A Harder-Narasimhan stratification of the $$B_{\rm dR}^+$-Grassmannian$

Eva Viehmann

25/10/2021

25/10/2021 1/20

G: reductive group over \mathbb{Q}_p $b \in G(\check{\mathbb{Q}}_p)$ μ a cocharacter of G such that $[b] \in B(G, \mu)$

 $\check{\mathcal{F}}(G,\mu)$ the associated flag variety (as rigid analytic space) if G is quasi-split, P_{μ} the parabolic corresponding to μ ,

$$\check{\mathcal{F}}(G,\mu)\cong G/P_{\mu}.$$

Have *p*-adic period map [Rapoport-Zink, Scholze]

$$\pi: \check{\mathcal{M}}(G, b, \mu)_{\mathcal{K}\subset G(\mathbb{Q}_p)} \to \check{\mathcal{F}}(G, \mu)$$

im $\pi =: \breve{\mathcal{F}}^{a} = \breve{\mathcal{F}}(\mathcal{G}, b, \mu)^{a}$ the *admissible locus*, open in $\breve{\mathcal{F}}(\mathcal{G}, \mu)$.

[Rapoport-Zink]: Approximate $\breve{\mathcal{F}}^{\mathrm{a}}$ by the *weakly admissible locus* $\breve{\mathcal{F}}^{\mathrm{wa}}$

- has an explicit description
- $\breve{\mathcal{F}}^{\mathrm{a}} \subseteq \breve{\mathcal{F}}^{\mathrm{wa}} \subseteq \breve{\mathcal{F}}(\mathcal{G},\mu)$
- $\mathcal{K}|\mathbb{Q}_{\rho} \text{ finite } \Rightarrow \breve{\mathcal{F}}^{\mathrm{a}}(\mathcal{K}) = \breve{\mathcal{F}}^{\mathrm{wa}}(\mathcal{K}).$

But: $\breve{\mathcal{F}}^a \neq \breve{\mathcal{F}}^{wa}$ except for particular cases. [Hartl, Chen-Fargues-Shen] Goals:

- Understand their relation better
- study more general geometric constructions lying behind these two notions, replacing $\breve{\mathcal{F}}$ by the B_{dR}^+ -Grassmannian $\mathrm{Gr}_{\mathcal{G}}$
- interpretation in terms of G-bundles on the Fargues-Fontaine curve?

- C/\mathbb{Q}_p algebraically closed, complete C^\flat its tilt

$$k(\infty) = C, \quad \hat{\mathcal{O}}_{X,\infty} = B^+_{\mathrm{dR}}(C).$$

A G-bundle on X is

- a G-torsor on X that is étale locally trivial or
- an exact \otimes -functor $\operatorname{Rep} G \to \operatorname{Bun}_X$.

Theorem (Fargues-Fontaine, Fargues)

We have a bijection of pointed sets

 $egin{aligned} B(G) &\stackrel{\sim}{
ightarrow} H^1_{ ext{et}}(X_C,G) \ [b] &\mapsto [\mathcal{E}_b]. \end{aligned}$

Here, for $b \in G(\breve{\mathbb{Q}}_p)$,

$$egin{aligned} & [b] = \{g^{-1}b\sigma(g) \mid g \in G(\check{\mathbb{Q}}_p)\}, \ & B(G) = \{[b] \mid b \in G(\check{\mathbb{Q}}_p)\}. \end{aligned}$$

Classified using two invariants

- Kottwitz point: $\kappa_G(b) \in \pi_1(G)_{\Gamma}$
- Newton point: $\nu_b : \mathbb{D} \to G$ up to conjugation

Let $x \in G(B_{\mathrm{dR}})/G(B_{\mathrm{dR}}^+) = \mathrm{Gr}_G(C)$

Glue (à la Beauville-Laszlo) $\mathcal{E}_1|_{X \setminus \{\infty\}}$ and $\mathcal{E}_{1,\operatorname{Spec}(B^+_{dB})}$ via x.

