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Outline

In this talk, we will report our exploration of cyclic cohomology
for proper Lie group actions. We will introduce explicit cyclic
cocycles on the Harish-Chandra Schwartz algebra using the
geometry of Lie groups. As applications, we will present index
theorems for proper cocompact Lie group actions.

Plan :

1 Invariant elliptic operators

2 Cyclic cocycles for proper actions

3 Pairing with K-theory
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My Collaborators

This talk is based on joint work with Pierre Clare, Nigel Higson,
Peter Hochs, Markus Pflaum, Hessel Posthuma, and Yanli Song.
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Index

Let G be a Lie group, and K be a maximal compact subgroup
of G, and X = G/K.

Assume that X is spin and even dimensional. Let S± be the
spinor bundles on X.
Let Vµ be an irreducible representation of K with highest

weight µ. On the associated vector bundle Ṽµ := G×K Vµ, we
consider the operator

/Dµ : Γ(X,S+ ⊗ Ṽµ)→ Γ(X,S− ⊗ Ṽµ).

Theorem (Atiyah-Schmid)

If G has Harish-Chandra’s discrete series representations, the
(co)kernel of /Dµ is a discrete series representation of G.
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The Connes-Kasparov isomorphism

Let C∗r (G) be the reduced group C∗-algebra of G.

Definition

The index of the operator /Dµ is the element

Ind( /Dµ) := [ker( /Dµ)]− [coker( /Dµ)] ∈ K0(C∗r (G)).

Let Rep(K) be the representation ring of K.

Conjecture (Connes-Kasparov)

The index morphism

Ind : Rep(K) −→ K0(C∗r (G))

is an isomorphism of abelian groups.
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The Connes-Kasparov conjecture

Many researchers have contributed to the study of the
Connes-Kasparov conjecture. And the conjecture is proved to
hold true for a large class of locally compact groups.

Theorem (Chabert-Echterhoff-Nest)

Let G be a second countable almost connected group (i.e. G/G0

is compact, where G0 denotes the connected component of G).
Then the Baum-Connes assembly map

Ind : Ktop
• (G)→ K•

(
C∗r (G)

)
is an isomorphism.
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L2-index theorem

Consider the trace tr on Cc(G) defined as

tr(f) := f(e), ∀f ∈ Cc(G).

The trace tr defines a linear functional on K0(C∗r (G)), i.e.

tr : K0(C∗r (G))→ R.

Theorem (Connes-Moscovici)

Assume that G is unimodular. Let g and k be the Lie algebras
of G and K.

tr(Ind( /Dµ)) = 〈Â(g,K) ∧ ch(Vµ)m∗ , [V ]〉,

where m∗ ⊂ g∗ is the conormal space of k in g, and [V ] is the
fundamental class of m∗.
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The main questions

Let G be a connected real reductive Lie group, e.g. a closed
subgroup of GL(n,C) closed under conjugate transpose.

Let C(G) be the Harish-Chandra Schwartz algebra of functions
on G with rapid decay derivatives.

Question

Use the geometry of G to construct explicit cyclic cocycles on
C(G) ⊂ C∗r (G) generalizing the L2-trace on C∗r (G).

Question

Compute the topological formula for the index pairing between
the cyclic cocycles and K0(C∗r (G)).
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Currents on the tempered dual

Definition

The tempered dual Ĝλ of G is the space of isomorphism classes
of irreducible unitary representations of C∗r (G) equipped with
the Fell topology (hull-kernel topology).

The Plancherel Theorem says “C(G) ≈ C(Ĝλ)”.
Recall that the index of /Dµ is an element

Ind( /Dµ) ∈ K0(C∗r (G)) ∼= K0(C(G)) ∼= K0(C(Ĝλ)).

We need differential currents and homology on Ĝλ to study

Ch
(

Ind( /Dµ)
)
∈ Heven(Ĝλ).
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Differential currents on R̂n

When G = Rn,
(
C(Rn), ∗

)
=
(
S(R̂n), ·

)
.

The homology of R̂n can be computed,

H•(R̂
n) =

{
R, • = n,
0, otherwise.

On S(R̂n), Hn(R̂n) is generated by a degree n differential
current,

Ψ(f0, · · · , fn) =

∫
Rn

f0df1 · · · dfn.
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Cyclic cocycle on C(Rn)

On C(Rn), the Fourier transform of Ψ can be computed as
following.

