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Outline

In this talk, we will report our exploration of cyclic cohomology
for proper Lie group actions. We will introduce explicit cyclic
cocycles on the Harish-Chandra Schwartz algebra using the
geometry of Lie groups. As applications, we will present index
theorems for proper cocompact Lie group actions.

3/28



Outline

In this talk, we will report our exploration of cyclic cohomology
for proper Lie group actions. We will introduce explicit cyclic
cocycles on the Harish-Chandra Schwartz algebra using the
geometry of Lie groups. As applications, we will present index
theorems for proper cocompact Lie group actions.

Plan :

3/28



Outline

In this talk, we will report our exploration of cyclic cohomology
for proper Lie group actions. We will introduce explicit cyclic
cocycles on the Harish-Chandra Schwartz algebra using the
geometry of Lie groups. As applications, we will present index
theorems for proper cocompact Lie group actions.

Plan :

@ Invariant elliptic operators

3/28



Outline

In this talk, we will report our exploration of cyclic cohomology
for proper Lie group actions. We will introduce explicit cyclic
cocycles on the Harish-Chandra Schwartz algebra using the
geometry of Lie groups. As applications, we will present index
theorems for proper cocompact Lie group actions.

Plan :
@ Invariant elliptic operators

© Cyclic cocycles for proper actions

3/28



Outline

In this talk, we will report our exploration of cyclic cohomology
for proper Lie group actions. We will introduce explicit cyclic
cocycles on the Harish-Chandra Schwartz algebra using the
geometry of Lie groups. As applications, we will present index
theorems for proper cocompact Lie group actions.

Plan :
@ Invariant elliptic operators
© Cyclic cocycles for proper actions
© Pairing with K-theory

3/28



My Collaborators

This talk is based on joint work with Pierre Clare, Nigel Higson,
Peter Hochs, Markus Pflaum, Hessel Posthuma, and Yanli Song.
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Invariant elliptic operators

Let G be a Lie group, and K be a maximal compact subgroup
of G, and X = G/K.
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Invariant elliptic operators

Let G be a Lie group, and K be a maximal compact subgroup
of G, and X = G/K.

Assume that X is spin and even dimensional. Let ST be the
spinor bundles on X.

Let V}, be an irreducible representation of K with highest
weight p. On the associated vector bundle ‘7u =G xg V), we
consider the operator

D,:T(X,8TaV,) »T(X,S"aV,).

Theorem (Atiyah-Schmid)

If G has Harish-Chandra’s discrete series representations, the
(co)kernel of Ip, is a discrete series representation of G.
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Invariant elliptic operators

The Connes-Kasparov isomorphism

Let C}(G) be the reduced group C*-algebra of G.
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The Connes-Kasparov isomorphism

Let C}(G) be the reduced group C*-algebra of G.

Definition

The index of the operator lDu is the element

Ind(D,) := [ker(1,)] — [coker(1D,,)] € Ko(Cy(G)).
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Ind(lpu) = [ker(]Du)] — [coker(]Du)] € Ko(Cr(Q@)).
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Invariant elliptic operators

The Connes-Kasparov isomorphism

Let C}(G) be the reduced group C*-algebra of G.

Definition

The index of the operator lDu is the element
Ind(]Du) = [ker(]Du)] — [coker(]Du)] € Ko(Cr(Q@)).

Let Rep(K) be the representation ring of K.

Conjecture (Connes-Kasparov)

The index morphism
Ind : Rep(K) — Ko(C;(Q))

is an isomorphism of abelian groups.
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Invariant elliptic operators

The Connes-Kasparov conjecture

Many researchers have contributed to the study of the
Connes-Kasparov conjecture. And the conjecture is proved to
hold true for a large class of locally compact groups.
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Invariant elliptic operators

The Connes-Kasparov conjecture

Many researchers have contributed to the study of the
Connes-Kasparov conjecture. And the conjecture is proved to
hold true for a large class of locally compact groups.

