Localization and cyclic homology of crossed products with algebraic groups

Victor Nistor

Institut Élie Cartan de Lorraine, Université de Lorraine

September 29, 2021, Toronto

Cyclic homology at 40 – achievements and further prospects –

Abstract: "Localization and cyclic homology of crossed products with algebraic groups"

As the title suggests, I will talk about:

- **Topic:** Hochschild, cyclic, and per cyclic homologies of $A \rtimes G := C_c^{\infty}(G; A)$, with *G* real algebraic (\mathbb{R} -points).
- $G = \text{compact Lie group or classical group } (SL_n(\mathbb{R}), ...) ...$
- Method: localization wrt max ideals of $R(G) := C^{\infty}(G)^{G}$.
- Applications: connections localization, completion, and orbital integrals.

イロト 不得 トイヨト イヨト

Summary

Introduction, reminiscences, and a historical perspective

2) Cyclic homology of crossed-products and localization

3 Algebraic groups

Reminiscences

Celebrating 40 years of **Connes' talk on cyclic homology** + results > 30 years old.

\Rightarrow Reminscences:

1981: beginning my mathematical research life.

Study groups:

- Algebraic topology (with V. Patrângenaru)
- Scattering theory (with V. Georgescu and V. Iftimie)
- Operator algebras and *K*-theory (with **D. Voiculescu**, M. Putinar, and S. Popa).

< 日 > < 同 > < 回 > < 回 > < □ > <

Two mantras

Fortuitous circumstances for appreciating the emerging "non-commutative mathematics"

Two mantras were common at that time:

- C*-algebras are "non-commutative spaces" (i.e. extends categ. of loc. comp. spaces; Dixmier's book) and
- *K*-theory pertains to "non-commutative" algebraic topology (Atiyah's and Karoubi's books, the articles of Pimsner and Voiculescu).

4/31

< 日 > < 同 > < 回 > < 回 > < □ > <

Motivation for crossed-products

From these study groups we learned that:

- *C**-algebras provide a convenient framework to study both locally compact spaces **and** locally compact groups.
- identifying the K-groups of group C*-algebras (or of crossed-products) is an important question that would complete the program started in algebraic topology.

(I learned about Baum-Connes conjecture only a bit later.)

"C*-algebras and differential geometry"

Turning point: Voiculescu's suggestion to study Connes' art.

"C*-algèbres et géométrie différentielle"

(Rieffel's nc tori + jump from nc topology to nc diff geom :-))

This paper + work of Pimsner and Voiculescu: motivation to study the cyclic homology of crossed products.

Other available papers: Baum, Burghelea, Connes, Karoubi, ... (sadly, Feigin-Tsygan and Brylinski papers were not available) No email, no internet ...

6/31

イロト 不得 トイヨト イヨト

Summary

Introduction, reminiscences, and a historical perspective

2 Cyclic homology of crossed-products and localization

3 Algebraic groups

Disclaimer :-)

Concentrate on: results available at that time ($\leq 30y$)

More (incl. more recent) results on crossed products in talks of:

- Consani
- Connes
- Cuntz
- Higson
- Moscovici
- Pflaum
- Piazza
- Tang

and others ... (no reference \neq mine)

Crossed-products (discrete groups)

- A = complex algebra
- $\Gamma = \text{group}$
- group morphism $\alpha : \Gamma \rightarrow Aut(A)$.

Definition

The **crossed product algebra** $A \rtimes \Gamma$ for Γ discrete is the algebra generated linearly by $a\gamma$, $a \in A$, $\gamma \in \Gamma$, with

$$a\gamma b\gamma' := a\alpha_{\gamma}(b)\gamma \gamma'$$
.

Thus, for $\Gamma = discrete: A \rtimes \Gamma = A \otimes \mathbb{C}[\Gamma]$ as vector spaces. (Later, if *G* is a *Lie group:* $A \rtimes G := C_c^{\infty}(G; A)$.)

