Pushing cyclic cocycles over Sobolev domains
 \& the extraordinary consequences for materials science

Emil Prodan (Yeshiva University, New York, USA)

A talk for the workshop:
Cyclic Cohomology at 40: achievements and future prospects

Many thanks to my collaborators and mentors.
Work supported by U.S. NSF grant DMR-1823800.

Part 1: The Context

B. Mesland, E. Prodan, A groupoid approach to interacting fermions, arXiv:2107.10681.

Enlarged to a many-body picture, built on the breakthrough works:
J. Bellissard, K-theory of C* -algebras in solid state physics, Lect. Notes Phys. 257, 99-156 (1986).
J. Kellendonk, Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys. 7, 1133-1180 (1995).

Algebra of Local Observables

θ

E
 $0-$
 都

For fermions hopping over a lattice \mathcal{L}

$$
\operatorname{CAR}(\mathcal{L}):=\underset{\longrightarrow}{\lim } \operatorname{CAR}\left(\mathcal{L}_{k}\right) \quad \text { (Algebra of Local Observable) }
$$

where $\operatorname{CAR}\left(\mathcal{L}_{k}\right):=C^{*}\left(a_{x}, x \in \mathcal{L}_{k}\right)$ with the anti-commutation relations:

$$
a_{x} a_{x^{\prime}}+a_{x^{\prime}} a_{x}=0, \quad a_{x}^{*} a_{x^{\prime}}+a_{x^{\prime}} a_{x}^{*}=\delta_{x, x^{\prime}}, \quad x, x^{\prime} \in \mathcal{L}_{k} .
$$

Until specified otherwise, \mathcal{L} will always be an (r, R)-Delone set (r, R fixed), hence \mathcal{L} is

- uniformly discrete: $\forall x \in \mathbb{R}^{d}:|B(x, r) \cap \mathcal{L}| \leq 1$,
- relatively dense: $\left.\forall x \in \mathbb{R}^{d}: \mid B(x, R) \cap \mathcal{L}\right) \mid \geq 1$.

Important: we do not assume any translational symmetry for \mathcal{L}.

A Closer Look at Words from $\operatorname{CAR}(\mathcal{L})$

To generate a word from $a_{x}^{\prime} s$, we need:

- a set of indices $V=\left\{x, x^{\prime}, \ldots\right\} \subset \mathcal{L}$
- an order of the indices $\chi_{V}:\{1, \ldots,|V|\} \rightarrow V$.

Then we can form the word

$$
a_{J}\left(\chi_{J}\right):=a_{\chi J}(|J|) \cdots a_{\chi J}(|1|) \in \operatorname{CAR}(\mathcal{L}) .
$$

Proposition [The many-body covers, Mesland-Prodan 2021]:
If we let \mathcal{L} take values in $\operatorname{Del}_{(r, R)}\left(\mathbb{R}^{d}\right)$, then the set

$$
\widehat{\operatorname{Del}}_{(r, R)}^{(n)}\left(\mathbb{R}^{d}\right) \quad \text { of triples } \quad \xi=\left(\mathcal{L}, V, \chi_{v}\right), \quad\left(|V|=n \in \mathbb{N}^{\times}\right)
$$

can be topologized such that

$$
\mathfrak{a}_{n}(\mathcal{L}, V, \chi):=\mathcal{L}
$$

becomes a cover of $\operatorname{Del}_{(r, R)}\left(\mathbb{R}^{d}\right)$.

Symmetric presentation of the CAR elements

Any element from $\operatorname{CAR}(\mathcal{L})$ accepts a unique presentation as a convergent sum of the type

$$
A=\sum_{n, m} \frac{1}{n!m!} \sum_{\xi \in \mathfrak{a}_{n}^{-1}(\mathcal{L})} \sum_{\zeta \in \mathfrak{a}_{m}^{-1}(\mathcal{L})} c(\xi, \zeta) a(\xi)^{*} a(\zeta),
$$

where the coefficients are bi-equivariant in the sense ($\mathcal{S}_{N}:=$ group of permutations)

$$
c\left(s_{1} \cdot \xi, \zeta \cdot s_{2}\right)=(-1)^{s_{1}} c(\xi, \zeta)(-1)^{s_{2}}, \quad s_{1} \in \mathcal{S}_{n}, s_{2} \in \mathcal{S}_{m} .
$$

The interest, however, is not in $\operatorname{CAR}(\mathcal{L})$ but in the dynamics of the local observables

$$
\boldsymbol{\alpha}: \mathbb{R} \rightarrow \operatorname{Aut}(\operatorname{CAR}(\mathcal{L}))
$$

and the generators $\delta_{\boldsymbol{\alpha}}$. The challenge, of course, is that $\boldsymbol{\alpha}$'s are outer automorphisms.
The plan:

- Consider a core algebra of well behaved Hamiltonians
- Complete this algebra and characterize the completion.

