Branching-type stochastic process and Toeplitz operators on rooted trees

> Zipeng Wang joint with Yanqi Qiu

> > Chongqing University

October 12-15, 2021 @ The Fields Institute

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Positive definite functions: classical definition

Definition: A function $\alpha : \mathbb{Z} \to \mathbb{C}$ is positive definite (PD) iff

the matrix $\left[\alpha(n_k - n_\ell)\right]_{1 \le k, \ell \le m}$ is non-negative definite

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

for all distinct $n_1, \cdots, n_m \in \mathbb{Z}$.

Positive definite functions: classical definition

Definition: A function $\alpha : \mathbb{Z} \to \mathbb{C}$ is positive definite (PD) iff

the matrix $\left[\alpha(n_k - n_\ell)\right]_{1 \le k, \ell \le m}$ is non-negative definite

for all distinct $n_1, \cdots, n_m \in \mathbb{Z}$.

Herglotz-Bochner Theorem: Any PD function $\alpha : \mathbb{Z} \to \mathbb{C}$ is the Fourier coefficients of a finite positive measure μ on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$:

$$\alpha(n) = \widehat{\mu}(n) := \int_{\mathbb{R}/\mathbb{Z}} e^{-i2\pi n\theta} d\mu(\theta).$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

A function $\alpha : \mathbb{N} \to \mathbb{C}$ is called PD iff its natural extension to \mathbb{Z} is PD: Natural extension:

$$\alpha(-n) := \overline{\alpha(n)}, \quad n \in \mathbb{N}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

PD functions and stationary stochastic processes

A function $\alpha : \mathbb{Z} \to \mathbb{C}$ is PD iff there exists a mean zero weakly stationary stochastic process $(X_n)_{n \in \mathbb{Z}}$ on \mathbb{Z} , such that

 $\operatorname{Cov}(X_n, X_{n+k}) = \alpha(k) \quad n, k \in \mathbb{N}.$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

PD functions and stationary stochastic processes

A function $\alpha : \mathbb{Z} \to \mathbb{C}$ is PD iff there exists a mean zero weakly stationary stochastic process $(X_n)_{n \in \mathbb{Z}}$ on \mathbb{Z} , such that

$$\operatorname{Cov}(X_n, X_{n+k}) = \alpha(k) \quad n, k \in \mathbb{N}.$$

The unique measure μ such that

$$\alpha(n) = \widehat{\mu}(n) := \int_{\mathbb{R}/\mathbb{Z}} e^{-in2\pi\theta} d\mu(\theta), \qquad \forall n \in \mathbb{Z}$$

is called the spectral measure of $(X_n)_{n \in \mathbb{Z}}$.

Similar definitions for PD functions on \mathbb{N} and stationary stochastic processes on \mathbb{N} .

うして ふゆう ふほう ふほう ふしつ

Motivation of this work

Construct and **classify** branching-type stationary stochastic processes on rooted infinite trees.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

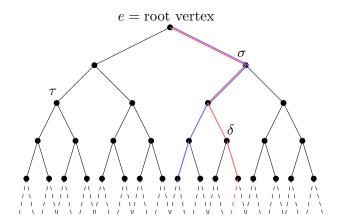
Motivation of this work

Construct and **classify** branching-type stationary stochastic processes on rooted infinite trees.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

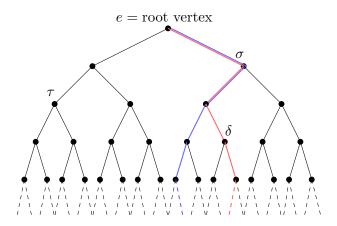
Definitions are given immediately.

Rooted infinite homogeneous trees: an example T_2



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

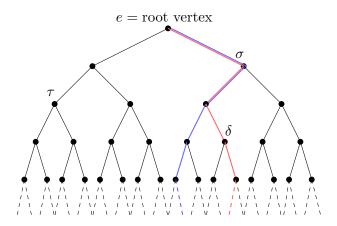
Rooted infinite homogeneous trees: an example T_2



Definitions: Two vertices are called **comparable** iff they are in the same **rooted geodesic ray**.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Rooted infinite homogeneous trees: an example T_2



Definitions: Two vertices are called **comparable** iff they are in the same rooted geodesic ray. σ, δ are comparable while τ, σ or τ, δ are not.