9/31

< 日 > < 同 > < 回 > < 回 > < □ > <

(De)localization

Basic observation (Burghelea, Feigin-Tsygan, Karoubi) :

The *Hochschild* complex of $A \rtimes \Gamma$ = direct sum of complexes indexed by the conj. classes $\langle \gamma \rangle$.

$$((A \rtimes \Gamma)^{\otimes (q+1)}, b) = \text{Hochschild complex.}$$

2 $\langle \gamma \rangle := \{ g \gamma g^{-1} \mid g \in \Gamma \} = \text{conj. class.}$

 $a_0\gamma_0\otimes a_1\gamma_1\otimes\ldots\otimes a_k\gamma_k$ with $\gamma_0\gamma_1\ldots\gamma_k\in\langle\gamma\rangle$.

Also for cyclic.

10/31

Subcomplex

 $\mathbf{d}_{\mathbf{i}} : \mathbf{a}_{0}\gamma_{0} \otimes \ldots \otimes \mathbf{a}_{k}\gamma_{k} \mapsto \mathbf{a}_{0}\gamma_{0} \otimes \ldots \otimes \mathbf{a}_{i}\alpha_{\gamma_{i}}(\mathbf{a}_{i+1})\gamma_{i}\gamma_{i+1} \otimes \ldots \otimes \mathbf{a}_{k}\gamma_{k}$ $\gamma := \gamma_{0}\gamma_{1}\ldots\gamma_{k} \mapsto \gamma_{0}\gamma_{1}\ldots\gamma_{k} =: \gamma$

(product of the *i* and i + 1 components). However,

$$\mathbf{d}_{\mathbf{k}} : \mathbf{a}_{0}\gamma_{0}\otimes\ldots\otimes\mathbf{a}_{k}\gamma_{k} \mapsto \mathbf{a}_{k}\alpha_{\gamma_{k}}(\mathbf{a}_{0})\gamma_{k}\gamma_{0}\otimes\mathbf{a}_{1}\gamma_{1}\otimes\ldots\otimes\mathbf{a}_{k-1}\gamma_{k-1}$$
$$\gamma := \gamma_{0}\gamma_{1}\ldots\gamma_{k} \mapsto \gamma_{k}\gamma_{0}\gamma_{1}\ldots\gamma_{k-1} = \gamma_{k}\gamma\gamma_{k}^{-1}.$$

Conjugation needed also the cyclic permutation (Connes):

 $\mathbf{t_k} : a_0 \gamma_0 \otimes \ldots \otimes a_k \gamma_k \mapsto a_k \gamma_k \otimes a_0 \gamma_0 \otimes a_1 \gamma_1 \otimes \ldots \otimes \ldots \otimes a_{k-1} \gamma_{k-1}$

 $\gamma := \gamma_0 \gamma_1 \dots \gamma_k \mapsto \gamma_k \gamma_0 \gamma_1 \dots \gamma_{k-1} = \gamma_k \gamma \gamma_k^{-1}.$

Direct sum decomposition

We let

$$\mathsf{HH}_*(\boldsymbol{A}\rtimes \boldsymbol{\Gamma})_\gamma \ := \ \boldsymbol{H}_*\big((\boldsymbol{A}\rtimes \boldsymbol{\Gamma})_\gamma^{\otimes (\boldsymbol{q}+1)}, \boldsymbol{b}\big) \,.$$

We define $HC_*(A \rtimes \Gamma)_{\gamma}$ and $HP_*(A \rtimes \Gamma)_{\gamma}$ similarly.

Decomposition ($k \in \mathbb{Z}_+$):

$$\mathsf{HH}_k(A \rtimes \Gamma) \simeq \bigoplus_{\langle \gamma \rangle \in \langle \Gamma \rangle} \mathsf{HH}_k(A \rtimes \Gamma)_{\gamma}.$$

Cyclic and periodic cyclic homologies: similar decompositions. (Cohomology: direct product instead.)