Theorem (Chabert-Echterhoff-Nest)

Let G be a second countable almost connected group (i.e. G/Gq
is compact, where Gy denotes the connected component of G).
Then the Baum-Connes assembly map

Ind : K;P(G) = K.(C(Q))

is an isomorphism.
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Invariant elliptic operators

L2-index theorem

Consider the trace tr on C.(G) defined as

tr(f) := fle), V[ e C(G).
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Invariant elliptic operators

L2-index theorem

Consider the trace tr on C.(G) defined as

tr(f) := fle), Vf e Ce(G).
The trace tr defines a linear functional on Ky(C;(G)), i.e.

tr: Ko(C:(G)) — R.

Theorem (Connes-Moscovici)

Assume that G is unimodular. Let g and € be the Lie algebras
of G and K.

tr(Ind(,,)) = (A(g, K) A ch(V)me, [V]),

where m* C g* is the conormal space of ¢ in g, and [V] is the
fundamental class of m*.
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Invariant elliptic operators

The main questions

Let G be a connected real reductive Lie group, e.g. a closed
subgroup of GL(n,C) closed under conjugate transpose.
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Invariant elliptic operators

The main questions

Let G be a connected real reductive Lie group, e.g. a closed
subgroup of GL(n,C) closed under conjugate transpose.

Let C(G) be the Harish-Chandra Schwartz algebra of functions
on G with rapid decay derivatives.

Question

Use the geometry of G to construct explicit cyclic cocycles on
C(G) C C}(G) generalizing the L2-trace on C}(G).

Question

| \

Compute the topological formula for the index pairing between
the cyclic cocycles and Ko(C(G)).

A
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Cyclic cocycles for proper actions

Currents on the tempered dual

Definition

The tempered dual G » of G is the space of isomorphism classes
of irreducible unitary representations of C;(G) equipped with
the Fell topology (hull-kernel topology).

10 /28



Cyclic cocycles for proper actions

Currents on the tempered dual

Definition

The tempered dual G » of G is the space of isomorphism classes
of irreducible unitary representations of C;(G) equipped with
the Fell topology (hull-kernel topology).

The Plancherel Theorem says “C(G) ~ C(G,)”.

10 /28



Cyclic cocycles for proper actions

Currents on the tempered dual

Definition

The tempered dual G » of G is the space of isomorphism classes
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Cyclic cocycles for proper actions

Currents on the tempered dual

Definition

The tempered dual G » of G is the space of isomorphism classes
of irreducible unitary representations of C;(G) equipped with
the Fell topology (hull-kernel topology).

The Plancherel Theorem says “C(G) ~ C(G,)”.
Recall that the index of lﬂ“ is an element

nd(B,) € Ko(CF (@) = Ko(C(G)) = Ko(C(Gh)).

We need differential currents and homology on G ) to study

Ch (ma(zﬂu)) e Heven(Gy).
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Cyclic cocycles for proper actions

Differential currents on R"

~

When G =R", (C(R"),*) = (S(R"), ).
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DNy R, e=mn,
Ho(R") = { 0, otherwise.
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Cyclic cocycles for proper actions

Differential currents on R"

When G = R”, (C(R™),*) = (S(R™), ).
The homology of R™ can be computed,

DNy R, e=mn,
Ho(R") = { 0, otherwise.

On S(R"), H,(R") is generated by a degree n differential
current,

\I/(foa"' 7fn) = - defldfn
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Cyclic cocycles for proper actions

Cyclic cocycle on C(R")

On C(R"™), the Fourier transform of ¥ can be computed as
following.
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Cyclic cocycle on C(R")

On C(R"™), the Fourier transform of ¥ can be computed as

following.
Define a function C' : R” x --- x R” — R by
n
7] z}
C(xy, - ,xy) ==
o, a,
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Cyclic cocycles for proper actions

Cyclic cocycle on C(R")

On C(R"™), the Fourier transform of ¥ can be computed as
following.

