Proper action of Lie groups, cyclic cohomology and index theory

Paolo Piazza Sapienza Università di Roma (based on joint work with Hessel Posthuma, Yanli Song and Xiang Tang)

Cyclic Cohomology at 40: achievements and future prospects. September 27th 2021.

Summary of Xian Tang's talk

Secondary invariants

Results

Ideas for the proofs

We consider:

- ► G a connected linear real reductive Lie group
- ► C(G) the Harish-Chandra Schwartz algebra, a dense and holomorphically closed subalgebra of C^{*}_rG
- (X, h), a cocompact *G*-proper manifold, dim *X* even, $\partial X = \emptyset$, with a *G*-invariant riemannian metric h
- D, a Z₂-graded odd G-equivariant Dirac operator acting on the sections of a G-equivariant vector bundle E = E⁺ ⊕ E⁻

Geometric set up (cont.)

- we consider $\mathcal{A}_{G}^{c}(X, E) := \Psi_{G,c}^{-\infty}(X, E)$, the smoothing *G*-equivariant operators on *X* of *G*-compact support
- Slice theorem: there exists a K-invariant compact submanifold S ⊂ X s.t. the action map [g, s] → gs, g ∈ G, s ∈ S, defines a G-equivariant diffeomorphism G ×_K S → X
- we write $X = G \times_K S$
- ► as a consequence $\mathcal{A}_{G}^{c}(X, E) = (C_{c}^{\infty}(G) \widehat{\otimes} \Psi^{-\infty}(S, E|_{S}))^{K \times K}$
- define $\mathcal{A}^{\infty}_{\mathcal{G}}(X, E) := (\mathcal{C}(\mathcal{G}) \widehat{\otimes} \Psi^{-\infty}(S, E|_S))^{K \times K}$
- From now on we expunge the vector bundles from the notation

Cyclic cocycles for $C_c^{\infty}(G)$

- Given φ ∈ H^{*}_{diff}(G) we have considered in the talk by Tang χ_φ ∈ HC^{*}(C[∞]_c(G))
- ► Given g ∈ G semisimple we have considered the orbital integral τ_g: if Z := Z_G(g), then

$$\tau_g(f) := \int_{G/Z} f(xgx^{-1})d(xZ).$$

- we have also seen that Song and Tang defined for each P < G cuspidal parabolic subgroup with Langlands decomposition P = MAN, m := dim A and g ∈ M semisimple an element Φ^P_g ∈ HC^m(C[∞]_c(G))

Cyclic cocycles for $\mathcal{A}^{c}_{G}(X, E)$

given φ ∈ Hⁿ_{diff}(G) we can also consider χ^X_φ ∈ HCⁿ(A^c_G(X)).
 χ^X_φ(k₀,...,k_n) is

$$\int_{G^k} \int_{X^{(k+1)}} c(x_0) \cdots c(x_n) k_0(x_0, g_1 x_1) \cdots k_n(x_n, (g_1 \cdots g_n)^{-1} x_0)$$

$$\varphi(e, g_1, g_1 g_2, \dots, g_1 \cdots g_n) dx_0 \cdots dx_n dg_1 \cdots dg_n.$$

▶ and
$$\Phi_{X,g}^P \in HC^m(\mathcal{A}_G^c(X))$$

Extension of cyclic cocycles

Important and non-trivial:

- ▶ the cyclic cocycles χ_{ϕ} , τ_g and Φ_g^P extend continuously to $\mathcal{C}(G)$
- ▶ the cyclic cocycles χ_{ϕ}^{X} , τ_{g}^{X} and $\Phi_{X,g}^{P}$ extend continuously to $\mathcal{A}_{G}^{\infty}(X, E)$

Higher indices and higher index formulae

it is a non-trivial result that the Connes-Moscovici projector

$$V(D) = \begin{pmatrix} e^{-D^{-}D^{+}} & e^{-\frac{1}{2}D^{-}D^{+}} \left(\frac{I - e^{-D^{-}D^{+}}}{D^{-}D^{+}} \right) D^{-} \\ e^{-\frac{1}{2}D^{+}D^{-}}D^{+} & I - e^{-D^{+}D^{-}} \end{pmatrix}$$

has entries in $\mathcal{A}^{\infty}(X, E)$

- ► this defines a smooth index class: $Ind_{\infty}(D) \in K_0(\mathcal{A}^{\infty}(X, E)) = K_0(C^*(X, E))$
- ▶ we can then define higher indices by pairing $Ind_{\infty}(D)$ with χ_{ϕ}^{X} , τ_{g}^{X} and $\Phi_{X,g}^{P}$
- and there are, correspondingly, 3 index theorems
- they are all heavily inspired by the Connes-Moscovici article on the Novikov conjecture
- ▶ Pflaum-Posthuma-Tang give a formula for the higher index defined by χ_{ϕ}^{X} , that is $\langle \operatorname{Ind}_{\infty}(D), \chi_{\phi}^{X} \rangle$ (we have just seen the precise statement)