Q: how to extend this to non-discrete groups? A: Localization.

IVERSITÉ I ORRAINF

The role of centralizers

 $HH_q(A \rtimes \Gamma)_{\gamma}$: localization, derived functors, centralizers, ...

Important special case: $A = \mathbb{C}$, and hence $A \rtimes \Gamma = \mathbb{C}[\Gamma]$.

Centralizer of $x \in \Gamma$:

$$\Gamma_x := \{g \in \Gamma \mid gx = xg\}$$

$$\begin{split} \mathrm{HH}_q(\mathbb{C}[\Gamma])_\gamma, \, \mathrm{HC}_q(\mathbb{C}[\Gamma])_\gamma, \, \mathrm{HP}_q(\mathbb{C}[\Gamma])_\gamma &: \text{ in terms of gr. homology} \\ \mathrm{H}_*(\Gamma_\gamma/(\gamma)) \,, \quad (\gamma) = \{\gamma^n\}_{n \in \mathbb{Z}} \,. \end{split}$$

(Burghelea, Connes, Feigin-Tsygan, Karoubi, Nest, ...).

Recurring theme: different behavior for γ torsion or not.

Localization as fractions

"Localization" in proper sense of comm. alg. (orb. integrals).

 $R = \operatorname{ring}, R \supset \mathfrak{m} = \operatorname{maximal} \operatorname{ideal}, M = R \operatorname{-module}.$

The **localization** M_m of M at m is the set of fractions

$$M_{\mathfrak{m}} := \left\{ \frac{f}{s} \mid f \in M, s \in R \setminus \mathfrak{m} \right\} \simeq R_{\mathfrak{m}} \otimes_{R} M.$$

Proposition (ex. Atiyah and MacDonald)

The R-module morphism $f: M \rightarrow M'$ is an isomorphism iff all

$$f_{\mathfrak{m}}: M_{\mathfrak{m}} \to M'_{\mathfrak{m}}$$

are isomorphisms (m ranges through the maximal ideals of R).

イロト イポト イヨト イヨト

Class functions

Ring of *class functions* $f : \Gamma \to \mathbb{C}$ (conj. *invariant*):

$$\mathbf{R}(\Gamma) := \mathcal{C}^{\infty}(\Gamma)^{\Gamma} := \{f: \Gamma \to \mathbb{C}\}^{\Gamma}.$$

 $R_c \subset R(\Gamma) :=$ class f. supp. on fin. many conj. classes (Γ disc.) All maximal ideals $R_c \Leftrightarrow \mathfrak{m} \subset R(\Gamma)$ are:

$$\mathfrak{m} = \mathfrak{m}_{\gamma} := \{ f \in \mathcal{C}^{\infty}(\Gamma)^{\Gamma} \mid f(\gamma) = \mathbf{0} \}.$$

Remark

Assume $M \simeq \bigoplus_{\langle \gamma \rangle \in \langle \Gamma \rangle} M_{\langle \gamma \rangle}$. Then

- $\mathfrak{m} = \mathfrak{m}_{\gamma} \Rightarrow M_{\mathfrak{m}} \simeq M_{\langle \gamma \rangle}$
- $M_{\rm m} = 0$ otherwise (i.e. if $R_c \subset {\rm m, m}$ "at infinity").

So we can use localization to study $HH_*(A\rtimes\Gamma)$: (Γ still discrete)

 $\mathsf{HH}_*(\mathbf{A} \rtimes \Gamma)_{\gamma} \simeq \mathsf{HH}_*(\mathbf{A} \rtimes \Gamma)_{\mathfrak{m}_{\gamma}}.$

The same holds for cyclic and periodic cyclic homology.

We will use a similar approach for the crossed-products with Lie groups using the ring of smooth class functions.

Algebraic groups: nice conjugacy classes.