Define a function C' : R” x --- x R” — R by
—_————

Define ® to be a cocycle on C(R™) by

D(for s fa) = / /ndm dznCla, - 2n)
- - l‘n)fl(l'l) fn(l'n)
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Cyclic cocycles for proper actions

Hochschild cohomology

Let A be an Fréchet algebra over C.
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Cyclic cocycles for proper actions

Hochschild cohomology

Let A be an Fréchet algebra over C.
For € N, let
C’k(A) : = Hom¢ (A®(k+1), (C),

of all (continuous) (k + 1)-linear functionals on A.

Definition

Define the Hochschild codifferential 9: C*(A) — C¥*1(A) by

8<I>(a0 ®- & ak+1)
k
Z D(ag® - ®ajait1 Q@ Apt1)
=0
(

—1D)*®(ap100 ® a1 ® - @ ay,).
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Cyclic cocycles for proper actions

Hochschild cohomology

Let A be an Fréchet algebra over C.
For € N, let
C’k(A) : = Hom¢ (A®(k+1), (C),

of all (continuous) (k + 1)-linear functionals on A.

Definition
Define the Hochschild codifferential 9: C*(A) — C¥*1(A) by

8<I>(a0 ®- & ak+1)
k
Z D(ag® - ®ajait1 Q@ Apt1)
=0
(

—1D)*®(ap100 ® a1 ® - @ ay,).

The Hochschild cohomology of A is the cohomology of the
cochain complex (C*(A), ).
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Cyclic cocycles for proper actions

Cyeclic cohomology

A Hochschild cochain ® € C*(A) is cyelic if for all
ag,...,ar € A,

®(ag,ag,...,ax_1) = (—1)k<I>(ag, al,...,a).
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Cyclic cocycles for proper actions

Cyeclic cohomology

Definition
A Hochschild cochain ® € C*(A) is cyelic if for all
ag,...,ar € A,

®(ag, ap, - . ., ap—1) = (=1)*®(ag, ay, . .., az).

Let C%¥(A) be the subspace of C*(A) consisting of cyclic
cochains. The cyclic cohomology HC*®(A) is defined to be the
cohomology of the cochain complex (C%(A),0).
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Cyclic cocycles for proper actions

Cyeclic cohomology

Definition
A Hochschild cochain ® € C*(A) is cyelic if for all
ag,...,ar € A,

®(ag, ao, ..., ap—1) = (—1)*®@(ag, a1, . .., ax).

Let C%¥(A) be the subspace of C*(A) consisting of cyclic
cochains. The cyclic cohomology HC*®(A) is defined to be the
cohomology of the cochain complex (C%(A),0).

Theorem (Connes-Hochschild-Kostant-Rosenberg)

HH*(C™(M)) = DRm™ (M), HP*(C(M)) = HEFem (1),
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Cyclic cocycles for proper actions

Differentiable group cohomology
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Differentiable group cohomology

Let C*(G**) be the space of smooth functions on

Gx---xG.
k
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Differentiable group cohomology

Let C*(G**) be the space of smooth functions on

Gx---xG.
k

Define a differential § : C°(G**) — C>=(G**) by
o(p )(91, " Gkt1)
= ( 7gk)

(9192, s gre1) + -+ (=D (g1, Grgrr1)
+ (_1)k+1€0(gl7”_ 7gk)
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Cyclic cocycles for proper actions

Differentiable group cohomology

Let C*(G**) be the space of smooth functions on

Gx---xG.
k

Define a differential § : C°(G**) — C>=(G**) by

d(p )(91,-'- , Gh+1)

= ( 7gk)
©(g192, - s Gr41) + - F (—1)k80(917 o OkGk+1)
+ ( )k+1€0(gl7”_ 7gk)

