Summability in de Branges-Rovnyak spaces

Pierre-Olivier Parisé¹ University of Hawai'i at Manōa

Focus Program on Analytic Function Spaces and their Applications Contributed talk (Online)

October 5th, 2021

¹Joint work with J. Mashreghi and T. Ransford

Pierre-Olivier Parisé (ULaval)

Summability in Banach spaces

$$\mathsf{Hol}(\mathbb{D}) := \{ f : \mathbb{D} \to \mathbb{C} : f(z) = \sum_{n \ge 0} a_n z^n \quad z \in \mathbb{D} \}.$$

equipped with the topology of uniform convergence on compact subsets of \mathbb{D} .

For a function $f \in Hol(\mathbb{D})$, we define its Taylor polynomials by

$$s_n(f):=\sum_{k=0}^n a_n z^n \quad (n\geq 0).$$

Question

Does the sequence $(s_n(f))_{n\geq 0}$ converge to f in a certain sense?

Three directions:

- Pointwise convergence on \mathbb{D} .
- Pointwise convergence on \mathbb{T} (boundary values).
- Norm convergence.

Let $B_{H^{\infty}}$ denote the closed unit ball of H^{∞} .

De Branges-Rovnyak spaces

Let $b \in B_{H^{\infty}}$. The de Branges-Rovnyak space $\mathcal{H}(b)$ is the subspace defined by

$$\mathcal{H}(b) := \Big\{ f \in \mathsf{Hol}(\mathbb{D}) \, : \, \|f\|_b := \sup_{g \in H^2} \|f + bg\|_{H^2}^2 - \|bg\|_{H^2}^2 < \infty \Big\}.$$

- The space $\mathcal{H}(b)$ equipped with the norm $\|\cdot\|_b$ is a Hilbert space.
- If $||b||_{\infty} < 1$, then $\mathcal{H}(b)$ is just a renormarlization of H^2 .
- When b is an inner function, then $\mathcal{H}(b) = K_b$.
- In general, $\mathcal{H}(b) \subseteq H^2$, but $\mathcal{H}(b)$ is not closed in H^2 .

The de Branges-Rovnyak spaces split into two subclasses.

Theorem

Let $b \in B_{H^{\infty}}$. The following assertions are equivalent.

- b is a non-extreme point of $B_{H^{\infty}}$.
- The set of polynomials is contained in $\mathcal{H}(b)$.
- The set $Hol(\overline{\mathbb{D}})$ is contained in $\mathcal{H}(b)$.
- The set of polynomials is dense in $\mathcal{H}(b)$.

Our question then makes sense when b is non-extreme².

Question

Do the Taylor polynomials of a function $f \in \mathcal{H}(b)$, when b is non-extreme, converge to the function f in the norm of $\mathcal{H}(b)$?

²For the extreme case, I recommend that you attend Malman's talk.

Let
$$f_r(z) := \sum_{n \ge 0} a_n r^n z^n \ (0 < r < 1 \ \text{and} \ z \in \mathbb{D}).$$

Theorem (El-Fallah, Fricain, Kellay, Mashreghi, Ransford, 2016) There exists a non-extreme \tilde{b} and a function $g \in \mathcal{H}(b)$ such that

 $\lim_{r\to 1^-}\|g_r\|_{\tilde{b}}=\infty.$

The function g and \tilde{b} are explicit. If $b_0(z) = \tau z/(1 - \tau^2 z)$, then

- $\tilde{b} = b_0 B^2$ where B is the Blaschke product with zeros at $w_n = 1 8^{-n}$ (n > 1).
- $g = \sum_{k>0} 4^{-k} k_{w_k}$ where k_{w_k} is the reproducing kernel for H^2 .

For a function $f \in Hol(\mathbb{D})$, the Abel means of its Taylor series are

$$A_r(f)(z) := (1-r)\sum_{n\geq 0} s_n(f)(z)r^n \quad (z\in \mathbb{D}).$$

We can show that

$$A_r(f)(z) = f_r(z) \quad (z \in \mathbb{D}, 0 \le r < 1).$$

In other words, the dilates of a function are the Abel means of its Taylor series.

We can also show that $A_r(f) \in \mathcal{H}(b)$ when b is non-extreme and $f \in \mathcal{H}(b)$.

