On the Hochschild homology of convolution algebras of proper Lie groupoids

Markus J. Pflaum¹

University of Colorado Boulder

October 1, 2021

Fields Institute Conference Cyclic Cohomology at 40: achievements and future prospects

¹joint with H. Posthuma and X. Tang

Introduction

Fundamental Observation

Groupoids are ubiquitous in topology and geometry, their convolution algebras carry all the relevant information (e.g. CONNES, *NG*).

Goals:

- Attempt to determine the cyclic (co)homology of convolution algebras of proper Lie groupoids.
- Use the obtained knowlegde to derive general index theorems for such groupoids by noncommutative means.

Status:

- So far, the full cyclic (co)homology has not been determined.
- Many important steps have been made, in particular by CONNES, FEIGIN, TSYGAN, BRYLINSKI, NISTOR, BURGHELEA, BLOCK, GETZLER, WASSERMANN, NEST, CRAINIC, MOERDIJK, PONGE,...
- The Hochschild homology of transformation groupoids of S¹-actions has been determined in P-POSTHUMA-TANG arXiv:2009.03216.

M.J. Pflaum (CUB)

Introduction Setup

Let $G \Rightarrow M$ be a proper Lie groupoid and s, t its source and target maps, respectively. Consider its smooth convolution algebra $A_c = (\mathcal{C}^{\infty}_{cpt}(G), \star)$, where \star is the convolution product defined for $f_1, f_2 \in \mathcal{C}^{\infty}_{cpt}(G)$ by

$$f_1 \star f_2(g) = \int\limits_{\mathsf{G}(t(g),-)} f_1(h) \, f_2(h^{-1}g) \, d\lambda^{t(g)}(h) \, ext{ for all } g \in \mathsf{G}$$
 .

Hereby, $(\lambda^{x})_{x \in M}$ denotes a fixed smooth left Haar system on G.

Question

What are $HH_{\bullet}(A_{c})$, $HC_{\bullet}(A_{c})$, and $HP_{\bullet}(A_{c})$?

The Connes-Hochschild-Kostant-Rosenberg Theorem

Theorem (Hochschild-Kostant-Rosenberg)

Let A be a commutative algebra over the field \mathbb{K} which is essentially of finite type (i.e. the localization of a finitely generated algebra) and smooth over \mathbb{K} (i.e. its module of Kähler forms $\Omega^1(A/\mathbb{K})$ is a projective A-module). Then there is an isomorphism of graded algebras

 $HH_{\bullet}(A) \cong \Omega^{\bullet}(A/\mathbb{K})$ where $\Omega^{k}(A/\mathbb{K}) = \Lambda^{k}\Omega^{1}(A/\mathbb{K})$.

Theorem (Manifold version by A. Connes)

Let M be a smooth manifold and $A = C^{\infty}(M)$. Then

 $HH_{ullet}(A)\cong \Omega^{ullet}(M)$.

This observation lies at the foundation of Noncommutative Geometry.

Theorem (Avramov, Iyengar, Rodicio, Vigué-Poirrier et. al.)

Let \mathbb{K} be a field of characteristic zero. Let A be a commutative \mathbb{K} -algebra essentially of finite type. Then A is smooth over \mathbb{K} if and only if $HH_n(A) = O$ for n sufficiently large.

Conclusion

Hochschild homology serves as a detector for singularities.

Conjecture

Hochschild homology serves as a detector for strata.

Convolution sheaf

Given a proper Lie groupoid $G \rightrightarrows M$, let X = M/G be its orbit space, and $\pi: M \rightarrow X$ the canonical projection.

- The commutative locally ringed space $(X, \mathcal{C}^{\infty}_X)$, where $\mathcal{C}^{\infty}_X(U)$ for $U \subset X$ open is given by the space $\mathcal{C}^{\infty}(\pi^{-1}(U))^{inv}$ of smooth functions invariant under the groupoid action, is a differentiable (stratified) space in the sense of Spallek.
- For each open $U \subset X$ the space

 $\mathcal{A}(U) := \left\{ f \in \mathbb{C}^{\infty}(s^{-1}\pi^{-1}(U)) \mid \text{supp } f \text{ is longitudinally compact} \right\}$

is a (locally convex topological and bornological) vector space. Hereby, a subset $K \subset G$ is called *longitudinally compact*, if for every compact subset $C \subset M/G$ the intersection $K \cap s^{-1}\pi^{-1}(C)$ is compact.

• The convolution product \star endows $\mathcal{A}(U)$ with an algebra structure.