16/31

イロト 不得 トイヨト イヨト

Summary

Introduction, reminiscences, and a historical perspective

2 Cyclic homology of crossed-products and localization

3 Algebraic groups

17/31

Crash course in algebraic geometry

Algebraic groups: nice orbits and class functions.

 $\mathbb{K}=$ algebraically closed field.

Definition

A \mathbb{K} (affine) algebraic variety $\mathbb{V} \subset \mathbb{K}^n$ is the set of common zeroes of a set of polynomials $\mathbb{P} \subset \mathbb{K}[X] := \mathbb{K}[X_1, X_2, \dots, X_n]$.

If $k \subset \mathbb{K}$ is a subfield and if $\mathbb{P} \subset k[X_1, X_2, \dots, X_n]$, we say that \mathbb{V} is *defined over* k. Its *k*-points:

$$\mathbb{V}(\mathbf{k}) := \mathbb{V} \cap \mathbf{k}^n.$$

(**Dual** def. in terms of alg. $\mathbb{K}[\mathbb{V}]$, as for comm. C^* -alg.)

18/31

(4) (5) (4) (5)

Algebraic groups

An **algebraic group** \mathbb{G} = algebraic variety that is a group s.t. the operations are rational (= algebraic) functions.

(Equivalently, $\mathbb{K}[\mathbb{G}]$ is a suitable Hopf algebra.)

Many examples:

2 All compact Lie gr. are real alg. gr. ($k = \mathbb{R}, \mathbb{K} = \mathbb{C}$).

The Heisenberg group

$$H_3 := \left\{ \left(egin{array}{ccc} 1 & x & z \ 0 & 1 & y \ 0 & 0 & 1 \end{array}
ight) \mid x, y, z \in \mathbb{R}
ight\} \,.$$

Non-algebraic groups

- $\{0\} \neq Z \subset H_3$ discr central $\Rightarrow H_3/Z$ is not algebraic.
- **2** Neither is $\widetilde{SL}_2(\mathbb{R})$, the universal cover of $SL_2(\mathbb{R})$.
- A discrete group is algebraic if, and only if, it is finite.
- (Connes: foliations, Rieffel: nc tori) Let $\theta \notin \mathbb{Q}$ and

$$F_{\theta} := \left\{ \left(\begin{array}{cccc} e^{it} & x & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{i\theta t} & y \\ 0 & 0 & 0 & 1 \end{array} \right) \mid t, x, y \in \mathbb{R} \right\}$$

- F_{θ} is not real algebraic
- Its conjugacy classes: a highly non-separated space
- some conjugacy classes are not locally closed in F_{θ}

20/31

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Crossed-product

Algebraic groups are smooth. A real algebraic group (the real points of a complex algebraic group) is a **Lie group**.

Assume *G* is a Lie group with action $\alpha : G \rightarrow Aut(A)$ s.t.

- A is complete, topological algebra.
 2 α_g is continuous and unital for each g ∈ G
- **(a)** $G \ni g \rightarrow \alpha_g(a) \in A$ is smooth for each $a \in A$.

The (smooth) crossed product of A with G is defined as

$$A \rtimes G := \mathcal{C}^{\infty}_{c}(G, A)$$

with the convolution product

$$\varphi * \psi(\boldsymbol{g}) = \int_{\boldsymbol{G}} \varphi(\boldsymbol{h}) \alpha_{\boldsymbol{h}}(\psi(\boldsymbol{h}^{-1}\boldsymbol{g})) \boldsymbol{d}\boldsymbol{h}.$$

Cyclic object

We now turn to the cyclic homology of $A \rtimes G$, $G = \mathbb{G}(k)$.

Mostly $\mathbb{K} = \mathbb{C}$ and $k = \mathbb{R}$ (**real** algebraic groups).

(The *p*-adic case is simpler and more complete!)

First question: "what is the right" tensor product?

Detailed analysis: Cuntz, Meyer, ...

