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Pierre-Olivier Parisé (ULaval) Summability in Banach spaces October 5th, 2021 1 / 17



Taylor series Notations and main question

Let
Hol(D) := {f : D→ C : f (z) =

∑
n≥0

anz
n z ∈ D}.

equipped with the topology of uniform convergence on compact subsets of D.

For a function f ∈ Hol(D), we define its Taylor polynomials by

sn(f ) :=
n∑

k=0

anz
n (n ≥ 0).

Question

Does the sequence (sn(f ))n≥0 converge to f in a certain sense?

Three directions:

Pointwise convergence on D.

Pointwise convergence on T (boundary values).

Norm convergence.

Pierre-Olivier Parisé (ULaval) Summability in Banach spaces October 5th, 2021 2 / 17



de Branges-Rovnyak spaces Definition

Let BH∞ denote the closed unit ball of H∞.

De Branges-Rovnyak spaces

Let b ∈ BH∞ . The de Branges-Rovnyak space H(b) is the subspace defined by

H(b) :=
{
f ∈ Hol(D) : ‖f ‖b := sup

g∈H2

‖f + bg‖2
H2 − ‖bg‖2

H2 <∞
}
.

The space H(b) equipped with the norm ‖ · ‖b is a Hilbert space.

If ‖b‖∞ < 1, then H(b) is just a renormarlization of H2.

When b is an inner function, then H(b) = Kb.

In general, H(b) ⊆ H2, but H(b) is not closed in H2.
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de Branges-Rovnyak spaces Polynomials

The de Branges-Rovnyak spaces split into two subclasses.

Theorem

Let b ∈ BH∞ . The following assertions are equivalent.

b is a non-extreme point of BH∞ .

The set of polynomials is contained in H(b).

The set Hol(D) is contained in H(b).

The set of polynomials is dense in H(b).

Our question then makes sense when b is non-extreme2.

Question

Do the Taylor polynomials of a function f ∈ H(b), when b is non-extreme,
converge to the function f in the norm of H(b)?

2For the extreme case, I recommend that you attend Malman’s talk.
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Radial dilates Divergence

Let fr (z) :=
∑

n≥0 anr
nzn (0 < r < 1 and z ∈ D).

Theorem (El-Fallah, Fricain, Kellay, Mashreghi, Ransford, 2016)

There exists a non-extreme b̃ and a function g ∈ H(b) such that

lim
r→1−

‖gr‖b̃ =∞.

The function g and b̃ are explicit. If b0(z) = τz/(1− τ 2z), then

b̃ = b0B
2 where B is the Blaschke product with zeros at wn = 1− 8−n

(n ≥ 1).

g =
∑

k≥0 4−kkwk
where kwk

is the reproducing kernel for H2.
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Radial dilates As a summability methods

For a function f ∈ Hol(D), the Abel means of its Taylor series are

Ar (f )(z) := (1− r)
∑
n≥0

sn(f )(z)rn (z ∈ D).

We can show that

Ar (f )(z) = fr (z) (z ∈ D, 0 ≤ r < 1).

In other words, the dilates of a function are the Abel means of its Taylor series.

We can also show that Ar (f ) ∈ H(b) when b is non-extreme and f ∈ H(b).

Corollary

For b̃ and g ∈ H(b) as in the previous Theorem, we have

limn→∞ ‖Ar (g)‖b̃ =∞.

supn≥0 ‖sn(g)‖b̃ =∞.
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Power-series methods Definition

The Abel means belongs to a wide family of summability methods : the
power-series methods. We let X be a Banach space.

Definition

Let p(r) :=
∑

n≥0 pnr
n be a power-series with radius of convergence R > 0,

p0 > 0, and pn ≥ 0 (n ≥ 1). The power-series method P associated to p is
defined formally as

Pr (s) :=
∑
n≥0

pnr
n

p(r)
sn (0 ≤ r < R)

where s := (sn)n≥0 ⊂ X .

Remark : we consider power-series methods with a radius of convergence
1 ≤ R <∞.

Example

If pn = 1 (n ≥ 0), then p(r) = (1− r)−1. We obtain the Abel summability
method.
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Power-series methods Regularity

Definition

The sequence s := (sn)n≥0 ⊂ X is summable w.r.t. the power-series method P or
P-summable if

Pr (s) is convergent for every r ∈ [0,R) and;

there is a y ∈ X such that Pr (s)→ y as r → R−.

Definition

Let P and Q be two power-series summability methods.

P is regular if, whenever sn → y , then Pr (s)→ y when r → R−.

P is included in Q if, whenever Pr (s)→ y , then Qr (s)→ y .

P is scalar-included in Q if P is included in Q for scalar-valued sequences.
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Power-series methods Regularity

For a non-extreme b, is there another power-series summability method P such
that the sequence of Taylor polynomials of any function f ∈ H(b) P-summable?

For now, the Abel method doesn’t work. We should search for methods that
include the Abel method.

