaced
by symbols of the form Ih, where h ∈ C (T).

g ∈ IC (T) =⇒ AI
g is compact. (Prop 5.4 [3])

Question - Are there conditions on I which are equivalent to every
compact TTO on K 2

I having a symbol in IC (T)?

One can combine results from [1] [3] to deduce if every bounded
TTO on K 2

I has a bounded symbol then every compact TTO on
K 2
I has a symbol in IC (T).
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Define the Banach space
X = {

∑
xiyi : xi , yi ∈ K 2

I ,
∑
‖xi‖K2

I
‖yi‖K2

I
<∞} where the norm

is defined as the infimum of
∑
‖xi‖K2

I
‖yi‖K2

I
over all possible

representations.

Consider the bounded map

S : X → zH1 ∩ K 1
I 2 , where f 7→ If .

From [1] we also know that
(X )∗ = T (I ) := {all bounded TTOs on K 2

I };
∗(X ) = Tc(I ) := {all compact TTOs on K 2

I }.



Define the Banach space
X = {

∑
xiyi : xi , yi ∈ K 2

I ,
∑
‖xi‖K2

I
‖yi‖K2

I
<∞} where the norm

is defined as the infimum of
∑
‖xi‖K2

I
‖yi‖K2

I
over all possible

representations.

Consider the bounded map

S : X → zH1 ∩ K 1
I 2 , where f 7→ If .

From [1] we also know that
(X )∗ = T (I ) := {all bounded TTOs on K 2

I };
∗(X ) = Tc(I ) := {all compact TTOs on K 2

I }.



Define the Banach space
X = {

∑
xiyi : xi , yi ∈ K 2

I ,
∑
‖xi‖K2

I
‖yi‖K2

I
<∞} where the norm

is defined as the infimum of
∑
‖xi‖K2

I
‖yi‖K2

I
over all possible

representations.

Consider the bounded map

S : X → zH1 ∩ K 1
I 2 , where f 7→ If .

From [1] we also know that
(X )∗ = T (I ) := {all bounded TTOs on K 2

I };
∗(X ) = Tc(I ) := {all compact TTOs on K 2

I }.



Theorem
(zH1 ∩ K 1

I 2)∗ = L∞/Q, where Q = L∞ ∩ (H2 + I 2H2),
(C (T)/(FI 2 ∩ C (T)))∗ = K 1

I 2 ∩ zH1, where FI 2 be the closure of

the set I 2H∞ + H∞ in the weak ∗ topology of the space L∞.



Theorem

∗S :C (T)/(FI 2 ∩ C (T))→ Tc(I ), [f ] 7→ AI
If

S :X → zH1 ∩ K 1
I 2 , f 7→ If

S∗ :L∞/Q → T (I ), [f ] 7→ AI
If

Corollary

The image of ∗S is all TTOs with symbols in IC (T).
The image of S∗ is all TTOs with a bounded symbol.

So, every compact TTO on K 2
I has a symbol in IC (T) ⇐⇒ ∗S is

isomorphic =⇒ S is isomorphic =⇒ S∗ is isomorphic =⇒
every bounded TTO on K 2

I has a bounded symbol.
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Theorem
Every compact TTO on K 2

I has a symbol in IC (T) if and only if
every bounded TTO on K 2

I has a bounded symbol.

We return to our question.
Are there conditions on I which are equivalent to every compact
TTO on K 2

I having a symbol in IC (T)? - Yes. The same
conditions on I which are equivalent to every bounded TTO having
a bounded symbol.
2) C1

(
I 2
)

= C2

(
I 2
)
;

3) for any f ∈ H1 ∩ z̄ I 2H1
0 there exist xk , yk ∈ K 2

I with∑
k ‖xk‖2 · ‖yk‖2 <∞ such that f =

∑
k xkyk .
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New view on the one component inner function conjecture

Recall the conjecture;

Conjecture

Every bounded truncated Toeplitz operator on K 2
I has a bounded

symbol if and only if I is one-component.

With the previous theorem we now know an equivalent formulation
of the above conjecture is the following

Conjecture

Every compact truncated Toeplitz operator on K 2
I has a symbol in

IC (T) if and only if I is one-component.
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