Our choice: **most straightforward cyclic object** (projective tensor product):

$$\mathbf{A}^{\sharp} := \left(\mathcal{C}^{\infty}_{\mathbf{c}}(\mathbf{G}^{n+1}, \mathbf{A}^{\widehat{\otimes} n+1}) \right).$$

The localization at a conjugacy class

The cyclic object

$$\mathbf{A}^{\sharp} := \left(\mathcal{C}^{\infty}_{\mathbf{c}}(\mathbf{G}^{n+1}, \mathbf{A}^{\widehat{\otimes} n+1}) \right).$$

is a module over the ring of (smooth) class functions:

$$R(G) := \mathcal{C}^{\infty}(G)^{G}.$$

The maximal ideals of R(G) "not at infinity" are again

$$\mathfrak{m}_{\boldsymbol{\gamma}} := \{ f \in \boldsymbol{R}(\boldsymbol{G}) \mid f(\boldsymbol{\gamma}) = \mathbf{0} \}.$$

(Class functions that vanish on a *semi-simple* element γ of *G*. "not at infinity" = "not containing R_c " \Leftrightarrow closed)

Let $G = \mathbb{G}(\mathbb{R})$ be a **connected, real algebraic** group, *K* a **maximal** compact subgroup, and $q = \dim(G/K)$.

Theorem (V.N. '93)

The Hochschild, cyclic, and per. cyclic homology groups of $A \rtimes G := C_c^{\infty}(G; A)$ are R(G)-modules s.t. for m maximal,

 $\mathsf{HP}_*(\boldsymbol{A}\rtimes\boldsymbol{G})_{\mathfrak{m}}\simeq\mathsf{HP}_{*+\boldsymbol{q}}(\boldsymbol{A}\rtimes\boldsymbol{K})_{\mathfrak{m}}\,.$

In particular, $HP_*(A \rtimes G)_m = 0$ if m is not elliptic (not in K).

Proof: Cyclic, precyclic, and quasicyclic objects.

A similar result holds for *cohomology*.

I assume that the result should be true without localization in view of recent results of A. Afgoustidis.

24/31

IVERSITÉ

Orbital integrals

$$\begin{aligned} \mathsf{HH}_*(\mathcal{C}^\infty(\mathcal{K})) &= \mathcal{C}^\infty(\mathcal{K})^{\mathcal{K}} \text{ with zero } \mathcal{B} \text{ and hence} \\ \mathsf{HP}_*(\mathcal{C}^\infty(\mathcal{K})) &\simeq \mathcal{C}^\infty(\mathcal{K})^{\mathcal{K}} \otimes \mathbb{C}[\sigma] \,, \quad \deg \sigma = 2 \,. \end{aligned}$$

Remark

If $\mathfrak{m}, \mathfrak{m}'$ are maximal in *R* and *M* = *R*-module:

$$M_{\mathfrak{m}}/\mathfrak{m}'M_{\mathfrak{m}} \simeq (M/\mathfrak{m}'M)_{\mathfrak{m}} \simeq \begin{cases} M/\mathfrak{m}M & \text{if } \mathfrak{m} = \mathfrak{m}' \\ 0 & \text{otherwise} \end{cases}$$

Hence rather few orb. integr. $\in HP_k(\mathcal{C}^{\infty}_c(G))/\mathfrak{m}_{\gamma} HP_k(\mathcal{C}^{\infty}_c(G)).$

Talks of Pflaum, Piazza, and Tang for more on orb. int. $(M/\mathfrak{m}'M \simeq R/\mathfrak{m}' \otimes_R M \text{ and } M_\mathfrak{m} \simeq R_\mathfrak{m} \otimes_R M)$

Victor Nistor (UL)

Localization and cyclic homology

September 29, 2021, Toronto

25/31

JNIVERSITÉ De lorraine Theorem \Rightarrow that, unlike in the discrete case, the relation between the homology groups of $A \rtimes G$ and the differentiable homology of G is complicated.