Corollary

For \tilde{b} and $g \in \mathcal{H}(b)$ as in the previous Theorem, we have

•
$$\lim_{n\to\infty} \|A_r(g)\|_{\tilde{b}} = \infty.$$

•
$$\sup_{n\geq 0} \|s_n(g)\|_{\tilde{b}} = \infty.$$

The Abel means belongs to a wide family of summability methods : the power-series methods. We let X be a Banach space.

Definition

Let $p(r) := \sum_{n \ge 0} p_n r^n$ be a power-series with radius of convergence R > 0, $p_0 > 0$, and $p_n \ge 0$ $(n \ge 1)$. The power-series method P associated to p is defined formally as

$$\mathcal{P}_r(s) := \sum_{n \ge 0} \frac{p_n r^n}{p(r)} s_n \quad (0 \le r < R)$$

where $s := (s_n)_{n \ge 0} \subset X$.

Remark : we consider power-series methods with a radius of convergence $1 \le R < \infty$.

Example

If $p_n = 1$ $(n \ge 0)$, then $p(r) = (1 - r)^{-1}$. We obtain the Abel summability method.

Definition

The sequence $s := (s_n)_{n \ge 0} \subset X$ is summable w.r.t. the power-series method P or P-summable if

- $P_r(s)$ is convergent for every $r \in [0, R)$ and;
- there is a $y \in X$ such that $P_r(s) \to y$ as $r \to R^-$.

Definition

Let P and Q be two power-series summability methods.

- P is regular if, whenever $s_n \to y$, then $P_r(s) \to y$ when $r \to R^-$.
- P is included in Q if, whenever $P_r(s) \to y$, then $Q_r(s) \to y$.
- P is scalar-included in Q if P is included in Q for scalar-valued sequences.

Regularity

For a non-extreme b, is there another power-series summability method P such that the sequence of Taylor polynomials of any function $f \in \mathcal{H}(b)$ P-summable?

For now, the Abel method doesn't work. We should search for methods that include the Abel method.

In a 1957 paper, D. Borwein showed that there is a power-series method including the Abel method: The logarithmic power-series method.

Figure: D. Borwein (1924 - 2021)³

³Image taken from https://www.legacy.com/obituaries/theglobeandmail/obituary. aspx?n=david-borwein&pid=200090451&fhid=2992

Pierre-Olivier Parisé (ULaval)

Definition

Let $f \in Hol(\mathbb{D})$ with $f(z) = \sum_{n \ge 0} a_n z^n$. For $0 \le r < 1$, the logarithmic mean L_r of f is the power-series method defined by

$$L_r(f)(z):=rac{r}{\lograc{1}{1-r}}\sum_{n\geq 0}s_n(f)(z)rac{r^n}{n+1}\quad(z\in\mathbb{D}).$$

Remarks :

- $L_r(f) \in Hol(\mathbb{D})$ for every $f \in Hol(\mathbb{D})$.
- If b is non-extreme, then $L_r(f) \in \mathcal{H}(b)$ $(0 \le r < 1)$, $\forall f \in \mathcal{H}(b)$.

Theorem (Mashreghi, P., Ransford, 2021)

For \tilde{b} and the function $g \in \mathcal{H}(b)$, we have

$$\lim_{d\to 1^-} \|L_r(g)\|_{\tilde{b}} = \infty.$$

This is a consequence of an integral formula for $(L_r(f))^+$.

r

Pierre-Olivier Parisé (ULaval)

For any non-extreme b, there is an outer function $a \in H^{\infty}$, uniquely defined if a(0) > 0, such that $|a|^2 + |b|^2 = 1$ (a.e. on T). We call a the pythagorean mate of b and (b, a) a pythagorean pair.

Theorem (D. Sarason)

Let b be non-extreme and a be its pythagorean mate. A function $f \in H^2$ belongs to $\mathcal{H}(b)$ if, and only if, there is a (unique) function $f^+ \in H^2$ such that $T_{\overline{b}}(f) = T_{\overline{a}}(f^+)$. In this case, for any $f \in \mathcal{H}(b)$, we have

$$\|f\|_{b}^{2} = \|f\|_{H^{2}}^{2} + \|f^{+}\|_{H^{2}}^{2}.$$

We then found that

$$(L_r(f))^+ = \frac{r}{\log \frac{1}{1-r}} \int_0^r \frac{(A_t(f))^+}{1-t} dt \quad (f \in \mathcal{H}(b)).$$

We applied it with f = g and used the facts that $(A_r(g))^+(0) > 0$ for r > 0 and $(A_r(g))^+(0) \to \infty$ as $r \to 1^-$.