The Physical Hamiltonians

A Galilean \& gauge invariant Hamiltonian with finite interaction range is a correspondence

$$
\operatorname{Del}_{(r, R)}^{(n)}\left(\mathbb{R}^{d}\right) \ni \mathcal{L} \mapsto H_{\mathcal{L}}=\sum_{n \in \mathbb{N} \times} \frac{1}{n!} \sum_{\xi, \zeta \in \mathfrak{a}_{n}^{-1}(\mathcal{L})} h_{n}(\xi, \zeta) a^{*}(\xi) a(\zeta),
$$

where the \mathbb{C}-valued h_{n} 's are defined globally and continuously on the n-body covers and obey:

- $h_{n}(\zeta, \xi)=\overline{h_{n}(\xi, \zeta)}$
- h_{n} 's are bi-equivariant w.r.t. \mathcal{S}_{n}
- $h_{n}\left(\mathfrak{t}_{x} \cdot \xi, \mathfrak{t}_{x} \cdot \zeta\right)=h_{n}(\xi, \zeta)$ (equivariance under rigid shifts \Leftrightarrow Galilean invariance)
- h_{n} 's vanish whenever the diameter of $V_{\xi} \cup V_{\zeta}$ exceeds a fixed value R_{i}.

Proposition: Let $H_{\mathcal{L}_{k}}$ be the truncation to an element of $\operatorname{CAR}\left(\mathcal{L}_{k}\right)$. Then the map

$$
\operatorname{ad}_{H_{\mathcal{L}}}(A)=\lim _{k \rightarrow \infty} \imath\left[A, H_{\mathcal{L}_{k}}\right], \quad A \in \mathcal{D}(\mathcal{L}):=\cup_{k} \operatorname{CAR}\left(\mathcal{L}_{k}\right),
$$

is a derivation that leaves $\mathcal{D}(\mathcal{L})$ invariant. Furthermore,

$$
\operatorname{ad}_{H_{\mathcal{L}}}(A)^{*}:=\operatorname{ad}_{H_{\mathcal{L}}}\left(A^{*}\right), \quad \forall A \in \mathcal{D}(\mathcal{L})
$$

and $\operatorname{ad}_{H_{\mathcal{L}}}$ is closable and in fact a pre-generator of a time evolution.

The Core Algebra of Physical Derivations

Defined as the sub-algebra $\dot{\Sigma}(\mathcal{L}) \subset \operatorname{End}(\mathcal{D}(\mathcal{L}))$ generated by derivations ad $Q_{\mathcal{L}}^{n}$ corresponding to

$$
Q_{\mathcal{L}}^{n}=\frac{1}{n!} \sum_{(\xi, \zeta) \in \mathfrak{b}_{n}^{-1}(\mathcal{L})} q_{n}(\xi, \zeta) \mathfrak{a}^{*}(\xi) \mathfrak{a}(\zeta),
$$

where q's are defined over the many-body covers and satisfy the four constraints except the first one. Henceforth, an element of $\dot{\Sigma}(\mathcal{L})$ can be presented as a finite sum

$$
\mathcal{Q}=\sum_{\{Q\}} c_{\{Q\}} \operatorname{ad}_{Q_{\mathcal{L}}^{n_{1}}} \circ \ldots \circ \operatorname{ad}_{Q_{\mathcal{L}}^{n_{k}}}, \quad c_{\{Q\}} \in \mathbb{C} .
$$

The multiplication is given by the composition of linear maps over $\mathcal{D}(\mathcal{L}),\left(\mathcal{Q}_{1}, \mathcal{Q}_{2}\right) \mapsto \mathcal{Q}_{1} \circ \mathcal{Q}_{2}$.

Remark:
The linear space spanned by $\operatorname{ad}_{Q_{\mathcal{L}}^{n}}$ is invariant against the Lie bracket

$$
\left(\operatorname{ad}_{Q_{\mathcal{L}}^{n}}, \operatorname{ad}_{Q_{\mathcal{L}}^{m}}\right) \mapsto \operatorname{ad}_{Q_{\mathcal{L}}^{n}} \circ \operatorname{ad}_{Q_{\mathcal{L}}^{m}}-\operatorname{ad}_{Q_{\mathcal{L}}^{m}} \circ \operatorname{ad}_{Q_{\mathcal{L}}^{n}}
$$

hence $\dot{\Sigma}(\mathcal{L})$ is the associative envelope of this Lie algebra.

