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Introduction

I Before I get to Hopf cyclic cohomology, let me start by mentioning a
few instances of the appearance of Hopf algebras in the study of
cyclic homology that I was involved with.



Deformation complex and Deligne’s conjecture

I In 1960’s Gerstenhaber understood that deformations of an
associative algebra A is controlled by its Hochschild cohomology
H∗(A,A). In particular he showed the latter is a graded Poisson
algebra, i.e. a commutative DGA + a compatible DGLA + shift in
degrees. (He had a similar result for deformations of Lie algebras).

I On the level of cochains (C∗(A,A), δ,∪, [ , ]): Jacobi identity holds
on the nose, cup product is only homotopy associative, compatibility
with Lie algebra structure is also only up to homotopy (aka
homotopy Gerstenhaber algebra). What is the full structure here?

I Deligne’s conjecture: The Hochschild complex is an algebra over the
singular chain operad of the little squares operad E2.
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Bar-Cobar duality

I M. K, Operations on Cyclic Homology, the X Complex, and a
Conjecture of Deligne. CMP, 1998.

I B : DGA→ DGC , B(A) = ⊕nA⊗n. Also

Coder(B(A),B(A)) = C∗(A,A)

I If A is a homotopy Gerstenhaber algebra, then B(A) is a Hopf
algebra.

I Quillen had cast cyclic homology of A in terms of DG colagebra B(A)
and the cocommutator subspace Ω1(B(A))[. Using the X-complex
of Cuntz and Quillen I was able to get many of the operations:
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I Let V be a homotopy G algebra. Then there are natural maps of
supercomplexes

X̂ (BV )⊗ X̂ (BV ) −→ X̂ (BV ),

X̂ (BV )⊗ X̂ (BV0) −→ X̂ (BV0).

I Applied to V = C∗(A,A), can get many of the operations.

I Barc construction can also be used to define cyclic homoloy of A∞
algebras and algebras over operads in general.

I Main point: Hopf algebra symmetries lead to operations and to a
host of intriguing relations.
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Portugal meeting 1997

I I presented this paper in a meeting in Lisbon (organized by Paulo
Almeida) in September 1997. Alain and Henri were there too and
were quite interested in it, and in Hopf algebras in cyclic
cohomology from a different perspective. In fact they were
discovering Hopf cyclic cohomology just about that time, but no
paper yet. I knew something important was brewing!

I An immediate question: devevlop a cross product formula for Hopf
algebra actions.



Portugal meeting 1997

I I presented this paper in a meeting in Lisbon (organized by Paulo
Almeida) in September 1997. Alain and Henri were there too and
were quite interested in it, and in Hopf algebras in cyclic
cohomology from a different perspective. In fact they were
discovering Hopf cyclic cohomology just about that time, but no
paper yet. I knew something important was brewing!

I An immediate question: devevlop a cross product formula for Hopf
algebra actions.



Cyclic homology of Hopf crossed products

I R. Akbarpour and M. K. Hopf algebra equivariant cyclic homology
and cyclic homology of crossed product algebras Journal Fur Die
Reine Und Angewandte Mathematik (2003).

I Let H act on A. Showed that there exists an isomorphism between
C•(Aop oHcop) the cyclic module of the crossed product algebra
Aop oHcop, and ∆(A\H), the cyclic module related to the diagonal
of the cylindrical module A\H. When S is invertible, we
approximated HC•(A oH) by a spectral sequence and gave an
interpretation of E0,E1 and E2 terms of this spectral sequence.



Connes-Moscovici breakthrough
I A. Connes and H. Moscovici, Hopf algebras, Cyclic Cohomology and

the transverse index theorem, Comm. Math. Phys. 198 (1998), no.
1, 199–246.

I Transverse index theory for foliations: characteristic map for Hopf
algebra actions

χτ : H⊗n −→ Hom(A⊗(n+1), C),

χτ (h1 ⊗ · · · ⊗ hn)(a0 ⊗ · · · ⊗ an) = τ(a0h1(a1) · · · hn(an)).

It contains the range of the Connes-Chern character map. A=
Foliation algebra, H= quantum symmetries of the foliation.