For $f \in Hol(\mathbb{D})$, $\alpha > -1$ and $0 \le r < 1$, the generalized Abel means $A_r^{\alpha}(f)$ of the Taylor series of f are

$$\mathcal{A}^{lpha}_r(f)(z):=(1-r)^{1+lpha}\sum_{n\geq 0}s_n(f)\binom{n+lpha}{lpha}r^n\quad(z\in\mathbb{D}).$$

- The methods A^α (α > -1) are scalar-included in the logarithmic methods (Borwein, 1957).
- If $f \in Hol(\mathbb{D})$, then $A_r^{\alpha}(f) \in Hol(\mathbb{D})$.
- If $f \in \mathcal{H}(b)$, with b non-extreme, then $A_r^{\alpha}(f) \in \mathcal{H}(b)$.

Corollary (Mashreghi, P., Ransford, 2021)

For every $\alpha > -1$, there exist a non-extreme b and a function $f \in \mathcal{H}(b)$ such that $A_r^{\alpha}(f) \not\rightarrow f$ in $\mathcal{H}(b)$ as $r \rightarrow 1^-$.

Main result

Theorem (Mashreghi, P., Ransford, 2021)

Let P and Q be two regular power-series summability methods. Let X and Y be Banach spaces, and let $S: X \to Y$ and $S_n: X \to Y$ (n > 0) be bounded linear operators. Suppose that:

- $S_n(x) \rightarrow S(x)$ for all $x \in W$, where W is a dense subset of X;
- $(S_n(x))_{n\geq 0}$ is P-summable to S(x) for all $x \in X$;
- P is scalar-included in Q.

Then $(S_n(x))_{n\geq 0}$ is Q-summable to S(x) for all $x \in X$.

Proof of the corollary

We argue by contradiction and apply this abstract theorem with

- $P = A^{\alpha}$, Q = L and $X = Y = \mathcal{H}(b)$, with the non-extreme b from the last Theorem.
- $S_n(f) := s_n(f)$ and S(f) := f.
- W is the set of polynomials.

One can ask if we can drop the hypothesis on the dense subset W. In general, the answer is no. But, if we suppose that X satisfy addition assumption, we obtain the following result.

Theorem

Let X be a Banach space. Let P and Q be two power-series summability methods. Suppose that

- P is scalar-included in Q.
- X is reflexive.

Then the method P is weakly-included in the method Q.

A method P is weakly-included in a method Q means that

- $P_r(s)$ is convergent for every $r \in [0, R)$.
- If s is a sequence such that $P_r(s)$ converges weakly to y, then $Q_r(s)$ converges weakly to y.

Open question

According to a result of Mashreghi and Ransford (2019), when b is non-extreme, there is a sequence (T_n) of linear operators $T_n : \mathcal{H}(b) \to \mathcal{H}(b)$ such that

- $T_n(f)$ is a polynomial of degree n.
- $T_n(f) \to f$ in the $\mathcal{H}(b)$ norm.

For $ilde{b}$ and a $g \in \mathcal{H}(b)$ such that

- $\sigma_n^{\alpha}(g) \not\rightarrow f$ as $n \rightarrow \infty \ (\alpha > 0)$.
- $g_r \not\rightarrow g$ as $r \rightarrow 1^-$.
- $L_r(g) \not\rightarrow g$ as $r \rightarrow 1^-$.

These facts prompt the following question:

Open question

What would be the expression of T_n ?

Thanks for your attention!

References

- J. Mashreghi, P.-O. Parisé et T. Ransford : Power-series methods in de Branges–Rovnyak spaces, Accepted for publication in Integral Equations and Operator Theory, 2021.
- P.-O. Parisé: Sommabilité du développement de Taylor dans les espaces de Banach de fonctions holomorphes, Ph. Thesis, 2021.
- D. Borwein: On a scale of Abel-type summability methods. Proc. Cambridge Philos. Soc., (53)318-322, 1957.

My personal website: https://mathopo.ca/research