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Geometric set up

We consider:

I G a connected linear real reductive Lie group

I C(G ) the Harish-Chandra Schwartz algebra, a dense and
holomorphically closed subalgebra of C ∗r G

I (X , h), a cocompact G -proper manifold, dimX even, ∂X = ∅,
with a G -invariant riemannian metric h

I D, a Z2-graded odd G -equivariant Dirac operator acting on
the sections of a G -equivariant vector bundle E = E+ ⊕ E−



Geometric set up (cont.)

I we consider Ac
G (X ,E ) := Ψ−∞G ,c (X ,E ), the smoothing

G -equivariant operators on X of G -compact support

I Slice theorem: there exists a K-invariant compact submanifold
S ⊂ X s.t. the action map [g , s]→ gs, g ∈ G , s ∈ S , defines
a G -equivariant diffeomorphism G ×K S

α−→ X

I we write X = G ×K S

I as a consequence Ac
G (X ,E ) = (C∞c (G )⊗̂Ψ−∞(S ,E |S))K×K

I define A∞G (X ,E ) := (C(G )⊗̂Ψ−∞(S ,E |S))K×K

I From now on we expunge the vector bundles from the notation



Cyclic cocycles for C∞c (G )

I Given ϕ ∈ H∗diff(G ) we have considered in the talk by Tang
χϕ ∈ HC ∗(C∞c (G ))

I Given g ∈ G semisimple we have considered the orbital
integral τg : if Z := ZG (g), then

τg (f ) :=

∫
G/Z

f (xgx−1)d(xZ ) .

I τg ∈ HC 0(C∞c (G ))

I we have also seen that Song and Tang defined for each
P < G cuspidal parabolic subgroup with Langlands
decomposition P = MAN, m := dimA and g ∈ M semisimple
an element ΦP

g ∈ HCm(C∞c (G ))



Cyclic cocycles for Ac
G (X ,E )

I given ϕ ∈ Hn
diff(G ) we can also consider χX

ϕ ∈ HCn(Ac
G (X )).

I χX
ϕ (k0, . . . , kn) is∫
G k

∫
X (k+1)

c(x0) · · · c(xn)k0(x0, g1x1) · · · kn(xn, (g1 · · · gn)−1x0)

ϕ(e, g1, g1g2, . . . , g1 · · · gn)dx0 · · · dxndg1 · · · dgn.

I c is a cut-off funct. for the action of G on X :∫
G c(g−1x)dg = 1 ∀x ∈ X

I similarly we can define τXg ∈ HC 0(Ac
G (X ))

I and ΦP
X ,g ∈ HCm(Ac

G (X ))



Extension of cyclic cocycles

Important and non-trivial:

I the cyclic cocycles χφ, τg and ΦP
g extend continuously to

C(G )

I the cyclic cocycles χX
φ , τXg and ΦP

X ,g extend continuously to
A∞G (X ,E )



Higher indices and higher index formulae
I it is a non-trivial result that the Connes-Moscovici projector
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has entries in A∞(X ,E )

I this defines a smooth index class:
Ind∞(D) ∈ K0(A∞(X ,E )) = K0(C ∗(X ,E ))

I we can then define higher indices by pairing Ind∞(D) with
χX
φ , τXg and ΦP

X ,g

I and there are, correspondingly, 3 index theorems

I they are all heavily inspired by the Connes-Moscovici article
on the Novikov conjecture

I Pflaum-Posthuma-Tang give a formula for the higher index
defined by χX

φ , that is 〈Ind∞(D), χX
φ 〉 (we have just seen the

precise statement)



Higher indices and higher index formulae (cont)

I Peter Hochs and Hang Wang give a formula for the
delocalized index defined by τXg :

〈Ind∞(D), τXg 〉 =

∫
X g

cgASg (X )

I here ASg (X ) is equal to the the following expression:

ASg (X ) :=
Â
(RXg

2πi

)
tr
(
g exp(R

W

2πi )
)

exp(tr( RL

2πi ))

det
(
1− g exp(−RN

2πi )
) 1

2

.