Define a function C : Rn × · · · × Rn︸ ︷︷ ︸
n

→ R by

C(x1, · · · , xn) :=

∣∣∣∣∣∣
x1

1 · · · xn1
· · ·

x1
n · · · xnn

∣∣∣∣∣∣
Define Φ to be a cocycle on C(Rn) by

Φ(f0, · · · , fn) :=

∫
Rn

· · ·
∫
Rn

dx1 · · · dxnC(x1, · · · , xn)

f0(−x1 − · · · − xn)f1(x1) · · · fn(xn).
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Hochschild cohomology

Let A be an Fréchet algebra over C.

For ∈ N, let
Ck(A) : = HomC

(
A⊗(k+1),C

)
,

of all (continuous) (k + 1)-linear functionals on A.

Definition

Define the Hochschild codifferential ∂ : Ck(A)→ Ck+1(A) by

∂Φ(a0 ⊗ · · · ⊗ ak+1)

=

k∑
i=0

(−1)iΦ(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+1)

+ (−1)k+1Φ(ak+1a0 ⊗ a1 ⊗ · · · ⊗ ak).

The Hochschild cohomology of A is the cohomology of the
cochain complex (C•(A), ∂).
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Let A be an Fréchet algebra over C.
For ∈ N, let

Ck(A) : = HomC
(
A⊗(k+1),C

)
,

of all (continuous) (k + 1)-linear functionals on A.

Definition

Define the Hochschild codifferential ∂ : Ck(A)→ Ck+1(A) by

∂Φ(a0 ⊗ · · · ⊗ ak+1)

=

k∑
i=0

(−1)iΦ(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak+1)

+ (−1)k+1Φ(ak+1a0 ⊗ a1 ⊗ · · · ⊗ ak).

The Hochschild cohomology of A is the cohomology of the
cochain complex (C•(A), ∂).

13 / 28



Invariant elliptic operators
Cyclic cocycles for proper actions

Pairing with K-theory

Cyclic cohomology

Definition

A Hochschild cochain Φ ∈ Ck(A) is cyclic if for all
a0, . . . , ak ∈ A,

Φ(ak, a0, . . . , ak−1) = (−1)kΦ(a0, a1, . . . , ak).

Let Ckλ(A) be the subspace of Ck(A) consisting of cyclic
cochains. The cyclic cohomology HC•(A) is defined to be the
cohomology of the cochain complex (C•λ(A), ∂).

Theorem (Connes-Hochschild-Kostant-Rosenberg)

HH•(C∞(M)) = DdeRham• (M), HP •(C∞(M)) = HdeRham
• (M).
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Differentiable group cohomology

Let C∞(G×k) be the space of smooth functions on

G× · · · ×G︸ ︷︷ ︸
k

.

Define a differential δ : C∞(G×k)→ C∞(G×k) by

δ(ϕ)(g1, · · · , gk+1)

= ϕ(g2, · · · , gk)
− ϕ(g1g2, · · · , gk+1) + · · ·+ (−1)kϕ(g1, · · · , gkgk+1)

+ (−1)k+1ϕ(g1, · · · , gk).

The differentiable group cohomology H•diff(G) is defined to be
the cohomology of (C∞(G×•), δ).
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Pairing with K-theory

Character morphism

Assume G to be unimodular. Fix a Haar measure dg on G.
There is a natural pairing between C∞(G×k) and C∞c (G)⊗̂(k+1)

by

< ϕ̂, f0 ⊗ · · · ⊗ fk > :=

∫
f0(g−1

k · · · g
−1
1 )f1(g1) · · · fk(gk)

ϕ(g1, · · · , gk)dg1 · · · dgk

Theorem (Pflaum-Posthuma-T, Piazza-Posthuma)

The above pairing descends to a character morphism χ,

χ : H•diff(G)→ HP •(C(G)).
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Pairing with K-theory

Example of SL2(R)

Let SL(2,R) be the Lie group of 2× 2 real matrices with
determinant being 1, e.g.{[

a b
c d

]
|ad− bc = 1

}
.