Branching-type stationary stochastic processes on rooted trees

Let T be a rooted tree without leaves: every vertex has at least one descendant.

Definition: A mean-zero stochastic process $(X_{\sigma})_{\sigma \in T}$ on T of finite second moments is called branching-type stationary stochastic process (abbr. B-type SSP) if

- ► on every infinite rooted geodesic ray, we see a stationary stochastic process on N;
- the family of the stationary stochastic processes restricted on all the infinite rooted geodesic rays share a common spectral measure ν on T;
- ▶ for non-comparable vertices $\sigma, \tau \in T$, the random variables X_{σ}, X_{τ} are un-correlated, that is, X_{σ}, X_{τ} are orthogonal.

Existence result for general rooted trees

A branching-type stationary stochastic process $(X_{\sigma})_{\sigma \in T}$ is called **trivial**, if

$$\operatorname{Cov}(X_{\sigma}, X_{\tau}) = 0, \quad \forall \sigma \neq \tau.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Existence result for general rooted trees

A branching-type stationary stochastic process $(X_{\sigma})_{\sigma \in T}$ is called **trivial**, if

$$\operatorname{Cov}(X_{\sigma}, X_{\tau}) = 0, \quad \forall \sigma \neq \tau.$$

Proposition (Yanqi Qiu-W, 2019/2021)

Let T be a rooted tree without leaves. Then there exists a non-trivial branching stationary stochastic process on T iff T is of uniform bounded degree.

うして ふゆう ふほう ふほう ふしつ

A class of very simple trees

For any positive integer $q \ge 2$, let T(q; 1) denote the rooted tree such that the root vertex has exactly q-descendants and all the other vertices have exactly 1-descendant.

うして ふゆう ふほう ふほう ふしつ

Very simple trees may have non-trivial results for B-type SSP

Theorem (Yanqi Qiu-W, 2019/2021) For $q \ge 2$, a positive Radon measure μ is the spectral measure of a branching-type SSP on T(q; 1) if and only if

$$\exp\left(\int_{\mathbb{T}} \log\left(\frac{d\mu_{ac}}{dm}\right) dm\right) \ge \left(1 - \frac{1}{q}\right) \mu(\mathbb{T}),\tag{1}$$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

where μ_{ac} is the absolutely continuous part of μ with respect to the normalized Haar measure dm on \mathbb{T} .

Hyper-positive functions on $\mathbb N$

Denote T_q the rooted q-homogeneous tree. **Definition:** $\alpha : \mathbb{N} \to \mathbb{C}$ is called q-hyper positive definite (q-HPD) if $\exists \nu$, which is the spectral measure of a branching-type stationary stochastic process on T_q such that

 $\alpha(n) = \widehat{\nu}(n), \quad \forall n \in \mathbb{N}.$

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Hyper-positive functions on $\mathbb N$

Denote T_q the rooted q-homogeneous tree. **Definition:** $\alpha : \mathbb{N} \to \mathbb{C}$ is called q-hyper positive definite (q-HPD) if $\exists \nu$, which is the spectral measure of a branching-type stationary stochastic process on T_q such that

$$\alpha(n) = \widehat{\nu}(n), \quad \forall n \in \mathbb{N}.$$

Question:

- ▶ Can we characterize all q-HPD functions on \mathbb{N} ?
- Can we construct all branching stationary stochastic processs on T_q ?