I Hochs-Song-Tang give a formula for 〈Ind∞(D),ΦP
X ,g 〉 by a

clever reduction to a 0-degree index theorem (à la
Hochs-Wang) on the M-manifold X/AN with P = MAN.

Here ends the review of (part of) Tang’s talk. We move on.



Motivation: secondary invariants for Galois coverings
I X a Galois Γ-covering of X/Γ, always without boundary;
α ∈ HC ∗(CΓ, 〈g〉)

I if DX is invertible, can define the higher rho number ρα(DX )
(under additional assumption on Γ, e.g. Γ Gromov hyperbolic)

I this and what follows is work of many people: Lott,
Leichtnam-P, P-Schick, Puschnigg, Higson-Roe, Xie-Yu, ....,
Chen-Wang-Xie-Yu, Shaegan, P-Schick-Zenobi.

I ρα(DX ) are secondary invariants

I for example: if α is the delocalized trace τ〈g〉 then ρα(DX ) is
Lott’s delocalized eta invariant

η〈g〉(D) :=
1√
π

∫ ∞
0

Tr〈g〉(D exp(−tD2))
dt√
t

with

Tr〈g〉(D exp(−tD2)) =
∑
γ∈〈g〉

∫
F

trx kt(x , γx)



Delocalized APS index theorem

I if Y has boundary and D∂Y is invertible then Indα(DY ) is well
defined and in general non-zero

I this is in contrast with the closed case: Indα(DX ) = 0 always

I in fact Indα(DY ) = −1
2ρα(D∂Y )

I for example Indτ〈g〉(DY ) = −1
2η〈g〉(D∂Y ) if 〈g〉 has polynomial

growth (P-Schick ) or Γ is Gromov hyperbolic (Puschnigg)

I bordism invariance: in some geometric situations the index
class is 0 and then you get bordism invariance of these rho
numbers

I this is crucial; many beautiful geometric applications !

I we have seen examples in Guoliang Yu’s talk.



Questions

I Can we prove a higher (delocalized) Atiyah-Patodi-Singer
index theorem for cocompact G -proper manifolds with
boundary ?

I Can we define higher rho numbers for an invertible operator
on a cocompact G -proper manifold without boundary ?

I Are these higher rho numbers interesting invariants ?



Short answers

I for the cyclic cocycles χϕ, ϕ ∈ H∗Diff(G ), a higher APS index
theorem is proved by P-Posthuma (2020)

I for the delocalized 0-cyclic cocycle τg defined by the orbital
integral a APS index theorem has been proved by Peter
Hochs-Hang Wang-Bai-Ling Wang (2020)

I for the delocalized m-cocycles τPg defined by higher orbital
integrals this is recent work of P-Posthuma-Song-Tang
(August 2021)

I the last paper also improves on Hochs-Wang-Wang and gives
an alternative treatment

I the article by P-Posthuma-Song-Tang contains many more
results but I will not have the time to report on them.....

I all these papers are in arXiv



Precise statements: geometric data

I Y0 is a cocompact G -proper manifold with boundary

I metrics, bundles, connections etc are all of product type near
the boundary

I D is a G -equivariant Dirac operator; D∂ boundary operator

I Y is the G -manifold with cylindrical end associated to Y0

I if D∂ is L2-invertible than there exists a well defined
IndC∗(D) ∈ K∗(C

∗(Y0 ⊂ Y )G ) (John Roe)

I we want to define higher C ∗-indices and prove higher C ∗

Atiyah-Patodi-Singer index formulas



Statements: higher APS indices

Theorem
(1) There exists a dense holomorphically closed subalgebra A∞G (Y )
of C ∗(Y0 ⊂ Y )G

(2) There exists a smooth representative Ind∞(D) of the index
class in K0(A∞G (Y )) = K0(C ∗(Y0 ⊂ Y )G ).
(3) The cyclic cocycles

χY
φ τYg , ΦP

Y ,g

are well defined in HC ∗(A∞G (Y ))
(4) by pairing we obtain higher APS indices

〈Ind∞(D), χY
φ 〉 , 〈Ind∞(D), τYg 〉 , 〈Ind∞(D),ΦP

Y ,g 〉 .