Let SO(2) be the subgroup of SL2(R) consisting of orthogonal
matrices with positive determinant.
Let X be the quotient SL2(R)/SO(2), which can be identified
with the Poincaré disk.
For g1, g2 ∈ SL2(R), let A(g1, g2) be the signed Area of the
geodesic triangle with vertices [e], [g1], [g1g2].
The function A is a 2-cocycle on SL2(R), and χ(A) is the Chern
character of the fundamental Fredholm module of Alain Connes.
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Invariant elliptic operators
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Pairing with K-theory

Orbital Integrals

For x ∈ G, let ZG(x) be the centralizer of x in G and dG/ZG(x)ġ
be the left invariant measure on G/ZG(x).

The orbital integral

Λ
ZG(x)
f :=

∫
G/ZG(x)

f(gxg−1)dG/ZG(x)ġ

is an important tool in representation theory with deep
connections to number theory.
An important property is that for regular x ∈ H, a Cartan
subgroup of G, the orbital integral defines a trace τx on C(G),
i.e.

τx(f) := Λ
ZG(x)
f .
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is an important tool in representation theory with deep
connections to number theory.

An important property is that for regular x ∈ H, a Cartan
subgroup of G, the orbital integral defines a trace τx on C(G),
i.e.

τx(f) := Λ
ZG(x)
f .

18 / 28



Invariant elliptic operators
Cyclic cocycles for proper actions

Pairing with K-theory

Orbital Integrals

For x ∈ G, let ZG(x) be the centralizer of x in G and dG/ZG(x)ġ
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Pairing with K-theory

Higher orbital integral

For a general connected real reductive group G, we can
generalize the above construction.

Let P = MAN be a cuspidal parabolic subgroup of G. Using
the decomposition G = KMAN , we introduce a generalization
of the determinant function

C : C∞(K ×G×m),

for m = dim(A).
For a semisimple element x ∈M , define a degree m cocycle on
C(G) by

ΦP
x (f0, f1, . . . , fm) : =

∫
h∈M/ZM (x)

∫
KN

∫
G×m

dhdkdndg1 · · · dgm

C(k, g1g2 . . . gm, . . . , gm−1gm, gm)f0

(
khxh−1nk−1(g1 . . . gm)−1

)
f1(g1) . . . fm(gm).
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Pairing with K-theory

Cyclic cocycle property

Theorem (Song-T)

The functional ΦP,x satisfies the following identities.

∂ΦP,x = 0, e.g.

ΦP
x (f0 ∗ f1,f2, · · · , fm+1)− ΦP

x (f0, f1 ∗ f2, · · · , fm+1)

+ · · ·+ (−1)m+1ΦP
x (fm+1 ∗ f0, · · · , fm) = 0.

ΦP
x is cyclic, e.g.

ΦP
x (fm, f0, · · · , fm−1) = (−1)mΦP

x (f0, · · · , fm).
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Pairing with K-theory

Two families of cyclic cocycles

We have constructed two families of cyclic cocycles on C(G).

• Differentiable group cohomology.

χ : H•diff(G)→ HP •(C(G)).

These cyclic cocycles are supported at the identity component.
• Higher orbital integral. For every cuspidal parabolic subgroup
P and a semisimple element x ∈ H,

ΦP
x ∈ HPm(C(G)).

These cyclic cocycles are supported at the conjugacy class of x.

Question

Compute the pairing between the above cocycles and
K•(C(G)) ∼= K•(C

∗
r (G)).
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Cyclic cocycles for proper actions

Pairing with K-theory

Higher L2-index theorem

Theorem (Pflaum-Posthuma-T)

Let G be a Lie group acting properly and cocompactly on a
manifold X. Suppose that D is an elliptic G-invariant
differential operator on X, and [ϕ] ∈ H2k

diff(G;L).

The index
pairing is given by

χ(ϕ)(Ind(D))

=
1

(2π
√
−1)k(2k)!

∫
T ∗X

cΦ([ϕ]) ∧ Â(T ∗X) ∧ ch(σ(D)),

where c ∈ C∞cpt(X) is a cut-off function, and Φ is the
characteristic class map from H•diff(G;L) to the de Rham
cohomology of G-invariant differential forms on X.
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Pairing with K-theory

L2-index theorem for proper cocompact actions

When G is unimodular, the previous index formula for
ϕ = 1 ∈ H0

diff(G) gives Hang Wang’s L2-index theorem for
G-invariant elliptic operators on a manifold with a proper and
cocompact action.