Convolution sheaf

Proposition

Let $G \rightrightarrows M$ be a proper Lie grouoid and X = M/G its orbit space. Then the following holds true:

- The assignment U → A(U) with U ⊂ X open comprises a fine sheaf of algebras over X.
- In addition, the sheaf \mathcal{A} carries naturally the structure of a \mathbb{C}^{∞}_X -module sheaf.
- The space $A_c(X)$ of global section of A with compact support coincides with the smooth convolution algebra A_c of G.

We call A the convolution sheaf of G, and its space A = A(X) of global sections also smooth convolution algebra.

The Hochschild homology sheaf

Let \mathcal{A} be the convolution sheaf of a proper Lie groupoid. Denote by $\mathcal{C}_k(\mathcal{A})$ the presheaf on X assigning to an open $U \subset X$ the (k+1)-fold complete bornological tensor product $\mathcal{A}(U)^{\hat{\otimes}(k+1)}$. In general, $\mathcal{C}_k(\mathcal{A})$ is not a sheaf. Denote by $\hat{\mathcal{C}}_k(\mathcal{A})$ the sheafification of $\mathcal{C}_k(\mathcal{A})$. Since the Hochschild boundary commutes with the restriction maps, one obtains a complex of sheaves

$$(\hat{\mathbb{C}}_{ullet}(\mathcal{A}), b)$$
 .

The Hochschild homology sheaf $\mathcal{HH}_{\bullet}(\mathcal{A})$ is now defined as the homology sheaf of $(\hat{\mathbb{C}}_{\bullet}(\mathcal{A}), b)$ that means

$$\mathfrak{HH}_k(\mathcal{A}) := \ker \big(b : \hat{\mathbb{C}}_k(\mathcal{A}) \to \hat{\mathbb{C}}_{k-1}(\mathcal{A}) \big) / \operatorname{im} \big(b : \hat{\mathbb{C}}_{k+1}(\mathcal{A}) \to \hat{\mathbb{C}}_k(\mathcal{A}) \big).$$

By construction, the stalk $\mathfrak{HH}_k(\mathcal{A})_{\mathcal{O}}$, $\mathcal{O} \in X$ coincides with the *k*-th Hochschild homology $HH_k(\mathcal{A}_{\mathcal{O}})$ of the stalk $\mathcal{A}_{\mathcal{O}}$.

Localization result

Observation

For arbitrary sheaves of bornological algebras \mathcal{A} over a differentiable space X the Hochschild homology of the global section algebra $HH_k(\mathcal{A}(X))$ need in general not coincide with the space $HH_k(\mathcal{A})(X)$ of global sections of the Hochschild homology sheaf.

Theorem (PPT)

For the convolution sheaf A of a proper Lie groupoid, A = A(X) its global space of sections over the orbit space and $\mathcal{HH}_{\bullet}(A)$ the Hochschild homology sheaf the following natural identification holds true:

$$HH_{\bullet}(A) \cong \mathcal{H}H_{\bullet}(\mathcal{A})(X) = \Gamma(X; \mathcal{H}H_{\bullet}(\mathcal{A}))$$
.

Localization result

Proof (idea):

1. Step. Localization in first component. The action

 $\mathfrak{C}^{\infty}(X) \times C_k(A) \to C_k(A), \ (\varphi, \mathsf{a}_0 \otimes \ldots \otimes \mathsf{a}_k) \mapsto (\varphi \mathsf{a}_0) \otimes \mathsf{a}_1 \otimes \ldots \otimes \mathsf{a}_k \ .$

commutes with the Hochschild boundary, hence induces a chain map $\mathcal{C}^{\infty}(X) \times C_{\bullet}(A) \to C_{\bullet}(A)$. 2. Step. Localization around diagonal à la N. Teleman. Fix a smooth function $\varrho : \mathbb{R} \to [0, 1]$ with support in $(-\infty, \frac{3}{4}]$ and $\varrho(r) = 1$ for $r \leq \frac{1}{2}$. For $\varepsilon > 0$ denote by ϱ_{ε} the rescaled function $\varrho(\frac{s}{\varepsilon^2})$. Define functions $\Psi_{k,\varepsilon} \in \mathbb{C}^{\infty}(X^{k+1})$ for $k \in \mathbb{N}$ and by

$$\Psi_{k,\varepsilon}(x_0,\ldots,x_k)=\prod_{j=0}^k \varrho_{\varepsilon}(d^2(x_j,x_{j+1})),$$

where $x_0, \ldots, x_k \in X$, $x_{k+1} := x_0$ and d is a metric on X such that d^2 is smooth. One checks that the $\Psi_{k,\varepsilon}$ form a chain map.