The differentiable group cohomology H3,;(G) is defined to be
the cohomology of (C*°(G**),0).
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Cyclic cocycles for proper actions

Character morphism
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Cyclic cocycles for proper actions

Character morphism

Assume G to be unimodular. Fix a Haar measure dg on G.
There is a natural pairing between C>°(G**) and C°(G)®*+1)
by

<O fo® @ fr > = /fo LogrD (g - frlor)
©(g1,- -+, gr)dg1 - - - dgy,
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Cyclic cocycles for proper actions

Character morphism

Assume G to be unimodular. Fix a Haar measure dg on G.
There is a natural pairing between C>°(G**) and C°(G)®*+1)
by
<@ fow®frr> = /fo egr D fi(gn) - felgr)
e(g1,- - 5 gr)dgy - - - dgp

Theorem (Pflaum-Posthuma-T, Piazza-Posthuma)

The above pairing descends to a character morphism Y,

X : Hiig(G) = HP*(C(G)).
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Cyclic cocycles for proper actions

Example of SLy(R)

Let SL(2,R) be the Lie group of 2 x 2 real matrices with
determinant being 1, e.g.

o b wt-ne=1}.
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Cyclic cocycles for proper actions

Example of SLy(R)

Let SL(2,R) be the Lie group of 2 x 2 real matrices with
determinant being 1, e.g.

o b wt-ne=1}.

Let SO(2) be the subgroup of SLy(R) consisting of orthogonal
matrices with positive determinant.

Let X be the quotient SLy(R)/SO(2), which can be identified
with the Poincaré disk.

For ¢g1,92 € SLa(R), let A(g1,g2) be the signed Area of the
geodesic triangle with vertices [e], [g1], [g192]-

The function A is a 2-cocycle on SLy(R), and x(A) is the Chern
character of the fundamental Fredholm module of Alain Connes.
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Cyclic cocycles for proper actions

Orbital Integrals

For z € G, let Zg(x) be the centralizer of x in G and dg/z, ()9
be the left invariant measure on G/Zg(z).
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Orbital Integrals

For z € G, let Zg(x) be the centralizer of x in G and dg/z, ()9
be the left invariant measure on G/Zg(z).
The orbital integral

A?G(“c) ;:/ f(gxg_l)dg/zc(x){']
G/Zg(x)

is an important tool in representation theory with deep
connections to number theory.
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Cyclic cocycles for proper actions

Orbital Integrals

For z € G, let Zg(x) be the centralizer of x in G and dg/z, ()9
be the left invariant measure on G/Zg(z).
The orbital integral

A?G(“c) ;:/ f(gxg_l)dg/zc(x){']
G/Zg(x)

is an important tool in representation theory with deep
connections to number theory.

An important property is that for regular € H, a Cartan
subgroup of G, the orbital integral defines a trace 7, on C(G),
ie.

To(f) = A7),
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Cyclic cocycles for proper actions

Higher orbital integral

For a general connected real reductive group G, we can
generalize the above construction.
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Higher orbital integral

For a general connected real reductive group G, we can
generalize the above construction.

Let P = M AN be a cuspidal parabolic subgroup of GG. Using
the decomposition G = KM AN, we introduce a generalization
of the determinant function

C:C®(K x G*™),
for m = dim(A).
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Cyclic cocycles for proper actions

Higher orbital integral

For a general connected real reductive group G, we can
generalize the above construction.
Let P = M AN be a cuspidal parabolic subgroup of GG. Using
the decomposition G = KM AN, we introduce a generalization
of the determinant function

C:C®(K xG"™),

for m = dim(A).
For a semisimple element x € M, define a degree m cocycle on
C(G) by

(I)f(fﬂvfh“-afm): :/ / / dhdkdndg; - - - dgm,
heM/Zy (z) JKN JGxm

C(k, 9192 - Gms - - -+ Gm—19m, gm) fo(khxh 'nk™ (g1 ... gm) ™)
J1(g1) -+ frn(gm)-
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Cyclic cocycles for proper actions

Cyeclic cocycle property

Theorem (Song-T)

The functional ®p, satisfies the following identities.
e 0®p, =0, e.g.