I Structure of H, factorization of G = Diff (R) : Let G2 = ax + b
group, G1 : ϕ(0) = 0, ϕ′(0) = 1.

G = G1G2,

H = U o F
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Modular pair in involution
I Problem: promote the characteristic map χτ to a morphism of cyclic

modules. This is a tall order!

I Antecedent: Connes’ characteristic map (1980)

χτ : U(g)⊗n → Hom(A⊗(n+1), C)

I Connes-Moscovici defined Hopf-cyclic cohomology, provided H is
endowed with a modular pair in involution (δ, σ). δ : H → C a
character, σ ∈ H a grouplike element, δ(σ) = 1, and

S̃2
δ (h) = σhσ−1,

Here S̃δ = δ ? S is the twisted antipode.

I δni : H⊗n → H⊗(n+1) :

δn0(h1 ⊗ · · · ⊗ hn) = 1⊗ h1 ⊗ · · · ⊗ hn,

δni (h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ h
(1)
i ⊗ h

(2)
i ⊗ · · · ⊗ hn,

δnn+1(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ hn ⊗ σ,
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Hopf cyclic cohomology

I Hopf-cyclic operator τn : H⊗n → H⊗n

τn(h1 ⊗ · · · ⊗ hn) = S̃δ(h1) · (h2 ⊗ · · · ⊗ hn ⊗ σ),

where · denotes the diagonal action defined by

h · (h1 ⊗ · · · ⊗ hn) := h(1)h1 ⊗ h(2)h2 ⊗ · · · ⊗ h(n)hn.

χτ : HC n
(δ,σ)(H)→ HC n(A).



Computations

I Connes-Moscivici: The periodic groups HPn
(δ,1)(H1) are canonically

isomorphic to the Gelfand-Fuchs cohomology of the Lie algebra of
formal vector fields on the line:

H∗(a1,C) = HP∗(δ,1)(H1).

I Tthe Schwarzian derivative, Godbillon-Vey cocycle, and the
transverse fundamental class of Connes, are realized asHopf cyclic
cocycles.

I Universal enveloping algebras

HLie
∗ g = HP∗(ε,1)(U(g)).



The emergence of the iceberg

I I suspected that the Connes-Moscovici Hopf cyclic cohomology
should be understood as a vast generalization of group homology
and Lie algebra homology, and as a Hopf algebra equivariant de
Rham cohomology, but no direct link was visible. I also guessed that
the main issue would be to find the right notion of coefficients
(modules) for this theory.

I With R. Akbarpour and B. Rangipour we managed to develop an
intermediate theory, we called it equivariant cyclic cohomology and
invariant cyclic homology, respectively.

I R. Akbarpour, and M. K, Equivariant cyclic cohomology of H-algebras. K -Theory 29 (2003), no. 4, 231–252. M. K, and B.

Rangipour, Invariant cyclic homology. K -Theory 28 (2) (2003), 183-205.
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The HKRS papers

I By some lucky coincidences, the four of us P. Hajac, B. Rangipour,
Y. Sommerhaeuser and M. K. could collaborate and work across the
Atlantic for about 6 month to discover the right notion of
coefficients. The right notion turned out to be closely related to an
important concept in quantum group theory, low dimensional
topology, and Hopf algebras; the Yetter-Drinfeld modules.



Yetter-Drinfeld modules

I Let H be a Hopf algebra and M be a left H-module and left
H-comodule. M is a left-left Yetter-Drinfeld H-module if

ρ(hm) = h(1)m(−1)S(h(3))⊗ h(2)m(0).

We denote the category of left-left YD modules over H by H
HYD.

This is exactly the center of the category of left H-mod and left
H-comod.

I If H is finite dimensional, then the category H
HYD is isomorphic to

the category of left modules over the Drinfeld double D(H) of H.
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Stable anti-Yetter-Drinfeld modules

I This class of modules for Hopf algebras were introduced by HKRS.
Its definition was entirely motivated by cyclic homology theory: the
anti-Yetter-Drinfeld condition guarantees that the simplicial and
cyclic operators are well defined on invariant complexes, and the
stability condition implies the crucial periodicity condition.