M.J. Pflaum (CUB)

Hochschild homology of Lie groupoids

Localization result

Proof (idea):

3. Step. One constructs homotopies $(H_{k,\varepsilon})_{k\in\mathbb{N}}$ such that

$$(bH_{k,\varepsilon}+H_{k-1,\varepsilon}b)c=c-\Psi_{\varepsilon}c$$

for all $k \in \mathbb{N}$ and $c \in C_k(A)$.

4. Step. One concludes that a cycle $c \in C_k(A)$ whose support does not meet the diagonal is a Hochschild boundary.

5. Step. Verify that the chain map

$$\eta: C_{\bullet}(A) \to \Gamma(X, \hat{\mathbb{C}}_{\bullet}(\mathcal{A})), \ c \mapsto ([c]_{\mathcal{O}})_{\mathcal{O} \in X}$$

is a quasi-isomorphism.

6. Step. Using hypercohomology of sheaves and that $\hat{\mathbb{C}}_{\bullet}(\mathcal{A})$ is a complex of fine sheaves one derives the claim.

Computation at a stalk

Proposition (PPT)

For every orbit $o \in X$ there is a quasi-isomorphism

$$L_{\bullet, \mathscr{O}} : \hat{\mathbb{C}}_{\bullet, \mathscr{O}}(\mathcal{A}) \to C_{\bullet}(\mathcal{A}_{\mathsf{G}_{\mathsf{X}} \ltimes \mathsf{N}_{\mathsf{X}} \mathscr{O}}) \ ,$$

where $x \in \mathcal{O}$, $N_x \mathcal{O}$ denotes the normal space to the orbit at x, and $A_{G_x \ltimes N_x \mathcal{O}} = (\mathbb{C}^{\infty}(G_x \ltimes N_x \mathcal{O}), *)$ is the smooth convolution algebra of the transformation groupoid $G_x \ltimes N_x \mathcal{O}$.

Conclusion

A crucial step towards understanding the Hochschild homology of proper Lie groupoids is to have an expression for the Hochschild homology of convolution algebras of linear compact group actions. Note: The "gluing problem" for the stalks still remains, even when the homology of the stalks is understood.

Existing work on finite group action case

- WASSERMANN 88': determined the cyclic homology for the case of finite reflection groups
- BRYLINSKI-NISTOR 94': the finite group action case was covered by their computation of the cyclic homology of étale groupoids
- PONGE 17',18': constructed a quasi-isomorphism of twisted mixed complexes from which the finite group action case can be derived as well; see also his talk at this conference.

Existing work in compact Lie group case

- NISTOR 93': determined localization of periodic cyclic homology of crossed products by algebraic groups at conjugacy classes; see also his talk at this conference.
- In the unpublished preprint Algebras associated with group actions and their homology from 87', Brylinski considered the compact Lie group action case and stated that in this case the k-th Hochschild homology coincides with the space of basic relative k-forms.
- Also in the compact Lie group action case, Block-Getzler constructed in *Equivariant cyclic homology and equivariant differential forms* 94' an equivariant Hochschild-Kostant-Rosenberg map, showed that it is a quasi-isomorphism and derived from this the periodic cyclic homology of the convolution algebra.

Equivariant Hochschild chain complex

Consider a complete bornological algebra B with a smooth G-action. Denote by $G \ltimes B = (\mathcal{C}^{\infty}(G, B), *)$ its smooth convolution algebra. Its Hochschild homology is related to the equivariant Hochschild chain complex $C_k^G(B) := \mathcal{C}^{\infty}(G, B^{\hat{\otimes}(k+1)})^{\text{inv}}$ equipped with the twisted Hochschild differential

$$(b^{\mathrm{tw}}f)(g) := \sum_{i=0}^{k} (-1)^{i} b_{i}(f(g)) + (-1)^{k+1} b_{k+1}^{g^{-1}}(f(g)) \; ,$$

where $f \in \mathfrak{C}^{\infty}(G, B^{\otimes (k+1)})$, $g \in G$ and

 $b_k^g(a_0\otimes\ldots\otimes a_k):=(g\cdot a_k)a_0\otimes a_1\otimes\ldots\otimes a_{k-1}\quad ext{for }a_i\in B\;.$

We will later specialize to the case where $B = C^{\infty}(M)$ for an action groupoid $G = G \ltimes M$.