Higher indices and higher index formulae (cont)

Peter Hochs and Hang Wang give a formula for the delocalized index defined by τ^X_g:

$$\langle \operatorname{\mathsf{Ind}}_\infty(D), \tau_g^X \rangle = \int_{X^g} c^g \operatorname{AS}_g(X)$$

• here $AS_g(X)$ is equal to the the following expression:

$$AS_g(X) := \frac{\widehat{A}(\frac{R_{Xg}}{2\pi i}) \operatorname{tr} \left(g \exp(\frac{R^W}{2\pi i})\right) \exp(\operatorname{tr}(\frac{R^L}{2\pi i}))}{\det \left(1 - g \exp(-\frac{R^N}{2\pi i})\right)^{\frac{1}{2}}}$$

Hochs-Song-Tang give a formula for (Ind_∞(D), Φ^P_{X,g}) by a clever reduction to a 0-degree index theorem (à la Hochs-Wang) on the *M*-manifold X/AN with P = MAN.
 Here ends the review of (part of) Tang's talk. We move on.

Motivation: secondary invariants for Galois coverings

- X a Galois Γ-covering of X/Γ, always without boundary; α ∈ HC*(ℂΓ, ⟨g⟩)
- if D_X is invertible, can define the higher rho number $\rho_{\alpha}(D_X)$ (under additional assumption on Γ , e.g. Γ Gromov hyperbolic)
- this and what follows is work of many people: Lott, Leichtnam-P, P-Schick, Puschnigg, Higson-Roe, Xie-Yu,, Chen-Wang-Xie-Yu, Shaegan, P-Schick-Zenobi.
- $\rho_{\alpha}(D_X)$ are *secondary* invariants
- for example: if α is the delocalized trace τ_(g) then ρ_α(D_X) is Lott's delocalized eta invariant

$$\eta_{\langle g
angle}(D) := rac{1}{\sqrt{\pi}} \int_0^\infty {
m Tr}_{\langle g
angle}(D \exp(-tD^2)) rac{dt}{\sqrt{t}}$$

with

$$\mathsf{Tr}_{\langle m{g}
angle}(D\exp(-tD^2)) = \sum_{\gamma\in\langlem{g}
angle} \int_{\mathcal{F}} \mathsf{tr}_x \, k_t(x,\gamma x)$$

Delocalized APS index theorem

- ▶ if Y has boundary and D_{∂Y} is invertible then Ind_α(D_Y) is well defined and in general non-zero
- ▶ this is in contrast with the closed case: $Ind_{\alpha}(D_X) = 0$ always
- in fact $\operatorname{Ind}_{\alpha}(D_Y) = -\frac{1}{2}\rho_{\alpha}(D_{\partial Y})$
- ► for example $\operatorname{Ind}_{\tau_{\langle g \rangle}}(D_Y) = -\frac{1}{2}\eta_{\langle g \rangle}(D_{\partial Y})$ if $\langle g \rangle$ has polynomial growth (P-Schick) or Γ is Gromov hyperbolic (Puschnigg)
- bordism invariance: in some geometric situations the index class is 0 and then you get bordism invariance of these rho numbers
- this is crucial; many beautiful geometric applications !
- we have seen examples in Guoliang Yu's talk.

Questions

- Can we prove a higher (delocalized) Atiyah-Patodi-Singer index theorem for cocompact G-proper manifolds with boundary ?
- Can we define higher rho numbers for an invertible operator on a cocompact G-proper manifold without boundary ?
- Are these higher rho numbers interesting invariants ?

