Summability in de Branges-Rovnyak spaces

Pierre-Olivier Parisé ${ }^{1}$
University of Hawai'i at Manōa

Focus Program on Analytic Function Spaces and their Applications
Contributed talk (Online)

October $5^{\text {th }}, 2021$

[^0]Let

$$
\operatorname{Hol}(\mathbb{D}):=\left\{f: \mathbb{D} \rightarrow \mathbb{C}: f(z)=\sum_{n \geq 0} a_{n} z^{n} \quad z \in \mathbb{D}\right\}
$$

equipped with the topology of uniform convergence on compact subsets of \mathbb{D}.
For a function $f \in \operatorname{Hol}(\mathbb{D})$, we define its Taylor polynomials by

$$
s_{n}(f):=\sum_{k=0}^{n} a_{n} z^{n} \quad(n \geq 0)
$$

Question

Does the sequence $\left(s_{n}(f)\right)_{n \geq 0}$ converge to f in a certain sense?
Three directions:

- Pointwise convergence on \mathbb{D}.
- Pointwise convergence on \mathbb{T} (boundary values).
- Norm convergence.

Let $B_{H^{\infty}}$ denote the closed unit ball of H^{∞}.
De Branges-Rovnyak spaces
Let $b \in B_{H^{\infty}}$. The de Branges-Rovnyak space $\mathcal{H}(b)$ is the subspace defined by

$$
\mathcal{H}(b):=\left\{f \in \operatorname{Hol}(\mathbb{D}):\|f\|_{b}:=\sup _{g \in H^{2}}\|f+b g\|_{H^{2}}^{2}-\|b g\|_{H^{2}}^{2}<\infty\right\}
$$

- The space $\mathcal{H}(b)$ equipped with the norm $\|\cdot\|_{b}$ is a Hilbert space.
- If $\|b\|_{\infty}<1$, then $\mathcal{H}(b)$ is just a renormarlization of H^{2}.
- When b is an inner function, then $\mathcal{H}(b)=K_{b}$.
- In general, $\mathcal{H}(b) \subseteq H^{2}$, but $\mathcal{H}(b)$ is not closed in H^{2}.

The de Branges-Rovnyak spaces split into two subclasses.

Theorem

Let $b \in B_{H^{\infty}}$. The following assertions are equivalent.

- b is a non-extreme point of $B_{H^{\infty}}$.
- The set of polynomials is contained in $\mathcal{H}(b)$.
- The set $\operatorname{Hol}(\overline{\mathbb{D}})$ is contained in $\mathcal{H}(b)$.
- The set of polynomials is dense in $\mathcal{H}(b)$.

Our question then makes sense when b is non-extreme ${ }^{2}$.

Question

Do the Taylor polynomials of a function $f \in \mathcal{H}(b)$, when b is non-extreme, converge to the function f in the norm of $\mathcal{H}(b)$?

[^1]Let $f_{r}(z):=\sum_{n \geq 0} a_{n} r^{n} z^{n}(0<r<1$ and $z \in \mathbb{D})$.
Theorem (El-Fallah, Fricain, Kellay, Mashreghi, Ransford, 2016)
There exists a non-extreme \tilde{b} and a function $g \in \mathcal{H}(b)$ such that

$$
\lim _{r \rightarrow 1^{-}}\left\|g_{r}\right\|_{\tilde{b}}=\infty
$$

The function g and \tilde{b} are explicit. If $b_{0}(z)=\tau z /\left(1-\tau^{2} z\right)$, then

- $\tilde{b}=b_{0} B^{2}$ where B is the Blaschke product with zeros at $w_{n}=1-8^{-n}$ $(n \geq 1)$.
- $g=\sum_{k \geq 0} 4^{-k} k_{w_{k}}$ where $k_{w_{k}}$ is the reproducing kernel for H^{2}.

For a function $f \in \operatorname{Hol}(\mathbb{D})$, the Abel means of its Taylor series are

$$
A_{r}(f)(z):=(1-r) \sum_{n \geq 0} s_{n}(f)(z) r^{n} \quad(z \in \mathbb{D}) .
$$

We can show that

$$
A_{r}(f)(z)=f_{r}(z) \quad(z \in \mathbb{D}, 0 \leq r<1) .
$$

In other words, the dilates of a function are the Abel means of its Taylor series.
We can also show that $A_{r}(f) \in \mathcal{H}(b)$ when b is non-extreme and $f \in \mathcal{H}(b)$.
Corollary
For \tilde{b} and $g \in \mathcal{H}(b)$ as in the previous Theorem, we have

- $\lim _{n \rightarrow \infty}\left\|A_{r}(g)\right\|_{\tilde{b}}=\infty$.
- $\sup _{n \geq 0}\left\|s_{n}(g)\right\|_{\tilde{b}}=\infty$.