Proposition (Brylinski 87', PPT)

Given a complete bornological algebra B with a smooth G-action, the Eilenberg–Zilber map induces a quasi-isomorphism

$$\tilde{C}: C_{\bullet}(G \ltimes B)) \longrightarrow C_{\bullet}^{G}(B) \cong \left(C_{\bullet}(B, G \ltimes B)\right)^{\mathsf{inv}}$$

The explicit formula is given by mapping a chain $F \in C_k(\mathbb{C}^{\infty}(G, B))$ to the equivariant Hochschild chain $\tilde{F} \in C_k^G(B)$ defined by $\tilde{F}(g) :=$

$$\int_{G^k} (g^{-1}h_1 \cdots h_k \otimes 1 \otimes h_1 \otimes \ldots \otimes h_1 \cdots h_{k-1}) F(h_k^{-1} \cdots h_1^{-1}g, h_1, \ldots, h_k) dh.$$

Twisted Connes-Hochschild-Kostant-Rosenberg theorem

Let *h* be an orthogonal transformation on some \mathbb{R}^d , $V \subset \mathbb{R}^d$ an open ball, and ${}^h \mathbb{C}^{\infty}(V)$ be the space $\mathbb{C}^{\infty}(V)$ with the *h*-twisted bimodule structure

$$\mathbb{C}^{\infty}(V)\hat{\otimes}^{h}\mathbb{C}^{\infty}(V)\hat{\otimes}\mathbb{C}^{\infty}(V) \to {}^{h}\mathbb{C}^{\infty}(V),$$
$$f \otimes a \otimes f' \mapsto \left(V \ni v \mapsto f(hv) \, a(v)f'(v) \in \mathbb{R}\right)$$

To compute the *twisted* Hochschild homology $H_{\bullet}(\mathcal{C}^{\infty}(V), {}^{h}\mathcal{C}^{\infty}(V))$ use the Connes–Koszul resolution

$$\Gamma^{\infty}(V \times V, E_d) \xrightarrow{i_Y} \dots \xrightarrow{i_Y} \Gamma^{\infty}(V \times V, E_1) \xrightarrow{i_Y} \mathcal{C}^{\infty}(V \times V) \longrightarrow \mathcal{C}^{\infty}(V) \longrightarrow 0,$$

where E_k is the pull-back of the bundle $\Lambda^k T^* \mathbb{R}^d$ along the projection $p_2: V \times V \to V$ on the second factor, and Y is vector field $Y: V \times V \to p_2^*(T\mathbb{R}^d)$, $(v, w) \mapsto w - v$.

Twisted Connes-Hochschild-Kostant-Rosenberg theorem

Theorem (Twisted CHKR theorem)

Let $\iota_h : V^h \hookrightarrow V$ and $\pi_h : V \to V^h$ be the canonical injection of and orthogonal projection onto the fixed point subspace V^h , respectively, and $Y_h : V \to T\mathbb{R}^d$, $v \mapsto v - hv$. The following chain maps ι_h^* and π_h^* then are quasi-isomorphisms:

$$\Omega^{d}(V) \xrightarrow{i_{Y_{h}}} \dots \xrightarrow{i_{Y_{h}}} \Omega^{1}(V) \xrightarrow{i_{Y_{h}}} C^{\infty}(V)$$

$$\iota_{h}^{*} \downarrow \qquad \iota_{h}^{*} \downarrow \qquad \iota_{h}^{*} \downarrow$$

$$\Omega^{d}(V^{h}) \xrightarrow{0} \dots \xrightarrow{0} \Omega^{1}(V^{h}) \xrightarrow{0} C^{\infty}(V^{h})$$

$$\pi_{h}^{*} \downarrow \qquad \pi_{h}^{*} \downarrow \qquad \pi_{h}^{*} \downarrow$$

$$\Omega^{d}(V) \xrightarrow{i_{Y_{h}}} \dots \xrightarrow{i_{Y_{h}}} \Omega^{1}(V) \xrightarrow{i_{Y_{h}}} C^{\infty}(V)$$

Hence $H_k(\mathbb{C}^{\infty}(V), {}^h\mathbb{C}^{\infty}(V)) \cong \Omega^k(V^h)$.

The inertia groupoid

Definition

Given a proper Lie groupoid $G \rightrightarrows M$, its loop space is defined as

$$\Lambda_0\mathsf{G}:=\{g\in\mathsf{G}_1\mid s(g)=t(g)\}$$
 .

The groupoid acts by conjugation on the loop space. The corresponding action groupoid is the inertia groupoid

$$\Lambda G := G \ltimes \Lambda_0 G \ .$$

The orbit space of the inertia groupoid is called the inertia space.