OF (fox frfar s fmr1) — ®L (fo, fr* fo, o, fms1)
+ e (_1)m+1q)5(fm+1 *fov'” 7fm) = 0.

o ®F is cyclic, e.g.

L (fus fo, - s fne1) = (=1)™®L (fo, -, fin)-

20/ 28



Pairing with K-theory

Two families of cyclic cocycles

We have constructed two families of cyclic cocycles on C(G).
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Pairing with K-theory

Two families of cyclic cocycles

We have constructed two families of cyclic cocycles on C(G).
e Differentiable group cohomology.

X : Hiig(G) = HP*(C(G)).

These cyclic cocycles are supported at the identity component.
e Higher orbital integral. For every cuspidal parabolic subgroup
P and a semisimple element x € H,

ol e HP™(C(@Q)).

These cyclic cocycles are supported at the conjugacy class of x.

Question

Compute the pairing between the above cocycles and

K.(C(Q)) =2 K.(C:(Q)).
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Pairing with K-theory

Higher L2-index theorem

Theorem (Pflaum-Posthuma-T)

Let G be a Lie group acting properly and cocompactly on a
manifold X . Suppose that D is an elliptic G-invariant
differential operator on X, and [¢] € H3%(G; L).

22 /28



Pairing with K-theory

Higher L2-index theorem

Theorem (Pflaum-Posthuma-T)

Let G be a Lie group acting properly and cocompactly on a
manifold X . Suppose that D is an elliptic G-invariant
differential operator on X, and ] € H3%(G; L). The index
pairing is given by

x(p)(Ind(D))

- (zw—%k(zk)! /T*X e®([¢]) A A(T"X) A eh(o (D)),

where
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Pairing with K-theory

Higher L2-index theorem

Theorem (Pflaum-Posthuma-T)

Let G be a Lie group acting properly and cocompactly on a
manifold X . Suppose that D is an elliptic G-invariant
differential operator on X, and ] € H3%(G; L). The index
pairing is given by

x(p)(Ind(D))
1

~ (2nV/1)F(2K)! /T*X e®([¢e]) A A(T"X) A ch((D)),

where ¢ € Cg5(X) is a cut-off function,
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Pairing with K-theory

Higher L2-index theorem

Theorem (Pflaum-Posthuma-T)

Let G be a Lie group acting properly and cocompactly on a
manifold X . Suppose that D is an elliptic G-invariant
differential operator on X, and ] € H3%(G; L). The index
pairing is given by

x(#)(Ind(D))
1 .
= o NA(T*X) A ch(o(D)),
T ooy ) A AT X) Achio(D)
where ¢ € Cg5(X) is a cut-off function, and ® is the
characteristic class map from H3,5(G; L) to the de Rham
cohomology of G-invariant differential forms on X.

22 /28



Pairing with K-theory

L?-index theorem for proper cocompact actions

When G is unimodular, the previous index formula for

¢ =1¢€ H}4(G) gives Hang Wang’s L*-index theorem for
G-invariant elliptic operators on a manifold with a proper and
cocompact action.
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Pairing with K-theory

L?-index theorem for proper cocompact actions

When G is unimodular, the previous index formula for

¢ =1¢€ H}4(G) gives Hang Wang’s L*-index theorem for
G-invariant elliptic operators on a manifold with a proper and
cocompact action.

The previous theorem holds true for proper cocompact Lie
groupoid actions. For example, let Hx be the holonomy
groupoid of a regular foliation F on M. Assume that Hr is
unimodular. The index formula for [p] =1 € Hl.q(Hr) gives
the Connes index theorem for measured foliations.