Statements: index formula for τg
I Because of time we skip the APS index theorem for
〈Ind∞(D), χY

ϕ 〉 (P-Posthuma, Annals of K-theory, in press)

I we concentrate on 〈Ind∞(D), τYg 〉 and 〈Ind∞(D),ΦP
Y ,g 〉;

these are delocalized (higher) APS indices
I we begin with 〈Ind∞(D), τYg 〉

Theorem
Assume D∂ L2-invertible. Then the delocalized eta invariant

ηg (D∂) :=
1√
π

∫ ∞
0

τ∂Yg (D∂ exp(−tD2
∂))

dt√
t

is well defined and

〈Ind∞(D), τYg 〉 =

∫
(Y0)g

cgASg (Y0)− 1

2
ηg (D∂) ,

Result first proved by Hochs-Wang-Wang; improvements and
different proof by P-Posthuma-Song-Tang.



Important: the delocalized eta invariant is proved to converge in
the previous theorem under the assumption that the operator
involved is a boundary operator.
This is not good for geometric applications.

With Posthuma, Song and Tang we have spent a lot of energy
proving the following result:

Theorem
Let (X , g) be a cocompact G -proper manifold without boundary
and let D be a G -equivariant Dirac-type operator. Let g be a
semi-simple element. Then the integral

ηg (D) :=
1√
π

∫ ∞
0

τXg (D exp(−tD2))
dt√
t

(1)

converges. Notice that we are not assuming L2-invertibility of D.



Statements: index formula for ΦP
g

I Next we tackle 〈Ind∞(D),ΦP
Y ,g 〉.

Theorem
Assume D∂Y L2-invertible. Then

〈Ind∞(DY ),ΦP
Y ,g , 〉 =

∫
(Y0/AN)g

cgY0/AN
AS(Y0/AN)g−

1

2
ηg (D∂Y0/AN)

This is proved in P-Postuma-Song-Tang by jazzing-up to manifolds
with boundary the reduction procedure of Hochs-Song-Tang and
then applying the previous theorem.



rho numbers

I Let X a G -proper manifold without boundary. Assume we
have a G -equivariant spin structure.

I if h is a G -invariant metric of positive scalar curvature then
we can define

ρg (h) = ηg (Dh)

I we can also define ρPg (h)

I if g does not have fixed points (e.g. g is a non-elliptic
element) then these are invariants for equivariant concordance
and equivariant psc-bordism

I we could similarly define rho numbers associated to an
equivariant homotopy equivalence f : X → X ′

I a lot to be done in this direction....



Techniques: b-calculus and relative index classes

I we shall use relative K-theory and relative cyclic cohomology
techniques, initiated in this context by Lesch, Moscovici and
Pflaum, P-Moriyoshi, Gorokhovsky-Moriyoshi-P.

I Let (Y , h) be a compact manifold with boundary endowed
with a b-metric h (product like near ∂Y )

I if ∂Y = {x = 0} then h = dx2/x2 + h∂
I dvolh = dx

x ∧ dvolh∂ near the boundary



The b-pseudodifferential calculus is defined in therms of Schwartz
kernels on a blow-up space Y 2

b

I restriction of a kernel to the new boundary face, bf (Y 2
b ),

defines a translation invariant operator on cyl(∂Y ) := ∂Y ×R



I this restriction defines the indicial homomorphism
I : Ψm

b (Y )→ Ψm
b,R(cyl(∂Y ))

I take m = −∞; elements in the kernel of the indicial
homomorphism are b-smoothing operators that vanish on ALL
boundary faces; they are compact in L2 and denoted Ψ−∞(Y )

I we have 0→ Ψ−∞(Y )→ Ψ−∞b (Y )
I−→ Ψb,R(cyl(∂Y ))→ 0

I a ”symbolic” parametrix for DY produces remainders with
non-vanishing indicial operator (not a true parametrix)

I if D∂Y is invertible then we can IMPROVE the parametrix and
get remainders in Ψ−∞(Y ) ( true parametrix)

I for example we can improve the parametrix from
Connes-Moscovici

I − exp(−1
2D

+
YD−Y )

D−YD+
Y

D−Y



Relative index classes

Using the slice theorem and the Harish-Chandra algebra C(G ) we
can pass from

0→ Ψ−∞(S)→ Ψ−∞b (S)
I−→ Ψb,R(cyl(S))→ 0

to
0→ A∞G (Y )→ bA∞G (Y )

I−→ bA∞G ,R(cyl(∂Y ))→ 0.