Example

If $G = G \ltimes M$ is an action groupoid, then

$$\Lambda_0 \mathsf{G} = \{(g, p) \in (G \times M) \mid gp = p\} \subset G \times M$$

- The connected components of the loop space of a proper étale Lie groupoid are manifolds. Therefore the corresponding inertia groupoid is again proper étale, and the inertia space is an orbifold in this case.
- In general, the loop and inertia spaces are locally semialgebraic, so are Whitney stratified space. A Whitney stratification can be explicitly given, the so-called orbit Cartan stratification (Farsi-P-Seaton 15').

The inertia space of circle action on the plane

Basic relative forms

Consider the group action case, i.e. $G = G \ltimes M$.

• space of relative forms on the loop space:

$$\begin{split} \Omega^k_{\mathsf{rel},\Lambda_0(G\ltimes M)} &:= \\ \Gamma^\infty(\Lambda^k s^* T^* M) / J_{\Lambda_0} \Gamma^\infty(\Lambda^k s^* T^* M) + d_{\mathsf{rel}} J_{\Lambda_0} \wedge \Gamma^\infty(\Lambda^{k-1} s^* T^* M) \ , \end{split}$$

where J_{Λ_0} is the vanishing ideal of the loop space. This is Grauert–Grothendieck's approach to forms on singular spaces, cf. PPT 17'.

• space of horizontal relative forms:

$$\Omega^k_{\mathsf{hrel},\Lambda_0(G\ltimes M)} := \left\{ \omega \in \Omega^k_{\mathsf{rel},\Lambda_0(G\ltimes M)} \mid \iota_{\xi_M} \omega = \mathsf{0} \text{ for all } \xi \in \mathsf{Lie}(G) \right\}$$

• space of basic relative forms:

$$\Omega^{k}_{\operatorname{brel},\Lambda_{0}(G \ltimes M)} := \left(\Omega^{k}_{\operatorname{hrel},\Lambda_{0}(G \ltimes M)}\right)^{G}$$

Hochschild homology of Lie groupoids

Brylinski's conjecture

Observe that one has a morphism of sheaves defined over open invariant $V \subset X$ by

$$\Phi_{k,V/G}: C_k(\mathbb{C}^{\infty}(V), \mathcal{A}(V/G)) \to \Omega^k_{\mathsf{rel},\Lambda_0}(\Lambda_0(G \ltimes V)),$$

$$f_0 \otimes f_1 \otimes \ldots \otimes f_k \mapsto [f_0 d(s^*f_1) \land \ldots \land d(s^*f_k)]_{\Lambda_0}$$

Conjecture (Brylinski 87')

Let *M* be *G*-manifold and regard $\Omega^{\bullet}_{hrel,\Lambda_0}(\Lambda_0(G \ltimes M))$ as a chain complex endowed with the zero differential. Then the chain map

$$\Phi_{\bullet,M/G}: C_{\bullet}\big(\mathfrak{C}^{\infty}(M), \mathcal{A}(M/G)\big) \to \Omega^{\bullet}_{\mathsf{hrel},\Lambda_0}\big(\Lambda_0(G \ltimes M)\big)$$

is a quasi-isomorphism.

Verified cases

Brylinski's conjecture has been verified in the following cases:

- finite group actions (Brylinski–Nistor 94', Brodzki–Dave–Nistor 17',...)
- group actions with only one isotropy type (folklore?, PPT)
- circle actions (PPT)

Problem

The difficulty to prove Brylinski's claim are

- that the twisted CHKR quasi-isomorphisms do not depend "continuously" on the transformation h,
- **2** the complicated singular structure of the inertia space.

The circle action case

The proof in the circle action case is already non-trivial. The methods applied are the following:

- reduction to the linear circle action case by the slice theorem and localization
- reduction to the case where the isotropy group is \mathbb{S}^1 , i.e. to $\mathbb{S}^1\ltimes\mathbb{R}^{2n}$
- use the Connes-Koszul resolution to get an expression for the homology H_●(C[∞](ℝ²ⁿ), S¹ × C[∞](ℝ²ⁿ))
- apply methods from real algebraic geometry (jets and infinitely flat functions) and reduce the claim to germs/jets at the origin
- use complex coordinates and further methods from real algebraic geometry such as Malgrange's preparation theorem to locally describe the vanishing ideal of the inertia space and the vector field Y_h
- use all of this to identify the homology $H_{\bullet}(\mathbb{C}^{\infty}(\mathbb{R}^{2n}), \mathbb{S}^1 \ltimes \mathbb{C}^{\infty}(\mathbb{R}^{2n}))$ with the graded vector space of horizontal relative forms.