23 /28



Pairing with K-theory

Higher orbital integrals and fixed point theorem

e X is equipped with a G-equivariant Spin®-structure,
e S — X is the corresponding spinor bundle,

o W — X is a G-equivariant Hermitian vector bundle,
e I is W-twisted Dirac operator on F := S ® W.
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Pairing with K-theory

Higher orbital integrals and fixed point theorem

e X is equipped with a G-equivariant Spin®-structure,
e S — X is the corresponding spinor bundle,

o W — X is a G-equivariant Hermitian vector bundle,
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Higher orbital integrals and fixed point theorem

e X is equipped with a G-equivariant Spin®-structure,
e S — X is the corresponding spinor bundle,

o W — X is a G-equivariant Hermitian vector bundle,
e I is W-twisted Dirac operator on F := S ® W.

Theorem (Hochs-Song-T)

The pairing ®F (Ind(1D)) is computed as follows.
o If P is a maximal cuspidal parabolic subgroup, then Vx € T,

/ A((X/AN)®) ch([Wan|supp(ye)) (@))€ Flexrane)
(X/AN)= Co det(l _ xe—RN/2m;)1/2 0

e If P is not a maximal cuspidal parabolic subgroup or x does
not lie in a compact subgroup of G, then ®L (Ind(ID)) vanishes.
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1
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Character of representations

Let H be a Cartan subgroup of G, and T := KN H with x € T
Assume that T < M is a Cartan subgroup of M. Let ATM be
the corresponding Weyl denominator.

Theorem (Song-T)

o
1
®£,Ind]ﬁ = — m (™ (w - ,
(@ (D)) =g 2, m (e )
weWx
where oM (w- ) is the discrete series representation of M

with Harish-Chandra parameter w - i, and m (o™ (w - p)) is
its Plancherel measure ;

2wewy (=1 H(?)
A ()

(@F Ind(D,)) =
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Inverse of the index map

Using AM (t)®L, we can define a morphism

FL  Ko(CH@Q)) = Rep(K).

Theorem (Clare-Higson-Song-T)
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Inverse of the index map

Using AM (t)®L, we can define a morphism

FL  Ko(CH@Q)) = Rep(K).

Theorem (Clare-Higson-Song-T)

o The morphism FL is an isomorphism.

o FT is the inverse of the Ind map.
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Structure of C*(G)

Theorem (Wassermann, Clare-Crisp-Higson)
The C}(G) and also C(G) have the following decomposition,

@ C* [PO'

[Po]
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Structure of C*(G)

Theorem (Wassermann, Clare-Crisp-Higson)
The C}(G) and also C(G) have the following decomposition,

@ C* [PO'

[Po]

For each pair [P, o], there is a connected abelian Lie group Ap
together with a finite group W, of the form W! x R, that acts
faithfully on Ap.

The component C;(G)(p4] is Morita equivalent to

Co(Ap/W!.) x R,.
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Essential components

It turns out that two types of components in the above direct
sum contribute nontrivially to the K-theory of CX(G).
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Essential components

It turns out that two types of components in the above direct
sum contribute nontrivially to the K-theory of CX(G).

o W, = R, = 1. C}(G)|p, is Morita equivalent to CO(EP)

o W, = R, = (2/27)%m(AP), C*(G)[Po-] is Morita equivalent
to CO(AP) X Ry, where R, acts on Ap by hyperplane
reflections.

For example, for SLa(R),

C* SL @C@C@ NZQ@C()(R/ZQ).
n#0

The essential components are

@C D Co(R) X ZQ.
n#0
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We are interested in exploring the following questions in the
near future.
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Pairing with K-theory

We are interested in exploring the following questions in the
near future.

e Find an appropriate definition for HC*(C(G),Z).

e Find a complete geometric description of HC®*(C(G)).
o Go beyond connected real reductive Lie groups.

e Compute the Hochschild cohomology of C(G).
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Thank you for your attention !
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