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

A complete characterization for homogeneous rooted trees

Theorem (Yanqi Qiu-Wang, 2019/2021)

 $\alpha:\mathbb{N}\to\mathbb{C}$ is q-HPD if and only if there exists a finite positive measure μ on \mathbb{T} such that

$$\alpha(n) = \frac{1}{(\sqrt{q})^n} \widehat{\mu}(n), \quad n \in \mathbb{N}.$$

ション ふゆ マ キャット しょう くしゃ

A complete characterization for homogeneous rooted trees

Theorem (Yanqi Qiu-Wang, 2019/2021)

 $\alpha: \mathbb{N} \to \mathbb{C}$ is q-HPD if and only if there exists a finite positive measure μ on \mathbb{T} such that

$$\alpha(n) = \frac{1}{(\sqrt{q})^n} \widehat{\mu}(n), \quad n \in \mathbb{N}.$$

Corollary (Yanqi Qiu-W, 2019/2021)

The spectral measure of any branching stationary stochastic process on T_q is absolutely continuous with respect to the Lebesgue measure, whose Radon-Nikodym derivative is moreover real-analytic.

Application in prediction theory: Szegö first theorem

Theorem(Yanqi Qiu - W, 2019/2021) Let $\alpha : \mathbb{N} \to \mathbb{C}$ be a q-HPD and let μ_{α} be the unique measure satisfying

$$\alpha(n) = \frac{1}{(\sqrt{q})^n} \widehat{\mu_{\alpha}}(n), \quad n \in \mathbb{N}.$$

Let $(X_{\sigma})_{\sigma \in T_q}$ be any branching stationary stochastic process on T_q related to this q-HPD function. Write the Lebesgue decomposition $d\mu_{\alpha}(\theta) = w_{\alpha}(\theta)d\theta + d\mu_{\alpha}^s(\theta)$. Then

$$d_{L^2}\left(X_e, \operatorname{\overline{span}}^{L^2}\left\{X_{\sigma} : \sigma \in T_q \setminus \{e\}\right\}\right) = \exp\left(\frac{1}{2}\int_{\mathbb{T}} \log w_{\alpha}(\theta) dm(\theta)\right)$$

Application in hyper-contractive inequalities for Hankel operators

$$\begin{aligned} H_0^2(\mathbb{T}) &:= \Big\{ f(e^{i\theta}) = \sum_{n=1}^\infty a_n e^{in\theta} \Big| a_n \in \mathbb{C}, \quad \sum_{n=1}^\infty |a_n|^2 < \infty \Big\}; \\ H_-^2(\mathbb{T}) &:= \Big\{ f(e^{i\theta}) = \sum_{n=0}^\infty a_n e^{-in\theta} \Big| a_n \in \mathbb{C}, \quad \sum_{n=0}^\infty |a_n|^2 < \infty \Big\}. \end{aligned}$$

The Riesz projection

$$R_{-}: L^{2}(\mathbb{T}) \to H^{2}_{-}(\mathbb{T})$$

is defined as the orthogonal projection onto $H^2_{-}(\mathbb{T})$. For any $\varphi \in L^2(\mathbb{T})$, the Hankel operator $H_{\varphi}: H^2_0(\mathbb{T}) \to H^2_-(\mathbb{T})$ is defined on a dense subset of analytic trigonometric polynomials by

 $f \xrightarrow{\text{multiplication}} \varphi f \xrightarrow{\text{orthogonal projection}} H_{\varphi}(f) = R_{-}(\varphi f).$ ◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

An application in hyper-contractive inequalities for Hankel operators

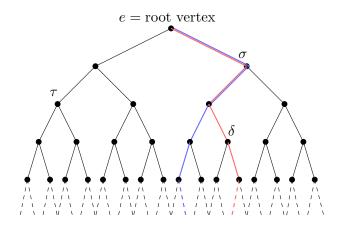
Theorem (Yanqi Qiu-W, 2019/2021) Assume that $\varphi : \mathbb{T} \to \mathbb{R}$ is a function on \mathbb{T} such that $n \mapsto \widehat{\varphi}(n)$ is 2-HPD. Then for any $f \in H_0^2(\mathbb{T})$, the function $H_{\varphi}(f)$ is real-analytic on \mathbb{T} and moreover,

$$\left\|\frac{H_{\varphi}(f)}{\sqrt{\varphi}}\right\|_{L^{\infty}(\mathbb{T})} \leq \|f\|_{L^{2}(\mathbb{T};\varphi)} := \left(\int_{\mathbb{T}} |f|^{2}\varphi\right)^{1/2}$$

うして ふゆう ふほう ふほう ふしつ

Branching-Toeplitz operators

Definitions: Two vertices are called **comparable** iff they are in the same rooted geodesic ray. σ, δ are comparable while τ, σ or τ, δ are not.