 \rightsquigarrow a *G*-bundle $\mathcal{E}_{1,x}$

(Fargues-Scholze): Extend this to a surjective map of v-stacks

 $BL: Gr_{\mathcal{G}} \to Bun_{\mathcal{G}}.$

Consider the Cartan decomposition

$$\begin{aligned} \operatorname{Gr}_{G}(C) &= \coprod_{\{\mu\}} G(B_{\mathrm{dR}}^{+}) \mu(\xi)^{-1} G(B_{\mathrm{dR}}^{+}) / G(B_{\mathrm{dR}}^{+}) \\ &= \coprod_{\{\mu\}} \operatorname{Gr}_{G,\mu}(C) \end{aligned}$$

Get induced decomposition into so-called Newton strata

$$\operatorname{Gr}_{\mathcal{G},\mu} = \coprod_{[b']\in\mathcal{B}(\mathcal{G})} \operatorname{Gr}_{\mathcal{G},\mu}^{[b']}$$

with

$$x \in \mathrm{Gr}_{G,\mu}^{[b']}(\mathcal{C}) \Leftrightarrow \mathcal{E}_{1,x} \cong \mathcal{E}_{b'}.$$

They define locally closed locally spatial subdiamonds of $\operatorname{Gr}_{G,\mu}$.

$$\operatorname{Gr}_{\mathcal{G},\mu} = \coprod_{[b']} \operatorname{Gr}_{\mathcal{G},\mu}^{[b']}$$

• (Caraiani-Scholze, Rapoport) Let $[b'] \in B(G)$. Then $\operatorname{Gr}_{G,\mu}^{[b']}(C) \neq \emptyset \Leftrightarrow$

$$[b'] \in \mathcal{B}(\mathcal{G},-\mu) = \{[b'] \mid \kappa_{\mathcal{G}}(b') = -\mu^{\sharp}, \nu_{b'} \leq (-\mu)^{\diamond}_{\mathrm{dom}} \}.$$

- The basic stratum is an analog of the admissible locus.
- In general, Newton strata are hard to describe.
 E.g., there are Newton strata without classical points.

Generalizing the weakly admissible locus - classical way

(Dat-Orlik-Rapoport, Xu Shen)

Consider for fixed μ the Bialynicki-Birula map

$$\mathrm{BB}_{\mu}:\mathrm{Gr}_{\mathcal{G},\mu}\to\mathcal{F}\ell(\mathcal{G},\mu)^{\mathrm{ad}}$$

- For $x = g\mu(\xi)^{-1}G(B_{dR}^+)/G(B_{dR}^+) \in Gr_{G,\mu}(C)$, the image $BB_{\mu}(x)$ is the image of g in $\mathcal{F}\ell(G,\mu)^{ad}$.
- If μ is minuscule, BB_{μ} is an isomorphism.
- Have a Harder-Narasimhan stratification on $\mathcal{F}\ell({\sf G},\mu)^{\operatorname{ad}}$
- Open/semistable stratum: variant of the weakly admissible locus
- Then take inverse images to define a decomposition of $\operatorname{Gr}_{G,\mu}$.

However: No good interpretation in terms of G-bundles on the curve

For any vector bundle \mathcal{E} on X we have

- rank $\mathsf{rk}(\mathcal{E}) \in \mathbb{N}$
- degree deg(\mathcal{E}) $\in \mathbb{Z}$: degree of its determinant line bundle
- slope $\mu(\mathcal{E}) = \frac{\deg \mathcal{E}}{\mathrm{rk}\mathcal{E}}$
- $\mathcal E$ is semi-stable if for every subbundle $\mathcal E'\subseteq \mathcal E$ we have $\mu(\mathcal E')\leq \mu(\mathcal E)$
- the associated Harder-Narasimhan theory leads to the Newton point of \mathcal{E} :

 $\mathcal{E} \cong \mathcal{E}_b$ for $[b] \in B(GL_n)$ iff the HN-vector of \mathcal{E} is $\nu_{b^{-1}}$.

Define a category \mathcal{C} :

- Objects: (\mathcal{E}, x) where \mathcal{E} is a vector bundle on X of some rank n $x \in \operatorname{Gr}_n(\mathcal{C}).$
- Hom((E,x), (E', x')): homomorphisms between the isocrystals associated with E, E', effective with respect to x, x'.

