Weighted Theory of Toeplitz Operators on the Bergman Space

Nathan Wagner

Washington University in St. Louis

November 26, 2021

Mini-course on Truncated Toeplitz Operator- Fields Institute

Joint work with Cody Stockdale (Clemson University)

- Our setting will be the unit ball B_n in Cⁿ (many of these results remain true in greater generality, e.g strongly pseudoconvex, smoothly bounded domains).
- Given a suitable weight σ , we define the weighted Bergman space \mathcal{A}^{p}_{σ} as follows

$$\mathcal{A}^p_{\sigma} := \left\{ f \in \mathsf{Hol}(\mathbb{B}_n) : \int_{\mathbb{B}_n} |f|^p \sigma \, dV < \infty
ight\},$$

where dV represents usual Lebesgue measure on $\mathbb{C}^n = \mathbb{R}^{2n}$. Weighted L^p spaces on the ball are defined in a similar manner.

• Let P denote the (uweighted) Bergman projection, which is the orthogonal projection from L^2 to \mathcal{A}^2 .

伺下 イヨト イヨト

Preliminaries (cont)

• Recall P has the integral representation on L^2 :

$$Pf(z) = \int_{\mathbb{B}_n} \frac{f(w)}{(1-z\overline{w})^{n+1}} \, dV(w).$$

- *P* actually extends to a bounded operator on L^p , 1 (Schur's test, originally due to Rudin and Forelli).
- For $u \in L^{\infty}(\mathbb{B}_n)$, define the Toeplitz operator $T_u(f) = P(uf)$.
- This operator is clearly well-defined and bounded on L^2 (although it is often studied in terms of its restriction to A^2). Additionally, by what we said above it extends to a bounded operator on L^p , 1 .
- General question: if the symbol u is "nice" (has some type of decay or other nice property), does T_u have "nicer" mapping properties (than P)?

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivating Theorems

- Axler and Zheng characterized the Toeplitz operators T_u that are compact on \mathcal{A}^2 (later extended to \mathcal{A}^p).
- Their characterization involves the Berezin transform

$$\widetilde{T_u}(z) := \langle T_u k_z, k_z \rangle,$$

where the k_z are the normalized reproducing kernels for \mathcal{A}^2 given by

$$k_z(w) = rac{(1-|z|^2)^{rac{n+1}{2}}}{(1-\overline{z}w)^{n+1}}.$$

Theorem (A)

Let $u \in L^{\infty}$ and $p \in (1, \infty)$. Then T_u is compact on \mathcal{A}^p if and only if $\widetilde{T_u}(z) \to 0$ as $|z| \to 1^-$.

Motivating Theorems (continued)

- Another question (motivated by harmonic analysis, Muckenhoupt weights): determine the weights σ such that P maps L^p_σ to itself.
- This question was completely answered (for the ball) by Békollè and Bonami in the early 1980s.

Theorem (B)

The Bergman projection acts boundedly on L^p_σ for $p \in (1,\infty)$ if and only if

$$[\sigma]_{B_{p}} := \sup_{z \in \mathbb{B}_{n}} \langle \sigma \rangle_{\mathcal{T}_{z}} \langle \sigma^{1-p'} \rangle_{\mathcal{T}_{z}}^{p-1} < \infty$$

and P acts boundedly from L^1_{σ} to $L^{1,\infty}_{\sigma}$ if and only if

$$[\sigma]_{B_1} := \sup_{z \in \mathbb{B}_n} \langle \sigma \rangle_{\mathcal{T}_z} \| \sigma^{-1} \|_{L^{\infty}(\mathcal{T}_z)} < \infty.$$

Motivating Theorems (continued)

• Above, \mathcal{T}_z denotes the Carleson tent over $z \in \mathbb{B}_n$ given by

$$\mathcal{T}_z := \left\{ w \in \mathbb{B}_n : \left| 1 - \overline{w} \frac{z}{|z|} \right| < 1 - |z|
ight\}.$$

• We write $L^{1,\infty}_{\sigma}$ for the space of functions f for which

$$\|f\|_{L^{1,\infty}_{\sigma}}:=\sup_{\lambda>0}\lambda\sigma(\{z\in\mathbb{B}_n:|f(z)|>\lambda\})<\infty.$$

This is a quasi-Banach space.

 It is clear that the Toeplitz operator T_u will enjoy the same weighted bounds as P does. But does it possess better mapping properties?

- Given a weight $\sigma \in B_p$ and a symbol $u \in L^{\infty}$, we know that T_u is bounded on L^p_{σ} (with suitable modifications when p = 1). But one could ask:
 - When is T_u compact on L^p_{σ} ?
 - When is T_u compact on $\mathcal{A}^p(\sigma)$?
- Also, if u has decay at the boundary, is it possible that T_u is bounded on L^p_σ for σ in a larger weight class?
- Such questions form the basis of our work.

 Main result: vanishing at the symbol at the boundary is sufficient for compactness on L^p_σ when σ ∈ B_p. Precisely,

Theorem

Let $u \in L^{\infty}$ and $p \in (1, \infty)$. If $u(z) \to 0$ as $|z| \to 1^-$, then T_u extends compactly on L^p_{σ} for all $\sigma \in B_p$ and T_u extends compactly from L^1_{σ} to $L^{1,\infty}_{\sigma}$ for all $\sigma \in B_1$.