In a 1957 paper, D. Borwein showed that there is a power-series method including
the Abel method: The logarithmic power-series method.

Figure: D. Borwein (1924 - 2021)3

3Image taken from https://www.legacy.com/obituaries/theglobeandmail/obituary.

aspx?n=david-borwein&pid=200090451&fhid=2992
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Power-series methods Logarithmic means

Definition

Let f ∈ Hol(D) with f (z) =
∑

n≥0 anz
n. For 0 ≤ r < 1, the logarithmic mean Lr

of f is the power-series method defined by

Lr (f )(z) :=
r

log 1
1−r

∑
n≥0

sn(f )(z)
rn

n + 1
(z ∈ D).

Remarks :

Lr (f ) ∈ Hol(D) for every f ∈ Hol(D).

If b is non-extreme, then Lr (f ) ∈ H(b) (0 ≤ r < 1), ∀f ∈ H(b).

Theorem (Mashreghi, P., Ransford, 2021)

For b̃ and the function g ∈ H(b), we have

lim
r→1−

‖Lr (g)‖b̃ =∞.

This is a consequence of an integral formula for (Lr (f ))+.
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Power-series methods Logarithmic means

For any non-extreme b, there is an outer function a ∈ H∞, uniquely defined if
a(0) > 0, such that |a|2 + |b|2 = 1 (a.e. on T). We call a the pythagorean mate
of b and (b, a) a pythagorean pair.

Theorem (D. Sarason)

Let b be non-extreme and a be its pythagorean mate. A function f ∈ H2 belongs
to H(b) if, and only if, there is a (unique) function f + ∈ H2 such that
Tb(f ) = Ta(f +). In this case, for any f ∈ H(b), we have

‖f ‖2
b = ‖f ‖2

H2 + ‖f +‖2
H2 .

We then found that

(Lr (f ))+ =
r

log 1
1−r

∫ r

0

(At(f ))+

1− t
dt (f ∈ H(b)).

We applied it with f = g and used the facts that (Ar (g))+(0) > 0 for r > 0 and
(Ar (g))+(0)→∞ as r → 1−.
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Power-series methods Generalized Abel means

For f ∈ Hol(D), α > −1 and 0 ≤ r < 1, the generalized Abel means Aα
r (f ) of the

Taylor series of f are

Aα
r (f )(z) := (1− r)1+α

∑
n≥0

sn(f )

(
n + α

α

)
rn (z ∈ D).

The methods Aα (α > −1) are scalar-included in the logarithmic methods
(Borwein, 1957).

If f ∈ Hol(D), then Aα
r (f ) ∈ Hol(D).

If f ∈ H(b), with b non-extreme, then Aα
r (f ) ∈ H(b).

Corollary (Mashreghi, P., Ransford, 2021)

For every α > −1, there exist a non-extreme b and a function f ∈ H(b) such that
Aα
r (f ) 6→ f in H(b) as r → 1−.
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From scalar to Banach-valued sequences Main result

Theorem (Mashreghi, P., Ransford, 2021)

Let P and Q be two regular power-series summability methods. Let X and Y be
Banach spaces, and let S : X → Y and Sn : X → Y (n ≥ 0) be bounded linear
operators. Suppose that:

Sn(x)→ S(x) for all x ∈W , where W is a dense subset of X ;

(Sn(x))n≥0 is P-summable to S(x) for all x ∈ X ;

P is scalar-included in Q.

Then (Sn(x))n≥0 is Q-summable to S(x) for all x ∈ X .

Proof of the corollary

We argue by contradiction and apply this abstract theorem with

P = Aα, Q = L and X = Y = H(b), with the non-extreme b from the last
Theorem.

Sn(f ) := sn(f ) and S(f ) := f .

W is the set of polynomials.
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From scalar to Banach-valued sequences Main result

One can ask if we can drop the hypothesis on the dense subset W . In general, the
answer is no. But, if we suppose that X satisfy addition assumption, we obtain
the following result.

Theorem

Let X be a Banach space. Let P and Q be two power-series summability
methods. Suppose that

P is scalar-included in Q.

X is reflexive.

Then the method P is weakly-included in the method Q.

A method P is weakly-included in a method Q means that

Pr (s) is convergent for every r ∈ [0,R).

If s is a sequence such that Pr (s) converges weakly to y , then Qr (s)
converges weakly to y .
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Open question

According to a result of Mashreghi and Ransford (2019), when b is non-extreme,
there is a sequence (Tn) of linear operators Tn : H(b)→ H(b) such that

Tn(f ) is a polynomial of degree n.

Tn(f )→ f in the H(b) norm.

For b̃ and a g ∈ H(b) such that

σα
n (g) 6→ f as n→∞ (α > 0).

gr 6→ g as r → 1−.

Lr (g) 6→ g as r → 1−.

These facts prompt the following question:

Open question

What would be the expression of Tn?
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Thanks

Thanks for your attention!
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