Short answers

- For the cyclic cocycles *χ*_φ, *φ* ∈ *H*^{*}_{Diff}(*G*), a higher APS index theorem is proved by P-Posthuma (2020)
- for the delocalized 0-cyclic cocycle τ_g defined by the orbital integral a APS index theorem has been proved by Peter Hochs-Hang Wang-Bai-Ling Wang (2020)
- for the delocalized m-cocycles τ^P_g defined by higher orbital integrals this is recent work of P-Posthuma-Song-Tang (August 2021)
- the last paper also improves on Hochs-Wang-Wang and gives an alternative treatment
- the article by P-Posthuma-Song-Tang contains many more results but I will not have the time to report on them.....
- all these papers are in arXiv

Precise statements: geometric data

- ► Y₀ is a cocompact *G*-proper manifold with boundary
- metrics, bundles, connections etc are all of product type near the boundary
- ▶ D is a G-equivariant Dirac operator; D_{∂} boundary operator
- > Y is the G-manifold with cylindrical end associated to Y_0
- ▶ if D_∂ is L^2 -invertible than there exists a well defined $\operatorname{Ind}_{C^*}(D) \in K_*(C^*(Y_0 \subset Y)^G)$ (John Roe)
- we want to define higher C*-indices and prove higher C* Atiyah-Patodi-Singer index formulas

Statements: higher APS indices

Theorem

(1) There exists a dense holomorphically closed subalgebra $\mathcal{A}_{G}^{\infty}(Y)$ of $C^{*}(Y_{0} \subset Y)^{G}$ (2) There exists a smooth representative $\operatorname{Ind}_{\infty}(D)$ of the index class in $K_{0}(\mathcal{A}_{G}^{\infty}(Y)) = K_{0}(C^{*}(Y_{0} \subset Y)^{G})$. (3) The cyclic cocycles

$$\chi^{\boldsymbol{Y}}_{\phi} \quad \tau^{\boldsymbol{Y}}_{\boldsymbol{g}}, \quad \Phi^{\boldsymbol{P}}_{\boldsymbol{Y},\boldsymbol{g}}$$

are well defined in $HC^*(\mathcal{A}^{\infty}_G(Y))$ (4) by pairing we obtain higher APS indices

 $\langle \operatorname{Ind}_{\infty}(D), \chi_{\phi}^{Y} \rangle, \quad \langle \operatorname{Ind}_{\infty}(D), \tau_{g}^{Y} \rangle, \quad \langle \operatorname{Ind}_{\infty}(D), \Phi_{Y,g}^{P} \rangle.$

Statements: index formula for τ_g

- Because of time we skip the APS index theorem for ⟨Ind_∞(D), χ^Y_φ ⟩ (P-Posthuma, Annals of K-theory, in press)
- ▶ we concentrate on (Ind_∞(D), τ^Y_g) and (Ind_∞(D), Φ^P_{Y,g}); these are delocalized (higher) APS indices
- we begin with $\langle \operatorname{Ind}_{\infty}(D), \tau_{g}^{Y} \rangle$

Theorem

Assume $D_{\partial} L^2$ -invertible. Then the delocalized eta invariant

$$\eta_g(D_\partial) := \frac{1}{\sqrt{\pi}} \int_0^\infty \tau_g^{\partial Y} (D_\partial \exp(-tD_\partial^2)) \frac{dt}{\sqrt{t}}$$

is well defined and

$$\langle \operatorname{Ind}_{\infty}(D), \tau_{g}^{Y} \rangle = \int_{(Y_{0})^{g}} c^{g} \operatorname{AS}_{g}(Y_{0}) - \frac{1}{2} \eta_{g}(D_{\partial}),$$

Result first proved by Hochs-Wang-Wang; improvements and different proof by P-Posthuma-Song-Tang.

Important: the delocalized eta invariant is proved to converge in the previous theorem under the assumption that the operator involved is a **boundary operator**.

This is **not** good for geometric applications.

With Posthuma, Song and Tang we have spent a lot of energy proving the following result:

Theorem

Let (X, g) be a cocompact G-proper manifold **without** boundary and let D be a G-equivariant Dirac-type operator. Let g be a semi-simple element. Then the integral

$$\eta_g(D) := \frac{1}{\sqrt{\pi}} \int_0^\infty \tau_g^X(D \exp(-tD^2)) \frac{dt}{\sqrt{t}}$$
(1)

converges. Notice that we are not assuming L^2 -invertibility of D.

Statements: index formula for Φ_{g}^{P}

• Next we tackle
$$\langle \operatorname{Ind}_{\infty}(D), \Phi_{Y,g}^{P} \rangle$$
.