•
$$\operatorname{rk}(\mathcal{E}, x) = \operatorname{rk}(\mathcal{E}) = \operatorname{rk}(\mathcal{E}_x)$$

• $\operatorname{deg}(\mathcal{E}, x) = \operatorname{deg}(\mathcal{E}_x)$
• $\mu(\mathcal{E}, x) = \frac{\operatorname{deg}(\mathcal{E}, x)}{\operatorname{rk}(\mathcal{E}, x)} = \mu(\mathcal{E}_x)$

For any $x \in \operatorname{Gr}_n(C)$ and any $\mathcal{E} \in \operatorname{Bun}_n$ we have a bijection

```
\{ \text{ sub-v.b. of } \mathcal{E} \} \longleftrightarrow \{ \text{ sub-v.b. of } \mathcal{E}_x \}.
```

Definition

Let $x \in \operatorname{Gr}_n(\mathcal{C})$ and let \mathcal{E}_1 be the trivial vector bundle of rank n. (\mathcal{E}_1, x) is *semi-stable* if for every subobject (\mathcal{E}', x') in \mathcal{C} , the associated subbundle $\mathcal{E}'_{x'} \subseteq \mathcal{E}_{1,x}$ satisfies $\mu(\mathcal{E}'_{x'}) \leq \mu(\mathcal{E}_{1,x})$.

- Same definition of rank, degree, and slope as for $\mathcal{E}_{1,x}$.
- Restrict to sub-vector bundles of $\mathcal{E}_{1,x}$ that correspond to direct summands of \mathcal{E}_1 .

A Harder-Narasimhan filtration for modifications

Proposition (Nguyen-V.)

Every $X = (\mathcal{E}_1, x) \in \mathcal{C}$ (for $x \in \operatorname{Gr}_n(\mathcal{C})$) has a unique filtration in \mathcal{C}

$$0 = X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_r = X$$

such that

- each X_i/X_{i-1} is semi-stable in C
- the sequence $(\mu(X_i/X_{i-1}))_i$ is strictly decreasing

called the Harder-Narasimhan filtration of X (or x).

Have associated slope vector in \mathbb{Q}_+^n .

A HN filtration for modifications of G-bundles

G a reductive group over \mathbb{Q}_p

- Let *E* be a *G*-bundle over *X*, and *P* ⊂ *G* a parabolic subgroup.
 A reduction of *E* to *P* is a *P*-bundle *E*_P together with *E*_P ×^P *G* ≅ *E*
- If $\mathcal{E} = \mathcal{E}_1$ is trivial, have a natural reduction of \mathcal{E} to P induced by $P \subseteq G$.
- Associated slope vector: Consider

$$v_P: X^*(P) \to \mathbb{Z}, \quad \chi \mapsto \deg \chi_* \mathcal{E}_P.$$

Have $X^*(P)_{\mathbb{Q}} \cong X^*(Z_M)_{\mathbb{Q}}$, thus

$$v_P \in X_*(Z_M)^{\Gamma}_{\mathbb{Q}} \hookrightarrow X_*(G)^{\Gamma}_{\mathbb{Q}}.$$

A HN filtration for modifications of G-bundles

Let $x \in \operatorname{Gr}_{G}(C)$

For each parabolic subgroup $P \subseteq G$ we have a natural reduction $\mathcal{E}_{1,P}$, and an associated reduction $(\mathcal{E}_{1,x})_P$.

Theorem (Nguyen-V.)

Let $x \in Gr_G(C)$. There is a unique parabolic subgroup $P \subseteq G$ such that the slope vector v_P of $(\mathcal{E}_{1,x})_P$ is P-dominant and such that $(\mathcal{E}_{1,M}, x_M)$ is semi-stable. Then v_P is also maximal among the slope vectors of all such reductions.