The Abel means belongs to a wide family of summability methods: the power-series methods. We let X be a Banach space.

Definition

Let $p(r):=\sum_{n \geq 0} p_{n} r^{n}$ be a power-series with radius of convergence $R>0$, $p_{0}>0$, and $p_{n} \geq 0(n \geq 1)$. The power-series method P associated to p is defined formally as

$$
P_{r}(s):=\sum_{n \geq 0} \frac{p_{n} r^{n}}{p(r)} s_{n} \quad(0 \leq r<R)
$$

where $s:=\left(s_{n}\right)_{n \geq 0} \subset X$.
Remark : we consider power-series methods with a radius of convergence $1 \leq R<\infty$.

Example

If $p_{n}=1(n \geq 0)$, then $p(r)=(1-r)^{-1}$. We obtain the Abel summability method.

Definition

The sequence $s:=\left(s_{n}\right)_{n \geq 0} \subset X$ is summable w.r.t. the power-series method P or P-summable if

- $P_{r}(s)$ is convergent for every $r \in[0, R)$ and;
- there is a $y \in X$ such that $P_{r}(s) \rightarrow y$ as $r \rightarrow R^{-}$.

Definition

Let P and Q be two power-series summability methods.

- P is regular if, whenever $s_{n} \rightarrow y$, then $P_{r}(s) \rightarrow y$ when $r \rightarrow R^{-}$.
- P is included in Q if, whenever $P_{r}(s) \rightarrow y$, then $Q_{r}(s) \rightarrow y$.
- P is scalar-included in Q if P is included in Q for scalar-valued sequences.

For a non-extreme b, is there another power-series summability method P such that the sequence of Taylor polynomials of any function $f \in \mathcal{H}(b) P$-summable?

For now, the Abel method doesn't work. We should search for methods that include the Abel method.

In a 1957 paper, D. Borwein showed that there is a power-series method including the Abel method: The logarithmic power-series method.

Figure: D. Borwein (1924-2021) ${ }^{3}$

[^2]
Definition

Let $f \in \operatorname{Hol}(\mathbb{D})$ with $f(z)=\sum_{n>0} a_{n} z^{n}$. For $0 \leq r<1$, the logarithmic mean L_{r} of f is the power-series method defined by

$$
L_{r}(f)(z):=\frac{r}{\log \frac{1}{1-r}} \sum_{n \geq 0} s_{n}(f)(z) \frac{r^{n}}{n+1} \quad(z \in \mathbb{D}) .
$$

Remarks :

- $L_{r}(f) \in \operatorname{Hol}(\mathbb{D})$ for every $f \in \operatorname{Hol}(\mathbb{D})$.
- If b is non-extreme, then $L_{r}(f) \in \mathcal{H}(b)(0 \leq r<1), \forall f \in \mathcal{H}(b)$.

Theorem (Mashreghi, P., Ransford, 2021)
For \tilde{b} and the function $g \in \mathcal{H}(b)$, we have

$$
\lim _{r \rightarrow 1^{-}}\left\|L_{r}(g)\right\|_{\tilde{b}}=\infty
$$

This is a consequence of an integral formula for $\left(L_{r}(f)\right)^{+}$.

For any non-extreme b, there is an outer function $a \in H^{\infty}$, uniquely defined if $a(0)>0$, such that $|a|^{2}+|b|^{2}=1$ (a.e. on \mathbb{T}). We call a the pythagorean mate of b and (b, a) a pythagorean pair.

Theorem (D. Sarason)
Let b be non-extreme and a be its pythagorean mate. A function $f \in H^{2}$ belongs to $\mathcal{H}(b)$ if, and only if, there is a (unique) function $f^{+} \in H^{2}$ such that $T_{\bar{b}}(f)=T_{\bar{a}}\left(f^{+}\right)$. In this case, for any $f \in \mathcal{H}(b)$, we have

$$
\|f\|_{b}^{2}=\|f\|_{H^{2}}^{2}+\left\|f^{+}\right\|_{H^{2}}^{2} .
$$

We then found that

$$
\left(L_{r}(f)\right)^{+}=\frac{r}{\log \frac{1}{1-r}} \int_{0}^{r} \frac{\left(A_{t}(f)\right)^{+}}{1-t} d t \quad(f \in \mathcal{H}(b))
$$

We applied it with $f=g$ and used the facts that $\left(A_{r}(g)\right)^{+}(0)>0$ for $r>0$ and $\left(A_{r}(g)\right)^{+}(0) \rightarrow \infty$ as $r \rightarrow 1^{-}$.