Theorem Assume $D_{\partial Y} L^2$ -invertible. Then

$$\langle \operatorname{Ind}_{\infty}(D_{Y}), \Phi_{Y,g}^{P}, \rangle = \int_{(Y_{0}/AN)_{g}} c_{Y_{0}/AN}^{g} \operatorname{AS}(Y_{0}/AN)_{g} - \frac{1}{2} \eta_{g}(D_{\partial Y_{0}/AN})$$

This is proved in P-Postuma-Song-Tang by jazzing-up to manifolds with boundary the reduction procedure of Hochs-Song-Tang and then applying the previous theorem.

rho numbers

- Let X a G-proper manifold without boundary. Assume we have a G-equivariant spin structure.
- if h is a G-invariant metric of positive scalar curvature then we can define

$$\rho_g(\mathsf{h}) = \eta_g(D_\mathsf{h})$$

• we can also define
$$\rho_g^P(h)$$

- if g does not have fixed points (e.g. g is a non-elliptic element) then these are invariants for equivariant concordance and equivariant psc-bordism
- ▶ we could similarly define rho numbers associated to an equivariant homotopy equivalence $f : X \to X'$
- a lot to be done in this direction....

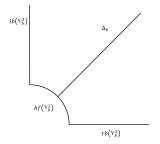
Techniques: *b*-calculus and relative index classes

- we shall use relative K-theory and relative cyclic cohomology techniques, initiated in this context by Lesch, Moscovici and Pflaum, P-Moriyoshi, Gorokhovsky-Moriyoshi-P.
- ► Let (Y, h) be a compact manifold with boundary endowed with a b-metric h (product like near ∂Y)

• if
$$\partial Y = \{x = 0\}$$
 then $h = dx^2/x^2 + h_\partial$

•
$$d \operatorname{vol}_{h} = \frac{dx}{x} \wedge d \operatorname{vol}_{h_{\partial}}$$
 near the boundary

The *b*-pseudodifferential calculus is defined in therms of Schwartz kernels on a blow-up space Y_b^2



► restriction of a kernel to the new boundary face, bf(Y²_b), defines a translation invariant operator on cyl(∂Y) := ∂Y × ℝ

- ► this restriction defines the indicial homomorphism $I: \Psi_b^m(Y) \to \Psi_{b,\mathbb{R}}^m(cyl(\partial Y))$
- ► take m = -∞; elements in the kernel of the indicial homomorphism are b-smoothing operators that vanish on ALL boundary faces; they are compact in L² and denoted Ψ^{-∞}(Y)

• we have
$$0 \to \Psi^{-\infty}(Y) \to \Psi^{-\infty}_b(Y) \xrightarrow{l} \Psi_{b,\mathbb{R}}(\operatorname{cyl}(\partial Y)) \to 0$$

- a "symbolic" parametrix for D_Y produces remainders with non-vanishing indicial operator (not a true parametrix)
- If D_{∂Y} is invertible then we can IMPROVE the parametrix and get remainders in Ψ^{-∞}(Y) (true parametrix)
- for example we can improve the parametrix from Connes-Moscovici

$$\frac{I-\exp(-\frac{1}{2}D_Y^+D_Y^-)}{D_Y^-D_Y^+}D_Y^-$$

Relative index classes

Using the slice theorem and the Harish-Chandra algebra $\mathcal{C}(G)$ we can pass from

$$0 o \Psi^{-\infty}(S) o \Psi^{-\infty}_b(S) \stackrel{l}{ o} \Psi_{b,\mathbb{R}}({
m cyl}(S)) o 0$$

to

$$0 \to \mathcal{A}^{\infty}_{G}(Y) \to {}^{b}\mathcal{A}^{\infty}_{G}(Y) \xrightarrow{I} {}^{b}\mathcal{A}^{\infty}_{G,\mathbb{R}}(\mathsf{cyl}(\partial Y)) \to 0.$$

For example ${}^{b}\mathcal{A}^{\infty}_{G}(Y) = (\mathcal{C}(G)\widehat{\otimes}\Psi_{b}^{-\infty}(S))^{K \times K}$

We employ the shorter notation:

$$0 o \mathcal{A}^\infty_G o {}^b \mathcal{A}^\infty_G \xrightarrow{I} {}^b \mathcal{A}^\infty_{G,\mathbb{R}} o 0.$$

Theorem

- 1. \mathcal{A}_G^∞ is a dense hol. closed subabgebra of $C^*(Y_0 \subset Y)$
- 2. The Connes-Moscovici projector $V(D) \in M_{2\times 2}({}^{b}\mathcal{A}_{G}^{\infty})$
- 3. The Connes-Moscovici projector $V(D_{cyl}) \in M_{2 \times 2}({}^{b}\mathcal{A}^{\infty}_{G,\mathbb{R}})$

4. If $D_{\partial Y}$ is L^2 -invertible, then the improved Connes-Moscovici projector has entries in \mathcal{A}_G^{∞} and defines the smooth index class $\operatorname{Ind}_{\infty}(D) \in K_0(\mathcal{A}_G^{\infty}) = K_0(C^*(Y_0 \subset Y))$