Shift of Gears: The Canonical Groupoid Associated to a Delone Set

Notions from the generic theory of patterns:

Definition

The continuous hull of a fixed \mathcal{L}_{0} is the topological dynamical system $\left(\Omega_{\mathcal{L}_{0}}, \mathfrak{t}, \mathbb{R}^{d}\right)$, where

$$
\Omega_{\mathcal{L}_{0}}=\overline{\left\{t_{a}\left(\mathcal{L}_{0}\right)=\mathcal{L}_{0}-a, a \in \mathbb{R}^{d}\right\}}
$$

with the closure in the metric space $\mathcal{C}\left(\mathbb{R}^{d}\right)$ of closed patterns.

Definition

The canonical transversal of a continuous hull $\left(\Omega_{\mathcal{L}_{0}}, \mathfrak{t}, \mathbb{R}^{d}\right)$ of a Delone set \mathcal{L}_{0} is defined as

$$
\equiv_{\mathcal{L}_{0}}=\left\{\mathcal{L} \in \Omega_{\mathcal{L}_{0}}, 0 \in \mathcal{L}\right\} .
$$

The transversal is a compact subspace of $\mathcal{C}\left(\mathbb{R}^{d}\right)$.

The Canonical Groupoid Associated to a Delone Set

The topological groupoid associated to a fixed Delone set \mathcal{L}_{0} consists of:
(1) The set

$$
\mathcal{G}_{1}:=\left\{(\mathcal{L}, x) \in \bar{\Xi}_{\mathcal{L}_{0}} \times \mathbb{R}^{d}, x \in \mathcal{L}\right\} \subset \bar{\Xi}_{\mathcal{L}_{0}} \times \mathbb{R}^{d}
$$

equipped with the inversion $\operatorname{map}(\mathcal{L}, x)^{-1}=(\mathcal{L}-x,-x)$.
(2. The subset of $\mathcal{G}_{1} \times \mathcal{G}_{1}$

$$
\mathcal{G}_{1}^{(2)}=\left\{\left((\mathcal{L}, x),\left(\mathcal{L}^{\prime}, y\right)\right) \in \mathcal{G}_{1} \times \mathcal{G}_{1}, \mathcal{L}^{\prime}=\mathcal{L}-x\right\}
$$

equipped with the composition $(\mathcal{L}, x) \cdot(\mathcal{L}-x, y)=(\mathcal{L}, x+y)$.
The topology on \mathcal{G}_{1} is the relative topology inherited from $\equiv_{\mathcal{L}_{0}} \times \mathbb{R}^{d}$.

Theorem (Bellissard (1986)-Kellendonk (1995))
The groupoid \mathcal{G} is étale and the (separable) C^{*}-algebra $C^{*}(\mathcal{G})$ contains all Galilean invariant Hamiltonians for the dynamics of a single fermion.

Blowing up the Space of Units

Definition (Williams 2021)

Let \mathcal{G} be a locally compact Hausdorff groupoid with open range map. Suppose that Z is locally compact Hausdorff and that $f: Z \rightarrow \mathcal{G}^{(0)}$ is a continuous open map. Then

$$
\mathcal{G}[Z]:=\{(z, \gamma, w) \in Z \times \mathcal{G} \times Z: f(z)=r(\gamma) \text { and } s(\gamma)=f(w)\}
$$

is a topological groupoid when considered with the natural operations

$$
(z, \gamma, w)(w, \eta, x)=(z, \gamma \eta, x) \text { and }(z, \gamma, w)^{-1}=\left(w, \gamma^{-1}, z\right)
$$

and the topology inherited from $Z \times \mathcal{G} \times Z$.

Proposition (Mesland-Prodan 2021)
The canonical transversal of a Delone set $\mathcal{L}_{0}\left(=\mathcal{G}_{1}^{(0)}\right)$ accepts the blow-up

$$
\equiv_{\mathcal{L}_{0}}^{N}=\left\{(\mathcal{L}, v, \chi v) \in \widehat{\operatorname{Del}}_{(r, R)}^{(n)}\left(\mathbb{R}^{d}\right), \mathcal{L} \in \equiv_{\mathcal{L}_{0}}, \chi v(1)=0\right\}
$$

with the open map $\Xi_{\mathcal{L}_{0}}^{N} \ni(\mathcal{L}, V, \chi \vee) \mapsto \mathcal{L} \in \Xi_{\mathcal{L}_{0}}$.

