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Cyclic covers of smooth projective varieties

Galois covers

We work over an algebraically closed field k . We will require some mild
restriction on the characteristic. Let X be a smooth projective variety over
Spec(k). Let G be a finite group acting on X . Then there exist a
geometric quotient Y ∼= X//G parametrizing orbits of the G− action on
X . The finite map π : X → Y is called a Galois cover of Y with Galois
group G . There exist a divisor Z ⊂ Y called the branch locus so that π is
étale outside Y − Z . The cover is called cyclic if G ∼= µr where µr is the
cyclic group of order r .
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Simple cyclic covers of smooth projective varieties

Suppose Y be a smooth projective variety and D is a divisor on Y so that
D ∈ |L⊗r | for some line bundle L on Y . One can then construct a µr cover
π : X → Y branched along the divisor D. Such a cyclic cover is called a
simple cyclic cover of degree r .
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Parametrizing simple cyclic covers of projective spaces

The functor

Let Y = Pn. Fix integers r and d . We want to parametrize all simple
cyclic covers of degree r branched along a divisor D of degree rd , i.e.,
D ∈ |OPn(rd)|. Hence one defines the following functor

Fn,r ,d : Schop → Sets where Fn,r ,d(T ) = {X → P → T}

such that X → T is flat with an action of µr on X leaving X → T
invariant and for every geometric point s ∈ T , Ps

∼= Pn and Xs → Ps is a
simple cyclic cover of degree r branched along a divisor of degree rd .
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Coarse moduli space of Fn,r ,d

Automorphisms and non-representability

Since a simple cyclic cover over Pn has non-trivial automorphisms, Fn,r ,d is
not representable, i.e, there do not exist a scheme M (called fine moduli)
and a (universal) family of cyclic covers F → M such that given any other
family X → M ′ there is a unique map M ′ → M and we have the
following cartesian diagram

X F

M ′ M
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Coarse moduli space of Fn,r ,d

Existence and property of coarse moduli

There exist a scheme Mn,r ,d whose closed points are in bijection to
Fn,r ,d(Spec(k)) such that given any other family X → M ′ there is a
unique map M ′ → Mn,r ,d

X

M ′ Mn,r ,d

Mn,r ,d is universal in the sense that if there exist another scheme M” with
the above property, then the map M ′ → M” factors as

M ′ M”

Mn,r ,d
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Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family

if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological families

We note two important points regarding the coarse moduli space.

(1) There need not be any family over the coarse moduli space (not even
from any open subscheme).

(2) Maps M ′ → Mn,r ,d induced by two familes X → M ′ and Y → M ′

could be the same.

Tautological family over the coarse moduli scheme

A family F → Mn,r ,d is called a tautological family if the induced map
Mn,r ,d → Mn,r ,d is the identity map.

Question of interest (1)

Does there exist a tautological family over a Zariski open set U of the
coarse moduli space Mn,r ,d ?

Jayan Mukherjee (ICERM) Tautological families 7 / 31



Tautological Brauer–Severi scheme

Consider a tautological family F → Mn,r ,d .

Recall that F is obtained as a
cyclic cover F → P → Mn,r ,d over a family P → Mn,r ,d such that for
every geometric point s ∈ Mn,r ,d , Ps

∼= Pn. Such a family is called a
Brauer–Severi scheme. A Brauer–Severi scheme need not be Zariski locally
trivial.

A theorem of Grothendieck

Any Brauer–Severi scheme is étale locally trivial, i.e., for any
Brauer–Severi scheme P → M, there exist a collection of jointly surjective
étale maps {U}i∈I → M such that the pullback of P to every Ui is trivial,

Pi
∼= Pn × Ui P

Ui M
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Tautological Brauer–Severi scheme

Question of interest (2)

Suppose F → Mn,r ,d be a tautological family.

When is there the
tautological Brauer–Severi scheme Pn,r ,d Zariski locally trivial ?

The above is the same as asking if there exist a vector bundle E on Mn,r ,d

such that Pn,r ,d
∼= PMn,r,d

(E ).
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Some results on the existence of tautological families

Example 1: Moduli of smooth projective curves of genus g

Denote the coarse moduli space by Mg . A general smooth projective curve
of genus g has no non-trivial automorphisms. Let the open set of such
curves be denoted by M0

g . Then M0
g is actually a fine moduli and hence

there exists a unique tautological (which is in fact universal) family of
curves over M0

g . Also note that there do not exist any tautological family
over entire Mg .

General principle

If the general element in the class of objects we want to parametrize has
no non-trivial automorphism, then there exist a tautological family over an
open subscheme of the coarse moduli scheme.
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Some results on the existence of tautological families

Example 2: Hyperelliptic curves of genus g

A smooth projective curve C of genus g is called hyperelliptic

if the
canonical morphism (morphism induced by the complete linear series |KC |)
ϕ : C → Pg−1 is a double cover onto its image Y ∼= P1, i.e., ϕ factors as

C

Y Pg−1

ϕ
π

i

So for any hyperelliptic curve C , there is an action of µ2 on C so that
C//µ2

∼= P1 . C has genus g , if the cyclic cover π : C → P1 is branched
along 2g + 2 distinct points. Denote the moduli of hyperelliptic curves by
Hg . Hence the moduli functor of hyperelliptic curves is actually our
functor F1,2,2g+2 and Hg

∼= M1,2,2g+2.
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Some results on the existence of tautological families

Note that a general hyperelliptic curve of genus g has atleast one
non-trivial automorphism, namely the hyperelliptic involution.