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Definition:

A mean-zero stochastic process $(X_{\sigma})_{\sigma \in T}$ on T of finite second moments is called branching-type stationary stochastic process (abbr. B-type SSP) if

- ► on every infinite rooted geodesic ray, we see a stationary stochastic process on N;
- the family of the stationary stochastic processes restricted on all the infinite rooted geodesic rays share a common spectral measure ν on T;
- for non-comparable vertices $\sigma, \tau \in T$, the random variables X_{σ}, X_{τ} are un-correlated, that is, X_{σ}, X_{τ} are orthogonal.

Definition:

A mean-zero stochastic process $(X_{\sigma})_{\sigma \in T}$ on T of finite second moments is called branching-type stationary stochastic process (abbr. B-type SSP) if

- ► on every infinite rooted geodesic ray, we see a stationary stochastic process on N;
- the family of the stationary stochastic processes restricted on all the infinite rooted geodesic rays share a common spectral measure ν on T;
- for non-comparable vertices $\sigma, \tau \in T$, the random variables X_{σ}, X_{τ} are un-correlated, that is, X_{σ}, X_{τ} are orthogonal.

The covariance matrix of a B-type SSP on T_q is

$$T = [T(\sigma, \tau)]_{\sigma, \tau \in T_q},$$

where

$$T(\sigma,\tau) = \begin{cases} \mathbb{E}[X_{\sigma}\overline{X}_{\tau}], & \sigma \text{ and } \tau \text{ are compariable;} \\ 0, & \text{others.} \end{cases}$$

Definition Given any function $\alpha : \mathbb{Z} \to \mathbb{C}$, we introduce a *branching-Toeplitz matrix* K_{α} on T_q by

$$K_{\alpha}(\sigma_1, \sigma_2) = \begin{cases} \alpha(|\sigma_1| - |\sigma_2|), & \sigma_1 \text{ and } \sigma_2 \text{ are compariable;} \\ 0, & \text{others.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition Given any function $\alpha : \mathbb{Z} \to \mathbb{C}$, we introduce a *branching-Toeplitz matrix* K_{α} on T_q by

$$K_{\alpha}(\sigma_1, \sigma_2) = \begin{cases} \alpha(|\sigma_1| - |\sigma_2|), & \sigma_1 \text{ and } \sigma_2 \text{ are compariable;} \\ 0, & \text{others.} \end{cases}$$

When q = 1, it is the classical Toeplitz operator on Hardy space.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition Given any function $\alpha : \mathbb{Z} \to \mathbb{C}$, we introduce a *branching-Toeplitz matrix* K_{α} on T_q by

$$K_{\alpha}(\sigma_1, \sigma_2) = \begin{cases} \alpha(|\sigma_1| - |\sigma_2|), & \sigma_1 \text{ and } \sigma_2 \text{ are compariable;} \\ 0, & \text{others.} \end{cases}$$

When q = 1, it is the classical Toeplitz operator on Hardy space.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Question What are the operator-theoretic properties of branching-Toeplitz operators on $l^2(T_q)$?

In our recent work (Yanqi Qiu-W, 2020), we can obtain

- boundedness, Brown-Halmos type and Axler-Chang-Sarason-Volberg type results on semi-commutator, spectra, invertibility, Fredholmness and etc;
- a description of positivity of operator-valued branching-Toeplitz kernel;
- ▶ a norm estimate of finite branching-Toeplitz matrix and its relations to classical Toeplitz matrix

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

In our recent work (Yanqi Qiu-W, 2020), we can obtain

- boundedness, Brown-Halmos type and Axler-Chang-Sarason-Volberg type results on semi-commutator, spectra, invertibility, Fredholmness and etc;
- a description of positivity of operator-valued branching-Toeplitz kernel;
- ▶ a norm estimate of finite branching-Toeplitz matrix and its relations to classical Toeplitz matrix

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

One can find more details in our Arxiv preprint (Arxiv 2001.06179).

Thank you for your attention !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