A short proof of the Feigin-Tsygan Theorem

Joachim Cuntz From a joint article with Cortiñas-Meyer-Tamme

1.October 2021

A short proof of the Feigin-Tsygan Theorem

Joachim Cuntz From a joint article with Cortiñas-Meyer-Tamme

1.October 2021

Our joint paper is an attempt to develop a version of cyclic homology for algebras over a field of positive characteristic p. In the paper we had to show that certain p-adic completions, called 'weak completions' of smooth algebras are still smooth in a certain sense. We then realized that our argument for that result also applies to give a short proof of the old result by Feigin-Tsygan. The Feigin–Tsygan Theorem establishes an important property of cyclic homology:

The periodic cyclic homology of the coordinate ring B of an affine algebraic variety in characteristic 0 gives exactly Grothendieck's infinitesimal cohomology of that variety. If $K = \mathbb{C}$ it describes the singular cohomology of the underlying space.

The Feigin–Tsygan Theorem establishes an important property of cyclic homology:

The periodic cyclic homology of the coordinate ring B of an affine algebraic variety in characteristic 0 gives exactly Grothendieck's infinitesimal cohomology of that variety. If $K = \mathbb{C}$ it describes the singular cohomology of the underlying space.

What is infinitesimal cohomology?

The Feigin–Tsygan Theorem establishes an important property of cyclic homology:

The periodic cyclic homology of the coordinate ring B of an affine algebraic variety in characteristic 0 gives exactly Grothendieck's infinitesimal cohomology of that variety. If $K = \mathbb{C}$ it describes the singular cohomology of the underlying space.

What is infinitesimal cohomology? Given a field K of characteristic 0 let V be an affine algebraic variety of finite type over K and A its algebra of polynomial functions. Embed V into a smooth variety Y (i.e. write A as a quotient $J \rightarrow P \rightarrow A$ of a smooth finitely generated algebra P) and consider the J-adic completion $\overline{P_J} = \lim_{t \to n} P/J^n$. Then the de Rham cohomology $HdR_*(\overline{P_J})$ does not depend on the choice of P and defines the infinitesimal cohomology $H_*^{inf}A$ of V, resp. A.

Feigin-Tsygan: $HP_*(A) = HdR_*(\overline{P_J}) = H_*^{inf}A$

A heuristic argument for the Feigin-Tsygan Theorem.

The result is well known if A is smooth (Connes, Loday-Quillen, Feigin-Tsygan) - one has $HP_*(A) = HdR_*(A)$.

In general, let $J \rightarrow P \rightarrow A$ be a smooth presentation of A and $\overline{P_J}$ the *J*-adic completion of the smooth algebra P. Then the topological algebra $\overline{P_J}$ is 'smooth' (claim). Therefore one has

$$HP_*(\overline{P_J}) = HdR_*(\overline{P_J})$$

But, since HP_* is invariant under nilpotent extensions one has $HP_*(\overline{P_J}) = HP_*(P/J) = HP_*(A)$ whence

 $HP_*(A) = HdR_*(\overline{P_J})$

A heuristic argument for the Feigin-Tsygan Theorem.

The result is well known if A is smooth (Connes, Loday-Quillen, Feigin-Tsygan) - one has $HP_*(A) = HdR_*(A)$.

In general, let $J \rightarrow P \rightarrow A$ be a smooth presentation of A and $\overline{P_J}$ the *J*-adic completion of the smooth algebra P. Then the topological algebra $\overline{P_J}$ is 'smooth' (claim). Therefore one has

$$HP_*(\overline{P_J}) = HdR_*(\overline{P_J})$$

But, since HP_* is invariant under nilpotent extensions one has $HP_*(\overline{P_J}) = HP_*(P/J) = HP_*(A)$ whence

 $HP_*(A) = HdR_*(\overline{P_J})$

We have to argue that the Hochschild-Kostant-Rosenberg Theorem applies to $\overline{P_J}$.

For the rest of the talk A will always denote a finitely generated commutative unital algebra over a field K of characteristic 0.