The previous theorem holds true for proper cocompact Lie
groupoid actions. For example, let HF be the holonomy
groupoid of a regular foliation F on M . Assume that HF is
unimodular. The index formula for [ϕ] = 1 ∈ H0

diff(HF ) gives
the Connes index theorem for measured foliations.
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Pairing with K-theory

Higher orbital integrals and fixed point theorem

X is equipped with a G-equivariant Spinc-structure,

S → X is the corresponding spinor bundle,

W → X is a G-equivariant Hermitian vector bundle,

/D is W -twisted Dirac operator on E := S ⊗W .

Theorem (Hochs-Song-T)

The pairing ΦP
x (Ind( /D)) is computed as follows.

• If P is a maximal cuspidal parabolic subgroup, then ∀x ∈ T ,∫
(X/AN)x

cx
Â((X/AN)x) ch([WAN |supp(χx)](x))ec1(L|(X/AN)x )

det(1− xe−RN/2πi)1/2
.

• If P is not a maximal cuspidal parabolic subgroup or x does
not lie in a compact subgroup of G, then ΦP

x (Ind( /D)) vanishes.
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Pairing with K-theory

Character of representations

Let H be a Cartan subgroup of G, and T := K ∩H with x ∈ T .

Assume that T < M is a Cartan subgroup of M . Let ∆M
T be

the corresponding Weyl denominator.

Theorem (Song-T)

〈ΦP
e , Ind( /Dµ)〉 =

1

|WM∩K |
·
∑

w∈WK

m
(
σM (w · µ)

)
,

where σM (w·µ) is the discrete series representation of M
with Harish-Chandra parameter w · µ, and m

(
σM (w · µ)

)
is

its Plancherel measure ;

〈ΦP
x , Ind( /Dµ)〉 =

∑
w∈WK

(−1)wew·µ(t)

∆M
T (t)

.
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Inverse of the index map

Using ∆M
T (t)ΦP

x , we can define a morphism

FT : K0(C∗r (G))→ Rep(K).

Theorem (Clare-Higson-Song-T)

The morphism FT is an isomorphism.

FT is the inverse of the Ind map.
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Structure of C∗r (G)

Theorem (Wassermann, Clare-Crisp-Higson)

The C∗r (G) and also C(G) have the following decomposition,

C∗r (G) ∼=
⊕
[P,σ]

C∗r (G)[P,σ].

For each pair [P, σ], there is a connected abelian Lie group AP
together with a finite group Wσ of the form W ′σ oRσ that acts
faithfully on ÂP .
The component C∗r (G)[P,σ] is Morita equivalent to

C0(ÂP /W
′
σ) oRσ.
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Essential components

It turns out that two types of components in the above direct
sum contribute nontrivially to the K-theory of C∗r (G).

Wσ = Rσ = 1. C∗r (G)[P,σ] is Morita equivalent to C0(ÂP ).

Wσ = Rσ = (Z/2Z)dim(AP ). C∗r (G)[P,σ] is Morita equivalent

to C0(ÂP ) oRσ, where Rσ acts on ÂP by hyperplane
reflections.

For example, for SL2(R),

C∗r (SL(2,R)) ∼
⊕
n6=0

C⊕ C0(R) o Z2 ⊕ C0(R/Z2).

The essential components are⊕
n6=0

C⊕ C0(R) o Z2.
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reflections.

For example, for SL2(R),

C∗r (SL(2,R)) ∼
⊕
n6=0

C⊕ C0(R) o Z2 ⊕ C0(R/Z2).

The essential components are⊕
n6=0

C⊕ C0(R) o Z2.

28 / 28



Invariant elliptic operators
Cyclic cocycles for proper actions

Pairing with K-theory

Essential components

It turns out that two types of components in the above direct
sum contribute nontrivially to the K-theory of C∗r (G).

Wσ = Rσ = 1. C∗r (G)[P,σ] is Morita equivalent to C0(ÂP ).
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Outlook

We are interested in exploring the following questions in the
near future.

Find an appropriate definition for HC•(C(G),Z).

Find a complete geometric description of HC•(C(G)).

Go beyond connected real reductive Lie groups.

Compute the Hochschild cohomology of C(G).
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Thank you for your attention !
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