For $f \in \operatorname{Hol}(\mathbb{D}), \alpha>-1$ and $0 \leq r<1$, the generalized Abel means $A_{r}^{\alpha}(f)$ of the Taylor series of f are

$$
A_{r}^{\alpha}(f)(z):=(1-r)^{1+\alpha} \sum_{n \geq 0} s_{n}(f)\binom{n+\alpha}{\alpha} r^{n} \quad(z \in \mathbb{D}) .
$$

- The methods $A^{\alpha}(\alpha>-1)$ are scalar-included in the logarithmic methods (Borwein, 1957).
- If $f \in \operatorname{Hol}(\mathbb{D})$, then $A_{r}^{\alpha}(f) \in \operatorname{Hol}(\mathbb{D})$.
- If $f \in \mathcal{H}(b)$, with b non-extreme, then $A_{r}^{\alpha}(f) \in \mathcal{H}(b)$.

Corollary (Mashreghi, P., Ransford, 2021)
For every $\alpha>-1$, there exist a non-extreme b and a function $f \in \mathcal{H}(b)$ such that $A_{r}^{\alpha}(f) \nrightarrow f$ in $\mathcal{H}(b)$ as $r \rightarrow 1^{-}$.

Theorem (Mashreghi, P., Ransford, 2021)

Let P and Q be two regular power-series summability methods. Let X and Y be Banach spaces, and let $S: X \rightarrow Y$ and $S_{n}: X \rightarrow Y(n \geq 0)$ be bounded linear operators. Suppose that:

- $S_{n}(x) \rightarrow S(x)$ for all $x \in W$, where W is a dense subset of X;
- $\left(S_{n}(x)\right)_{n \geq 0}$ is P-summable to $S(x)$ for all $x \in X$;
- P is scalar-included in Q.

Then $\left(S_{n}(x)\right)_{n \geq 0}$ is Q-summable to $S(x)$ for all $x \in X$.

Proof of the corollary

We argue by contradiction and apply this abstract theorem with

- $P=A^{\alpha}, Q=L$ and $X=Y=\mathcal{H}(b)$, with the non-extreme b from the last Theorem.
- $S_{n}(f):=s_{n}(f)$ and $S(f):=f$.
- W is the set of polynomials.

One can ask if we can drop the hypothesis on the dense subset W. In general, the answer is no. But, if we suppose that X satisfy addition assumption, we obtain the following result.

Theorem

Let X be a Banach space. Let P and Q be two power-series summability methods. Suppose that

- P is scalar-included in Q.
- X is reflexive.

Then the method P is weakly-included in the method Q.
A method P is weakly-included in a method Q means that

- $P_{r}(s)$ is convergent for every $r \in[0, R)$.
- If s is a sequence such that $P_{r}(s)$ converges weakly to y, then $Q_{r}(s)$ converges weakly to y.

According to a result of Mashreghi and Ransford (2019), when b is non-extreme, there is a sequence $\left(T_{n}\right)$ of linear operators $T_{n}: \mathcal{H}(b) \rightarrow \mathcal{H}(b)$ such that

- $T_{n}(f)$ is a polynomial of degree n.
- $T_{n}(f) \rightarrow f$ in the $\mathcal{H}(b)$ norm.

For \tilde{b} and a $g \in \mathcal{H}(b)$ such that

- $\sigma_{n}^{\alpha}(g) \nrightarrow f$ as $n \rightarrow \infty(\alpha>0)$.
- $g_{r} \nrightarrow g$ as $r \rightarrow 1^{-}$.
- $L_{r}(g) \nrightarrow g$ as $r \rightarrow 1^{-}$.

These facts prompt the following question:
Open question
What would be the expression of T_{n} ?

Thanks for your attention!

References

- J. Mashreghi, P.-O. Parisé et T. Ransford : Power-series methods in de Branges-Rovnyak spaces, Accepted for publication in Integral Equations and Operator Theory, 2021.
- P.-O. Parisé: Sommabilité du développement de Taylor dans les espaces de Banach de fonctions holomorphes, Ph. Thesis, 2021.
- D. Borwein: On a scale of Abel-type summability methods. Proc. Cambridge Philos. Soc., (53)318-322, 1957.

My personal website: https://mathopo.ca/research

[^0]: ${ }^{1}$ Joint work with J. Mashreghi and T. Ransford

[^1]: ${ }^{2}$ For the extreme case, I recommend that you attend Malman's talk.

[^2]: ${ }^{3}$ Image taken from https://www.legacy.com/obituaries/theglobeandmail/obituary. aspx?n=david-borwein\&pid=200090451\&fhid=2992