Hence
unlike Mg there do not exist a universal family over any open set of Hg .
There is however an open set H0

g ⊆ Hg such that for any hyperelliptic
curve C ∈ H0

g , Aut(C ) = µ2.

Example 2: Hyperelliptic curves of genus g (Gorchinskiy-Viviani
[GV09])

(1) There exist a tautological family of hyperelliptic curves over Hg if and
only if g is odd. When g is odd the tautological Brauer–Severi
scheme is not Zariski locally trivial.

(2) For g odd this tautological family does extend over entire H0
g .
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Some results on the existence of tautological families

Example 3: Moduli of marked irreducible holomorphic symplectic
manifolds

A compact Kähler manifold is called holomorphic symplectic (or
hyperkähler) if its space of global holomorphic two forms (H0(

∧2(ΩX ))) is
spanned by a symplectic (no-where vanishing) form.

Markman ([Mar21])

Tautological families exist over every irreducible component of marked
irreducible holomorphic symplectic manifolds.
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Generalization I: Coarse moduli Mn,r ,d of Fn,r ,d

We want to generalize the results for Hg to Mn,r ,d employing techniques in
[GV09] and the following result by Arsie-Vistoli.

Stacks of cyclic covers of projective spaces [AV04]

The functor Fn,r ,d represented by an algebraic stack Hn,r ,d which has a
quotient stack structure given by

Hn,r ,d
∼= [Asm(n, rd)/(GLn+1/µd)]

where Asm(n, rd) denotes smooth polynomials in of degree rd in n + 1
variables.

Note that H1,2,2g+2 is the stack of hyperelliptic curves of genus g .
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Generalization II: Cyclic (not necessarily simple) triple
covers of P1

In this case we increase the complexity of the group action on the cover.

Suppose X be a smooth projective variety with an action of µ3 on X such
that Y ∼= X//µ3 is smooth. Then the map π : X → Y is called a cyclic
triple cover of Y . While any double cover is simple cyclic, cyclic triple
covers are in general not simple cyclic.

Structure of cyclic triple covers

A cyclic triple cover π : X → Y is given by the data of line bundles L1, L2

and divisors D1 and D2 on Y such that

D1 ∈ L⊗2
1 ⊗ L⊗−1

2 ,D2 ∈ L⊗2
2 ⊗ L⊗−1

1

We want to parametrize cyclic triple covers of P1 with deg(Li ) = di . Let
us denote the moduli functor by F1,3,d1,d2 and its coarse moduli by
M1,3,d1,d2
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Generalization II: Cyclic (not necessarily simple) triple
covers of P1

Stacks of smooth cyclic triple covers of P1 [AV04]

F1,3,d1,d2 is represented by an algebraic stack

H1,3,d1,d2
∼= [U/Γ(d1, d2)]

where Γ(d1, d2) := Gm ×GL2/(µd1 × µd2) and we denote the quotient with
respect to the embedding,

µd1 × µd2

i
↪−→ Gm × GL2,

(x1, x2)→ (x2/x1, x1I2×2),

U := Asm(1, 2d1 − d2)× Asm(1, 2d2 − d1)− Z

where Z is the closed subscheme consisting of pairs of forms with a
common root.
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Interpretation of tautological family as a section to the
stack

Approching the problem stack theoretically is useful

since one can interpret
the existence of a tautological family as a rational section from the coarse
moduli space to the stack.

X

X
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Results for Mn,r ,d (Kundu/Raychaudhury/-)

Assume rd ≥ 4.

For any object X in Mn,r ,d , we have µr ⊆ Aut(X ). There
exist an open set in M0

n,r ,d ⊂ Mn,r ,d such Aut(X ) = µr

Results for Mn,r ,d

(1) There exists a tautological family over an open subscheme of Mn,r ,d if
and only if gcd(rd , n + 1) | d .

(2) When such a family exists, the Brauer–Severi scheme Pn,r ,d → U
associated to the tautological family is trivial if and only if
gcd(rd , n + 1) = 1.

(3) (i) If rd ≥ 8, there does not exist a tautological family over the open
subset M0

1,r ,d .
(ii) If char(k) = 0 or char(k) > (rd − 1)(rd − 2) + 1 and rd ≥ 7, there do

not exist a tautological family over the open subset M0
2,r ,d .
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Plugging in some values

n = 2, r = 2, d = 2

X is a double cover of P2 branched along a quartic.