• Main ingredient in proof: a version of the classical Riesz-Kolmogorov theorem for Bergman spaces.

• For a certain subclass of symbols, this leads to a nice characterization of compactness on weighted *L^p* spaces:

Corollary

If $u \in L^{\infty}$ is continuous on $\overline{\mathbb{B}}_n \setminus K$ for some compact $K \subseteq \mathbb{B}_n$, then the following are equivalent:

- **(**) T_u extends compactly on L^p_σ for some $p \in (1,\infty)$ and all $\sigma \in B_p$,
- 2 T_u extends compactly on L^p_σ for all $p \in (1,\infty)$ and all $\sigma \in B_p$,
- **③** T_u extends compactly from L^1_{σ} to $L^{1,\infty}_{\sigma}$ for all $\sigma \in B_1$, and

$$\ \, \mathfrak{\widetilde{T}_u}(z) \to 0 \ as \ |z| \to 1^-.$$

Compactness on $\mathcal{A}^{p}(\sigma)$ -preliminaries

- To state our results, we require finitely many "dyadic systems" D₁,..., D_M on B_n (think Whitney decompositions where each "cell" is shaped approximately like a ball in the Bergman metric). Put D = ∪^M_{ℓ=1} D_ℓ.
- Each dyadic system consists of disjoint "kubes" K (the cells) and associated "tents" \hat{K} .
- We can also phrase the B_p and B₁ conditions of terms of these dyadic objects K and obtain equivalent characteristics.
- For r > 1, we say that a weight σ is in the reverse Hölder class RH_r and write σ ∈ RH_r if

$$[\sigma]_{\mathsf{RH}_r} := \sup_{K \in \mathcal{D}} \frac{\langle \sigma^r \rangle_{\widehat{K}}^{1/r}}{\langle \sigma \rangle_{\widehat{K}}} < \infty.$$

Theorem

Let $u \in L^{\infty}$, $p \in (1, \infty)$, r > 1, and $\sigma \in B_p \cap RH_r$ with $\sigma^{1-p'} \in RH_r$. Then T_u extends compactly on \mathcal{A}^p_{σ} if and only if $\widetilde{T}_u(z) \to 0$ as $|z| \to 1^-$.

- Key argument is an extension of an extrapolation argument due to Hytönen.
- An important subclass of B_p weights satisfies this property (originally introduced by Aleman, Pott, and Reguera in the context of the unit disk).
- In particular, these weights are "more or less constant" on balls of a fixed radius in the Bergman metric: there exists a constant c_{σ,r} so that for all ζ ∈ B_n, if z, w ∈ B_β(ζ, r), then σ(z) ≤ c_{σ,r}σ(w).

- Main idea: if u has some decay at the boundary, we can actually obtained weighted bounds on L^p_σ for σ in a "u-adapted" weight class that is strictly larger than B_p.
- Given $u \in L^{\infty}$, we say that a weight σ is in uB_p for $p \in (1, \infty)$ if

$$[\sigma]_{uB_{p}} := \sup_{K \in \mathcal{D}} \|u\|_{L^{\infty}(\widehat{K})} \langle \sigma \rangle_{\widehat{K}} \langle \sigma^{1-p'} \rangle_{\widehat{K}}^{p-1} < \infty$$

and σ is in uB_1 if

$$[\sigma]_{uB_1} := \sup_{K \in \mathcal{D}} \|u\|_{L^{\infty}(\widehat{K})} \langle \sigma \rangle_{\widehat{K}} \|\sigma^{-1}\|_{L^{\infty}(\widehat{K})} < \infty.$$

Weights Beyond B_p (continued)

Theorem

Let $u \in L^{\infty}$. If $p \in [2, \infty)$ and $\sigma \in uB_p$, then T_u acts boundedly on L^p_{σ} with

$$\|T_u\|_{L^p_{\sigma}\to L^p_{\sigma}}\leq C[\sigma]_{uB_p}$$

for some C > 0; if $p \in (1, 2]$ and $\sigma \in u^{p-1}B_p$, then T_u acts boundedly on L^p_{σ} with

$$\|T_u\|_{L^p_{\sigma}\to L^p_{\sigma}} \leq C[\sigma]_{u^{p-1}B_p}^{\frac{p'}{p}}$$

for some C > 0.

• Key tool: "sparse domination" for the Bergman projection. In particular, there holds:

$$|T_u f(z)| \lesssim \sum_{K \in \mathcal{D}} \langle |uf| \rangle_{\widehat{K}} \chi_{\widehat{K}}(z).$$

• We also prove weak-type estimates for weights in *uB*₁ satisfying a reverse Hölder condition (better quantitative dependence).

• We obtain the following Riesz-Kolmogorov type theorem for Bergman spaces:

Theorem

Let $p \in [1, \infty)$. Suppose that $\sigma^{1-p'} \in L^1$ if p > 1, and suppose σ is bounded below by a positive constant if p = 1. A subset $\mathcal{F} \subseteq \mathcal{A}^p_{\sigma}$ is precompact if and only if

$$\lim_{r\to 1^-}\sup_{f\in\mathcal{F}}\int_{r\mathbb{B}_n^c}|f|^p\sigma\,dV=0.$$

- Proof is straightforward and uses a normal families argument.
- We can obtain a similar theorem concerning the precompact subsets of weak *L*¹.

Thanks to the organizers and the Fields Institute for allowing me to give this talk and thanks to all of you for your attention!

• • = • • = •