The Blown-Up Groupoids Spelled Out

Proposition (Mesland-Prodan 2021)
The blown up groupoids can be characterized as:
(1) The topological space

$$
\mathcal{G}_{N}=\left\{(\xi, \zeta), \mathcal{L}_{\xi}=\mathcal{L}_{\zeta} \in \overline{\mathcal{L}}_{0}, \chi_{\xi}(1)=0\right\}
$$

equipped with the inversion map

$$
(\xi, \zeta)^{-1}=\hat{\mathfrak{t}}_{\chi \zeta(1)}(\zeta, \xi)
$$

(2. The set of composable elements

$$
\mathcal{G}_{N}^{(2)}:=\left\{\left((\xi, \zeta),\left(\xi^{\prime}, \zeta^{\prime}\right)\right) \in \mathcal{G}_{N} \times \mathcal{G}_{N}: \xi^{\prime}=\hat{\mathfrak{t}}_{\chi \zeta}(1) \zeta\right\} \subset \mathcal{G}_{N} \times \mathcal{G}_{N}
$$

equipped with the composition map

$$
(\xi, \zeta) \cdot \hat{t}_{\chi_{\zeta}(1)}\left(\zeta, \zeta^{\prime}\right):=\left(\xi, \zeta^{\prime}\right)
$$

The Group of Bisections of a Groupoid

Definition

Let \mathcal{G} be a locally compact Hausdorff groupoid. The group of (global) bisections $\mathcal{S}(\mathcal{G})$ of \mathcal{G} is the space of continuous maps

$$
\mathcal{S}(\mathcal{G}):=\left\{b: \mathcal{G}^{(0)} \rightarrow \mathcal{G}: s \circ b=\mathrm{Id}, \quad r \circ b \text { is a homeomorphism }\right\} .
$$

- The group structure on $\mathcal{S}(\mathcal{G})$ is given by

$$
b_{1} \cdot b_{2}(\alpha):=b_{1}\left(r \circ b_{2}(\alpha)\right) b_{2}(\alpha), \quad b^{-1}(\alpha):=b\left((r \circ b)^{-1}(\alpha)\right)^{-1}, \quad \alpha \in \mathcal{G}^{(0)} .
$$

Here $(r \circ b)^{-1}$ denotes the inverse homeomorphism to $r \circ b$, whereas $b(\alpha)^{-1}$ denotes the inverse of $b(\alpha)$ in \mathcal{G}.

- The identity element of $\mathcal{S}(\mathcal{G})$ is the inclusion $i: \mathcal{G}^{(0)} \rightarrow \mathcal{G}$.
- $\mathcal{S}(\mathcal{G})$ is a locally compact group in the compact open topology.
- $\mathcal{S}(\mathcal{G})$ affords continuous commuting left and right actions on \mathcal{G} via

$$
b_{1} \cdot \alpha \cdot b_{2}:=b_{1}(r(\alpha)) \cdot \alpha \cdot b_{2}^{-1}(s(\alpha))^{-1}, \quad b \in \mathcal{S}(\mathcal{G}), \quad \alpha \in \mathcal{G} .
$$

Group 2-actions

Definition

Let \mathcal{G} be a locally compact Hausdorff groupoid and H a locally compact group. A 2-action of H on \mathcal{G} is a group homomorphism $H \rightarrow \mathcal{S}(\mathcal{G})$.

Proposition (Mesland-Prodan 2021)
Let $s \in \mathcal{S}_{N}$ be a permutation. Then the formula

$$
b_{s}(\xi):=\hat{\mathfrak{t}}_{\chi_{\xi} \circ s^{-1}(1)}\left(\Lambda_{s}(\xi), \xi\right)
$$

defines a homomorphism $b: \mathcal{S}_{N} \rightarrow \mathcal{S}\left(\mathcal{G}_{N}\right)$ and thus a 2-action of \mathcal{S}_{N} on \mathcal{G}_{N}.
The induced commuting left and right actions of \mathcal{S}_{N} on \mathcal{G}_{N} are given by

$$
s_{1} \cdot(\xi, \zeta) \cdot s_{2}=\hat{\mathfrak{t}}_{\chi \xi \circ s_{1}^{-1}(1)}\left(s_{1} \cdot \xi, s_{2}^{-1} \cdot \zeta\right)
$$

for $s_{i} \in \mathcal{S}_{N}$.

Bi-Equivariant Groupoid C^{*}-Algebras

Definition

Let H be a topological group and A a C^{*}-algebra. A 2-action of H on A is a continuous group homomorphism $\sigma: H \rightarrow U M(A)$ (unitary group of the multiplier algebra).