Again, I defer to the talks of Pflaum, Posthuma, and Tang, but see also the work of Crainic and Moerdijk.

Question. To determine the homological invariants of the $A \rtimes F_{\theta}$ (and of F_{θ}). In particular, to determine the space of class functions $R(F_{\theta}) := C^{\infty}(F_{\theta})^{F_{\theta}}$.

Elliott-Nest-Natsume analog of Connes' Thom isomorphism theorem for crossed products with \mathbb{R} . In that case, $HP_q(A \rtimes \mathbb{R})$ has a non-zero localization only at the identity $0 \in \mathbb{R}$.

Assume
$$R = \mathcal{C}^{\infty}(X)$$
 and $\mathfrak{m}_x := \{f \mid f(x) = 0\}.$

 $M/\mathfrak{m}_x M$ gives "the values" at *x* of the elements of *M*. Considering **only the quotients** $M/\mathfrak{m}_x M$ **would not suffice.**

However, the closely related completion wrt \mathfrak{m} :

$$\widehat{M}_{\mathfrak{m}} := \lim_{\leftarrow} M/\mathfrak{m}^n M$$

would suffice, since it is "stronger" than the localization:

$$\left(\widehat{M_{\mathfrak{m}}}\right)_{\mathfrak{m}} \simeq \left(\widehat{M}_{\mathfrak{m}}\right)_{\mathfrak{m}} \simeq \widehat{M}_{\mathfrak{m}},$$

(localization uses the blue m).

 $\widehat{M}_{\mathfrak{m}} \simeq \widehat{R}_{\mathfrak{m}} \otimes_R M$ similarly to $M_{\mathfrak{m}} \simeq R_{\mathfrak{m}} \otimes_R M$.

Localization and germs

The localization M_{m_x} corresponds to taking germs at *x*.

Germs at x are equivalence classes of restrictions to (arbitrarily small) neighborhoods of x.

More generally, homologies (Hochschild, cyclic, ...) can be restricted to open, conjugacy G-invariant open subsets (of G).

Proposition

Let G be real algebraic and $x \in G$ be semisimple. If $V \subset G_x$ is a small G_x -invariant neighborhood of x and $U \subset G$ is the associated tubular neighborhood, then

$$\mathsf{HP}_*(A \rtimes G)_U \simeq \mathsf{HP}_*(A \rtimes G_x)_V.$$

Further reductions

We can sometimes further reduce our calculations to commutative groups. Let

- *K* be a connected, compact Lie group.
- 2 $H \subset K$ be a maximal torus;
- **(a)** *W* be the Weyl group of the pair (K, H).

Theorem

$$\mathsf{HP}_*(\boldsymbol{A} \rtimes \boldsymbol{K}) \simeq \mathsf{HP}_*(\boldsymbol{A} \rtimes \boldsymbol{H})^{\boldsymbol{W}}$$

It generalizes $R(K) = R(H)^W$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Interest of periodic cyclic hom. calculations

- The periodic cyclic hom. of $C_c^{\infty}(G)$ is "close" to the **cohomology** of the spectrum of the group *G* (tempered, admissible, ...)
- The philosophy of Noncommutative geometry (Connes, Karoubi, Tsygan, ...)
- **Lie groups:** the exact relation between cyclic homology and the cohomology of the spectrum is yet to be fully understood (as far as I know).

30/31

イロト 不得 トイヨト イヨト

Cohomology of the spectrum

p-adic groups: the situation is simpler/better:

- Many conjugation invariant open **and** closed subsets.
- $C^{\infty}(G)$ = the space of *locally constant functions*.
- A clear relation between periodic cyclic hom. and the cohomology of the spectrum.

(True even in the more general setting of finite-type algebras: Kazhdan-V.N.-Schneider, building on results of Grothendieck and Feigin-Tsygan.)

Thank you very much!