I Definition: A left-left anti-Yetter-Drinfeld H-module is a left
H-module and left H-comodule such that

ρ(hm) = h(1)m(−1)S(h(3))⊗ h(2)m(0),

for all h ∈ H and m ∈ M. We say that M is stable if in addition we
have

m(−1)m(0) = m,

for all m ∈ M.
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SAYD modules

I MPI’s are 1-d SAYD’s: There is a one-one correspondence between
modular pairs in involution (δ, σ) on H and SAYD module structure
on M = C, defined by

h.r = δ(h)r , r 7→ σ ⊗ r ,

for all h ∈ H and r ∈ C. We denote this module by M =σCδ.

I Let M = H. Then with conjugation action g · h = g (1)hS(g (2)) and
comultiplication h 7→ h(1) ⊗ h(2) as coaction, M is an SAYD module.

I NC principal bundles define SAYD modules.



Hopf cyclic cohomology with coefficients

I HKRS defined cyclic cohomology for triples (A,H,M) where H is a
Hopf algebra, acting or coacting on an algebra or coalgebra A, and
M is an SAYD module over H. These four cases cover all existing
cyclic homology theories. Connes-Moscovici’s original example of
Hopf-cyclic cohomology belongs to this class of theories.

I Type C: Let C be a left H-module coalgebra, and M be a right-left
SAYD H-module. Let

Cn(C ,M) := M ⊗H C⊗(n+1)

Thanks to the SAYD condition on M, the following operators are
well defined and define a cocyclic module. In particular the crucial
periodicity conditions

τn+1
n = id ,

are satisfied:
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δi (m ⊗ c0 ⊗ · · · ⊗ cn−1) = m ⊗ c0 ⊗ · · · ⊗ c
(1)
i ⊗ c

(2)
i ⊗ cn−1,

δn(m ⊗ c0 ⊗ · · · ⊗ cn−1) = m(0) ⊗ c
(2)
0 ⊗ c1 ⊗ · · · ⊗ cn−1 ⊗m(−1)c

(1)
0 ,

σi (m ⊗ c0 ⊗ · · · ⊗ cn+1) = m ⊗ c0 ⊗ · · · ⊗ ε(ci+1)⊗ · · · ⊗ cn+1,

τn(m ⊗ c0 ⊗ · · · ⊗ cn) = m(0) ⊗ c1 ⊗ · · · ⊗ cn ⊗m(−1)c0.

For C = H and M =σCδ, the cocyclic module {CnH(C ,M)}n∈N is
isomorphic to the cocyclic module of Connes-Moscovici attached to a
Hopf algebra endowed with a modular pair in involution.
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Cyclic homology with coefficients?

I Here is a fundamental question that is still open. If cyclic homology
is a noncommutative analogue of de Rham cohomology, then what is
the NC analogue of de Rham cohomology with coefficients. This is
of course related to other open problems: NC π1, local systems,
monodromy, etc.

I With A. Kaygun we showed that SAYD’s are exactly like flat bundles
(local systems) over the quantum group H, and Hopf cyclic
cohomology is like de Rham cohomology with coefficients in this
local flat bundle.



Braided monoidal categories and cyclic homology

I Beyond Hopf algebras, there is quasi Hopf algebras, weak Hopf
algebras, and fusion categories in general (play a role in condensed
matter physics and low dimensional topology as in Dijkgraaf-Witten
theory, the finite group version of Chern-Simons theory, or in Turaev
state sum models). Developing a Hopf cyclic theory for them is an
interesting problem. The point is that unless one reaches to a totally
new definition of Hopf cyclic cohomology, it is not clear how one can
define a Hopf cyclic theory for these new objects. This can be done
for Hopf algebra objects in monoidal categories (joint with A.
Pourkia).



Monoidal categories, 2-traces, and cyclic homology

I Let C be a monoidal category, M a C-bimodule category and ZM it
center. The functor category Fun(M,V) is a C-bimodule category.
A 2-trace on C is a functor F ∈ ZCFun(C,V).

I To any associative algebra object in an abelian monoidal category
equipped with a symmetric 2-trace, one can attach a cyclic module
(M. Hassanzadeh, Ilya Shapiro, M.K.).
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