For example bA∞G (Y ) = (C(G )⊗̂Ψ−∞b (S))K×K

We employ the shorter notation:

0→ A∞G → bA∞G
I−→ bA∞G ,R → 0.



Theorem
1. A∞G is a dense hol. closed subabgebra of C ∗(Y0 ⊂ Y )
2. The Connes-Moscovici projector V (D) ∈ M2×2(bA∞G )
3. The Connes-Moscovici projector V (Dcyl) ∈ M2×2(bA∞G ,R)

4. If D∂Y is L2-invertible, then the improved Connes-Moscovici
projector has entries in A∞G and defines the smooth index class
Ind∞(D) ∈ K0(A∞G )= K0(C ∗(Y0 ⊂ Y ))
5. If D∂Y is L2-invertible then as s → +∞

V (sDcyl)→ e1 :=

(
0 0
0 1

)
in M2×2(bA∞G ,R)

6. the triple (V (D), e1, ps := V (sDcyl)) defines a relative index
class Ind∞(D,D∂Y ) in K0(bA∞G , bA∞G ,R) .
7. Ind∞(D,D∂Y ) and Ind∞(D) correspond under the excision
isomorphism.



Relative cyclic cocycles

I let us take G = 1 and (S , h) a compact b-manifold

I elements in Ψ−∞b (S) are not trace class (not even compact)

I Melrose has defined a regularized trace, the b-trace: b Tr(·)
I defined through the b-integral

∫ b
Y (subtract logarithmic

divergence)

I Melrose’ formula:

b Tr[R,T ] =
i

2π

∫
R

Tr(∂λI (R, λ) ◦ I (T , λ))dλ

where I (R, λ) is the Fourier transform of I (R) in the
cylindrical direction.



I Let us go back to a G -proper b-manifold (Y , h)

I Consider the 3 cyclic cocycles χY
ϕ τYg and ΦP

Y ,g

I substitute integrals over Y with b-integrals

I can now extend the functionals from A∞G (Y ) to bA∞G (Y )

I For example: from τYg we obtain τY ,rg (r = regularized)

I This is not a 0-cyclic cocycle anymore: b(τY ,rg ) 6= 0

I but can compute b(τY ,rg ) using Melrose’ formula

I b(τY ,rg )(A0,A1) = i
2π

∫
R τ

∂Y
g (∂λI (A0, λ) ◦ I (A1, λ))dλ



I Consider the 1-cochain on bA∞G ,R

σ∂Yg (R0,R1) =
i

2π

∫
R
τ∂Yg (∂λI (R0, λ) ◦ I (R1, λ))dλ

I The pair (τY ,rg , σ∂Yg ) defines a relative 0-cyclic cocycle:

(τY ,rg , σ∂Yg ) ∈ HC 0(bA∞G , bA∞G ,R).

I Moreover 〈Ind∞(D), τYg 〉 = 〈Ind∞(D,D∂), (τY ,rg , σ∂Yg )〉 .
I Unwinding the definition of relative pairing on the RHS we

obtain for each s > 0

〈Ind∞(D), τYg 〉 = τY ,rg (e−s
2D−D+

)− τY ,rg (e−s
2D+D−)−

1

2

∫ ∞
s

1√
π
τ∂Yg (D∂Y exp(−tD2

∂Y )
dt√
t

I We obtain the delocalized APS index theorem by studying
carefully the limit as s ↓ 0 (this is not obvious...)

I higher case similar but more complicated; especially the
continuity of the relative cocycles we obtain by this method.



Thank You !
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