A is called smooth if it lifts in any nilpotent extension.

$$N \longrightarrow E \xrightarrow{\swarrow} B \xleftarrow{} A$$

If A is smooth then the Hochschild-Kostant-Rosenberg theorem states that $HH_*(A) \cong \Omega^*_A$ (Kähler differential forms).

In this isomorphism Connes' *B*-operator corresponds to the de Rham operator *d*. This immediately implies that $HP_*(A) = HdR_*(A)$ (HdR_* is the homology of the complex (Ω^*_A, d)).

Moreover, if $K = \mathbb{C}$ and A is smooth, then $HdR_*(A)$ describes the cohomology of the underlying space.

The HKR-theorem. Given an algebra A as above we define the bar-resolution B(A) and the Hochschild complex C(A) by

$$B(A): \qquad A \otimes A \xleftarrow{b'} A^{\otimes 3} \xleftarrow{b'} A^{\otimes 4} \xleftarrow{b'} \dots$$
$$C(A): \qquad A \xleftarrow{b} A \otimes A \xleftarrow{b} A^{\otimes 3} \xleftarrow{b} \dots$$

with

 $b'(a_0 \otimes \ldots \otimes a_n) = a_0 a_1 \otimes \ldots \otimes a_n - a_0 \otimes a_1 a_2 \otimes \ldots \otimes a_n + \ldots \\ b(a_0 \otimes \ldots \otimes a_n) = b'(a_0 \otimes \ldots \otimes a_n) + (-1)^n a_n a_0 \otimes \ldots \otimes a_{n-1} \\ B(A) \text{ is contractible with contraction } s. A^{\otimes n} \text{ is a bimodule over } A, \\ \text{ i.e. a module over the 'enveloping algebra' } A^e = A \otimes A. \\ \text{ The complex } C(A) \text{ is obtained from the contractible complex } B(A) \text{ as } \\ C(A) = A \otimes_{A^e} B(A). \\ HH_*(A) \text{ is the homology of } (C(A), b). \\ \text{ If } A \text{ is smooth, then the antisymmetrisation map gives an } \\ \text{ isomorphism } \Omega^*_A \xrightarrow{\cong} HH_*(A) \text{ (Hochschild-Kostant-Rosenberg). }$

We will use below that $HH_*(A)$ can be described as a derived functor, namely as $Tor_*^{A^e}(A, A)$ and the well known fact that this *Tor*-functor can be computed not only from the bar-resolution, but also from any resolution of A by flat A^e -modules.

Now assume that A is written as a quotient A = P/J where P is a smooth commutative algebra. As above we take the J-adic completion $\overline{P_J} = \lim_{n \to \infty} P/J^n$. We set out to determine $HH_*(\overline{P_J})$. Here $\overline{P_J}$ is treated as a complete topological algebra and we work with the completed complexes $B(\overline{P_J})$ and $C(\overline{P_J})$ defined as follows:

Denote by J_n the kernel of the natural map $P^{\otimes n} \to (P/J)^{\otimes n}$. We define $B_n(\overline{P_J})$ as the J_{n+2} -adic completion of $B_n(P)$ and $C(\overline{P_J})$ as the J_{n+1} -adic completion of C(P). Then $HH(\overline{P_J})$ is defined as the homology of $C(\overline{P_J})$.

To compute $HH(\overline{P_J})$ we use the following facts: (a) $\overline{P_{J_2}^e} \otimes_{P^e} B(P)$ is a flat $\overline{P_{J_2}^e}$ -module resolution of $\overline{P_J}$. (b) $B(\overline{P_J})$ is a flat $\overline{P_{J_2}^e}$ -module resolution of $\overline{P_J}$. (c) One has $\overline{P_J} \otimes_{\overline{P_{J_2}^e}} B(\overline{P_J}) \cong C(\overline{P_J})$.

Key observation from commutative algebra: If P is Noetherian, then $\overline{P_J}$ is a flat module over P.