5. If $D_{\partial Y}$ is L^2 -invertible then as $s \to +\infty$

- $V(sD_{ ext{cyl}}) o e_1 := \left(egin{array}{c} 0 & 0 \ 0 & 1 \end{array}
 ight)$ in $M_{2 imes 2}({}^b\mathcal{A}^\infty_{G,\mathbb{R}})$
- 6. the triple $(V(D), e_1, p_s := V(sD_{cyl}))$ defines a relative index class $\operatorname{Ind}_{\infty}(D, D_{\partial Y})$ in $K_0({}^b\mathcal{A}^{\infty}_G, {}^b\mathcal{A}^{\infty}_{G,\mathbb{R}})$.

7. $\operatorname{Ind}_{\infty}(D, D_{\partial Y})$ and $\operatorname{Ind}_{\infty}(D)$ correspond under the excision isomorphism.

Relative cyclic cocycles

- let us take G = 1 and (S, h) a compact *b*-manifold
- elements in $\Psi_b^{-\infty}(S)$ are not trace class (not even compact)
- Melrose has defined a regularized trace, the *b*-trace: b Tr(·)
- defined through the *b*-integral \int_{Y}^{b} (subtract logarithmic divergence)
- Melrose' formula:

$${}^{b}\operatorname{Tr}[R,T] = rac{i}{2\pi}\int_{\mathbb{R}}\operatorname{Tr}(\partial_{\lambda}I(R,\lambda)\circ I(T,\lambda))d\lambda$$

where $I(R, \lambda)$ is the Fourier transform of I(R) in the cylindrical direction.

- Let us go back to a G-proper b-manifold (Y, h)
- Consider the 3 cyclic cocycles $\chi_{\varphi}^{Y} \tau_{g}^{Y}$ and $\Phi_{Y,g}^{P}$
- substitute integrals over Y with b-integrals
- ▶ can now extend the functionals from $\mathcal{A}^{\infty}_{G}(Y)$ to ${}^{b}\mathcal{A}^{\infty}_{G}(Y)$
- For example: from τ_g^Y we obtain $\tau_g^{Y,r}$ (r = regularized)
- ► This is not a 0-cyclic **cocycle** anymore: $b(\tau_g^{Y,r}) \neq 0$
- but can compute $b(\tau_g^{Y,r})$ using Melrose' formula
- $\blacktriangleright \ b(\tau_g^{Y,r})(A_0,A_1) = \frac{i}{2\pi} \int_{\mathbb{R}} \tau_g^{\partial Y}(\partial_\lambda I(A_0,\lambda) \circ I(A_1,\lambda)) d\lambda$

▶ Consider the 1-cochain on ${}^{b}\mathcal{A}^{\infty}_{\mathcal{G},\mathbb{R}}$

$$\sigma_{g}^{\partial Y}(R_{0},R_{1})=\frac{i}{2\pi}\int_{\mathbb{R}}\tau_{g}^{\partial Y}(\partial_{\lambda}I(R_{0},\lambda)\circ I(R_{1},\lambda))d\lambda$$

► The pair
$$(\tau_g^{Y,r}, \sigma_g^{\partial Y})$$
 defines a relative 0-cyclic cocycle:
 $(\tau_g^{Y,r}, \sigma_g^{\partial Y}) \in HC^0({}^b\mathcal{A}^{\infty}_G, {}^b\mathcal{A}^{\infty}_{G,\mathbb{R}}).$

- Moreover $\langle \operatorname{Ind}_{\infty}(D), \tau_g^{Y} \rangle = \langle \operatorname{Ind}_{\infty}(D, D_{\partial}), (\tau_g^{Y, r}, \sigma_g^{\partial Y}) \rangle$.
- Unwinding the definition of relative pairing on the RHS we obtain for each s > 0

$$\langle \operatorname{Ind}_{\infty}(D), \tau_{g}^{Y} \rangle = \tau_{g}^{Y, r} (e^{-s^{2}D^{-}D^{+}}) - \tau_{g}^{Y, r} (e^{-s^{2}D^{+}D^{-}}) - \frac{1}{2} \int_{s}^{\infty} \frac{1}{\sqrt{\pi}} \tau_{g}^{\partial Y} (D_{\partial Y} \exp(-tD_{\partial Y}^{2}) \frac{dt}{\sqrt{t}}$$

- We obtain the delocalized APS index theorem by studying carefully the limit as s ↓ 0 (this is not obvious...)
- higher case similar but more complicated; especially the continuity of the relative cocycles we obtain by this method.

Thank You !