In this case X is Fano.
The results show that

(1) there exist a tautological section generically from the coarse moduli of
all such covers

(2) the tautological Brauer–Severi scheme is actually a projective bundle

n = 2, r = 2, d = 3

X is a double cover of P2 branched along a sextic. In this case X is a K3
surface. The results show that

(1) there exist a tautological section generically from the coarse moduli of
all such covers

(2) the tautological Brauer–Severi scheme is a non-trivial Brauer–Severi
scheme
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Plugging in some values

In fact it is clear from the results that moduli double covers over P2 always
admit sections generically.

But the tautological Brauer Severi scheme can
be both trivial and non-trivial. For triple covers of P2 tautological families
need not exist.

n = 2, r = 3, d = 2

X is a triple cover of P2 branched along a sextic. In this case X is a
surface of general type. The results show that there do not exist a
tautological section generically from the coarse moduli of all such covers.
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Results for M1,3,d1,d2
(Kundu/Raychaudhury/-)

Assume 2di − dj ≥ 4 for i , j = 1, 2.

For any object X in M1,3,d1,d2 , we have
µ3 ⊆ Aut(X ). There exist an open set in M0

1,3,d1,d2
⊂ M1,3,d1,d2 such that

Aut(X ) = µ3

Results for M1,3,d1,d2

(1) There exist a tautological family on an open subset of M1,3,d1,d2 for
any d1 and d2.

(2) The Brauer–Severi scheme associated to the tautological family is
trivial if and only if either d1 or d2 is odd.

(3) There does not exist a tautological family on the open subscheme
M0

1,3,d1,d2
of M1,3,d1,d2 .
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Tautological sections and rationality of a stack

Suppose that X is a Deligne-Mumford stack with coarse moduli space X .

X is called rational if it is birational to the stack Pn × BG for some n and
a finite group G , where BG is the stack parametrizing principal G−
bundles ([BH08]). Under some mild condition (X is generically a gerbe
over X ) it can be shown that X is rational if and only if its coarse moduli
X is rational and there exist a rational section from X to X .
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Examples of rational stacks

Example 1: Weighted projective stacks

Let
w = (w1,w2..,wn) ∈ Nn

>0, gcd(w1,w2, ,wn) = d .

The weighted projective stack is given by

P(w) = [kn − (0)/k∗],

where the action of k∗ on kn − (0) is as follows

(λ, (x1, x2, .., xn)) = (λw1x1, λ
w2x2, .., λ

wnxn).

Here we denote the (x1, x2, .., xn) as choice of co-ordinates of kn.
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Examples of rational stacks

Example 2: Root of a line bundle

Let X be a rational scheme over Spec(k).

Consider L to be a line bundle
over X . Denote the root stack corresponding to r ≥ 0, r−th root of the
line bundle L over X , to be r

√
L|X which is a Deligne-Mumford stack over

X whose objects on (U
ψ−→ X ) are given as follows:

r
√
L|X (U

ψ−→ X ) = {(U ψ−→ X ,N ∈ Pic(U), φ : N⊗r ∼= ψ∗L)}. It is easy to
see that there exist an open substack isomorphic to V × Bµr where

V
i
↪−→ X is such that L|V ∼= OV .
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Tautological sections and rationality of a stack

In view of known results on rationality of pointed rational curves

and
moduli of plane curves ([BG10], [BGK09]), we have

Rationality of Mi ,r ,d , i = 1, 2 (Kundu/Raychaudhury/-)

(i) if rd ≥ 4, the stack H1,r ,d is rational if and only if either d is even or
rd is odd,

(ii) if rd ≥ 49 the stack H2,r ,d is rational if and only if either 3 | d or
3 - rd .
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Sketch of method of proofs

We follow methods shown in [GV09] and use appropriate quotient
structure to carry out the process.

Recall that giving a tautological family
from an open set of coarse moduli X , the same as constructing a rational
section to the stack from an open set.

X

X
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Sketch of method of proofs

Step 1: Rigidification of the stack X

This means we give a quotient structure to a stack Y

intermediate
between X and X such that a general object in Y has trivial
automorphism group.

X

Y

X

s

Note that since Y has generic trivial automorphism group (as in the case
of Mg ) , we have a section s : X → Y .
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Sketch of method of proofs

Step 2: Extending the section to X

The section s : X → Y gives rise to a Brauer–Severi scheme P → X

which is the candidate for the tautological Brauer–Severi scheme if a
tautological section exists. Whether or not a tautological section exists,
then depends on the relative picard group Pic(P/X ) and whether one can
construct a relative Galois cover on the Brauer–Severi scheme P → X .
The latter can be further simplified to the existence of maps between
certain PGLn+1 torsors which can be explicitly checked.
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construct a relative Galois cover on the Brauer–Severi scheme P → X .
The latter can be further simplified to the existence of maps between
certain PGLn+1 torsors which can be explicitly checked.
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Thank You !

Jayan Mukherjee (ICERM) Tautological families 29 / 31



Bibliography

Arsie, Alessandro; Vistoli, Angelo. Stacks of cyclic covers of projective spaces. Compos. Math. 140 (2004), no. 3,

647–666.

Badr, Eslam; Bars, Francesc. Non-singular plane curves with an element of ”large” order in its automorphism group.

Internat. J. Algebra Comput. 26 (2016), no. 2, 399–433.
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