Proof. (a) P^e is Noetherian. Therefore $\overline{P_{J_2}^e}$ is flat over P^e and $\overline{P_{J_2}^e} \otimes_{P^e} P = \overline{P_J}$. Also $\overline{P_{J_2}^e} \otimes_{P^e} B_n(P) = \overline{P_{J_2}^e} \otimes_K P^{\otimes n}$ is a free $\overline{P_{J_2}^e}$ -module. (b) $B_n(\overline{P_J})$ is a completion of the Noetherian algebra $\overline{P_{J_2}^e} \otimes_K P^{\otimes n}$.

The functor $Tor_*^{\overline{P_{J_2}^e}}(\overline{P_J}, \overline{P_J})$ is computed by the resolutions in (a) and (b). Thus after tensoring by $\overline{P_J}$ over $\overline{P_{J_2}^e}$ these have the same homology.

(a) P^e_{J2} ⊗_{P^e} B(P) is a flat P^e_{J2}-module resolution of P_J.
(b) B(P_J) is a flat P^e_{J2}-module resolution of P_J.
(c) One has P_J ⊗_{P^e_{J2}} B(P_J) ≅ C(P_J).
As a consequence we get a quasi-isomorphism
P_I ⊗_P (C(P), b) → (C(P_I), b)

Since $\overline{P_J}$ is a flat *P*-module, the homology of the complex on the left is $\overline{P_J} \otimes_P HH_*(P)$ whence

 $\overline{P_J} \otimes_P HH_*(P) \cong HH_*(\overline{P_J})$

Thus if P is a smooth finitely generated unital commutative K-algebra, we see that

 $HH_*(\overline{P_J}) = \overline{P_J} \otimes_P HH_*(P) = \overline{P_J} \otimes_P \Omega_P^*$

From $HH_*(\overline{P_J}) = \overline{P_J} \otimes_P HH_*(P) = \overline{P_J} \otimes_P \Omega_P^*$ we obtain

Feigin-Tsygan Theorem. Let A be a finitely generated commutative algebra and $J \rightarrow P \rightarrow A$ a presentation where P is smooth. Then

$$HP_*(A) = HP_*(\overline{P_J}) = HdR_*(\overline{P_J})$$

From $HH_*(\overline{P_J}) = \overline{P_J} \otimes_P HH_*(P) = \overline{P_J} \otimes_P \Omega_P^*$ we obtain

Feigin-Tsygan Theorem. Let A be a finitely generated commutative algebra and $J \rightarrow P \rightarrow A$ a presentation where P is smooth. Then

$$HP_*(A) = HP_*(\overline{P_J}) = HdR_*(\overline{P_J})$$

Proof. The first equality is Goodwillie's theorem (or, in the approach by Cuntz-Quillen is true by definition).

From $HH_*(\overline{P_J}) = \overline{P_J} \otimes_P HH_*(P) = \overline{P_J} \otimes_P \Omega_P^*$ we obtain

Feigin-Tsygan Theorem. Let A be a finitely generated commutative algebra and $J \rightarrow P \rightarrow A$ a presentation where P is smooth. Then

$$HP_*(A) = HP_*(\overline{P_J}) = HdR_*(\overline{P_J})$$

Proof. The first equality is Goodwillie's theorem (or, in the approach by Cuntz-Quillen is true by definition). For the second equality note that the usual HKR-Theorem for smooth algebras over fields says that the map $\Omega_P^* \to HH_*(P)$ is an isomorphism. This map is *P*-linear, so it induces an isomorphism $\overline{P_J} \otimes_P \Omega_P^* \cong \overline{P_J} \otimes_P HH_*(P) \cong HH_*(\overline{P_J})$. This shows that the natural map from the mixed complex $(C(\overline{P_J}), b, B)$ to the mixed complex $(\overline{P_J} \otimes_P \Omega_P, 0, d)$ is an isomorphism on Hochschild homology. But then it also is an isomorphism on the cyclic homology of the mixed complex. Feigin-Tsygan Theorem. Let A be a finitely generated commutative algebra and $J \to P \to A$ a presentation where P is smooth. Then

 $HP_*(A) = HP_*(\overline{P_J}) = HdR_*(\overline{P_J})$