- $(\mathcal{E}_{1,x})_P$ is called the canonical reduction of (\mathcal{E}_1,x)
- $v_P =: HN(\mathcal{E}_1, x)$ its Harder-Narasimhan vector
- for $G = GL_n$, this coincides with the HN filtration and slope vector above
- idea of proof: use Tannaka theory, and a result of Cornut–Peche-Irissarry

Proposition

 $x \mapsto \operatorname{HN}(\mathcal{E}_1, x)$ induces a lower semi-continuous map

 $\mathrm{HN}: |\mathrm{Gr}_{G,\mu}| \to B(G,\mu)$

with $\operatorname{HN}(\mathcal{E}_1, x) = \nu_{b'}$ for $[b'] = \operatorname{HN}(x)$.

- For $[b'] \in B(G, \mu)$ let $\operatorname{Gr}_{G, \mu}^{\operatorname{HN}=[b']}$ be the inverse image of [b'], a locally spatial subdiamond called HN-stratum for [b']
- In general, the closure of a stratum is not a union of strata! For $x \in \operatorname{Gr}_{G,\mu}^{[b']}(C)$ we have

$$HN(x) \le [(b')^{-1}].$$

In particular, for $[b_0] \in B(G,\mu)$ basic, we have

$$\operatorname{Gr}_{\boldsymbol{G},\mu}^{[\boldsymbol{b}_0^{-1}]} \subseteq \operatorname{Gr}_{\boldsymbol{G},\mu}^{\operatorname{HN}=[\boldsymbol{b}_0]}$$

Recall: have the Bialynicki-Birula map

$$\mathrm{BB}_{\mu}:\mathrm{Gr}_{\mathcal{G},\mu}\to\mathcal{F}\ell(\mathcal{G},\mu)^{\mathrm{ad}}$$

which is an isomorphism if μ is minuscule.

Lemma

If μ is minuscule, BB_{μ} identifies the HN-strata in Gr_{G, μ} with the HN-strata for $\mathcal{F}\ell(G,\mu)^{\mathrm{ad}}$ defined by Dat-Orlik-Rapoport (for b = 1).

- In particular, the semi-stable stratum in our theory is the direct analog of the classical weakly admissible locus.
- If μ is not minuscule, this is no longer true: already for $G = GL_2$, $\mu = (4, 0)$ the two notions of semi-stability do not coincide any more.

Proposition (Nguyen-V.)

Let K be a finite extension of \mathbb{Q}_p , and $x \in \operatorname{Gr}_{G,\mu}^{[b']}(K)$ for some $[b'] \in B(G, -\mu)$. Then

$$\operatorname{HN}(\mathcal{E}_1, x) = [(b')^{-1}] = \operatorname{HN}_{\operatorname{DOR}}(\operatorname{BB}_{\mu}(x)).$$

In particular,

- the sets of classical points of both versions of semi-stable loci coincide with those of the basic Newton stratum.
- a Newton stratum has classical points iff the corresponding HN stratum is non-empty.

Explicit description

Theorem (Nguyen-V.) Let $[b'] \in B(G, \mu)$.

$$\begin{split} \operatorname{Gr}_{G,\mu}(C)^{\operatorname{HN}\geq[b']} &:= \bigcup_{[b'']\geq[b']} \operatorname{Gr}_{G,\mu}(C)^{\operatorname{HN}=[b'']} \\ &= \bigcup_{P\subseteq G} \bigcup_{\{\{\lambda\}\mid [\nu(\lambda)]\geq [b']\}} S_{\{\lambda\},P} \cap \operatorname{Gr}_{G,\mu}(C) \end{split}$$

where

- P: parabolic subgroup
- $\{\lambda\}$ a P-conjugacy class of $\lambda : \mathbb{G}_m \to P$
- $[v(\lambda)] \in B(G)$ corresponding to $[v(\lambda)]_M \in B(M)$ basic with $\kappa_M(v(\lambda)) = \lambda^{\sharp_M}$.
- $S_{\{\lambda\},P}(C) = M(B_{\mathrm{dR}}^+)N(B_{\mathrm{dR}})\lambda(\xi)G(B_{\mathrm{dR}}^+)/G(B_{\mathrm{dR}}^+).$

Thank you!

25/10/2021 20/20