A 2-action induces left and right actions of H on A by unitary multipliers:

$$
h \cdot a:=\sigma_{h} a, \quad a \cdot h:=a \sigma_{h}^{*} .
$$

It also induces an action by $*$-automorphisms through $\alpha_{h}(a):=\sigma_{h} a \sigma_{h}^{*}$.
Proposition (Bi-equivariant groupoid C^{*}-algebras, Mesland-Prodan 2021)
Let \mathcal{G} a locally compact groupoid with Haar system and A a C^{*}-algebra. Suppose that

$$
b: H \rightarrow \mathcal{S}(\mathcal{G}), \quad \sigma: H \rightarrow U M(A)
$$

are 2-actions of a topological group H on \mathcal{G} and A. Then the norm closure $C_{r, H}^{*}(\mathcal{G}, A)$ of

$$
\left\{f \in C_{c}(\mathcal{G}, A): \forall h_{1}, h_{2} \in H, \quad \forall \xi \in \mathcal{G}, \quad f\left(h_{1} \cdot \xi \cdot h_{2}\right)=h_{1} \cdot f(\xi) \cdot h_{2}\right\}
$$

is a C^{*}-subalgebra of $C_{r}^{*}(\mathcal{G}, A)$.

The Context Spelled Out

Proposition (Mesland-Prodan 2021)
Let η be the vacuum state and π_{η}^{N} the associated representation on the N-fermion sectors of the Fock space. Then, with the 2-action $\sigma: \mathcal{S}_{N} \rightarrow U M(\mathbb{C})$ is $\sigma(s)=(-1)^{s}$, for any $\mathcal{L} \in \bar{E}_{\mathcal{L}_{0}}$,

$$
\pi_{\eta}^{N}(\dot{\Sigma}(\mathcal{L})) \mapsto \pi_{\xi}\left(\mathcal{M}\left(C_{r, \mathcal{S}_{N}}^{*}\left(\mathcal{G}_{N}, \mathbb{C}\right)\right)\right)
$$

where π_{ξ} is a left regular representation $\left[\xi \in \mathfrak{a}_{N}^{-1}(\mathcal{L})\right]$ and \mathcal{M} indicates the extension to multiplier algebra.

$$
\dot{\Sigma}(\mathcal{L}) \multimap \lim _{\leftarrow} \bigoplus_{n=1}^{N} \pi_{\xi}\left(\mathcal{M}\left(C_{r, \mathcal{S}_{n}}^{*}\left(\mathcal{G}_{n}, \mathbb{C}\right)\right)\right) \otimes \pi_{\xi}\left(\mathcal{M}\left(C_{r, \mathcal{S}_{n}}^{*}\left(\mathcal{G}_{n}, \mathbb{C}\right)\right)\right)^{\mathrm{op}}
$$

Intrinsic \mathbb{R}^{d} Actions

\mathbb{R}^{d}-action: The origin
The anti-commutation relations of $\operatorname{CAR}(\mathcal{L})$ are invariant against $a_{x} \mapsto e^{2 k x} a_{x}, x \in \mathcal{L}, k \in \mathbb{R}^{d}$. As such, there exists an intrinsic \mathbb{R}^{d}-action by automorphisms,

$$
\rho_{k}\left(a_{x}\right)=e^{\imath k x} a_{x}, \quad \rho_{k+k^{\prime}}=\rho_{k} \circ \rho_{k^{\prime}}, \quad k, k^{\prime} \in \mathbb{R}^{d} .
$$

The action is intrinsically related to the electric charge and transport coefficients.
\mathbb{R}^{d}-action: Explicit form on $C_{r}^{*}\left(\mathcal{G}_{N}\right)$
The action trickles down to the inner-limit derivations, hence on $C_{r}^{*}\left(\mathcal{G}_{N}\right)$:

$$
\left(\rho_{k}(f)\right)(\xi, \zeta)=e^{\imath k N\left(x_{\xi}-x_{\zeta}\right)} f(\xi, \zeta), \quad x_{\xi}=\text { center of mass of } V_{\xi}
$$

This action commutes with the 2 -action by permutations.

Remark:
These are certainly \mathbb{R}^{d}-action generated from 1-cocycles [Renault 1980]

Traces

The trace on \mathcal{G}_{1} :
If the continuous hull $\left(\Omega_{\mathcal{L}_{0}}, \mathfrak{t}, \mathbb{R}^{d}\right)$ is equipped with an ergodic measure \mathbb{P}, then $\mathcal{G}_{1}^{(0)} \subset \Omega_{\mathcal{L}_{0}}$ can be equipped with a measure and:

- $C_{r}^{*}\left(\mathcal{G}_{1}\right)$ comes equipped with a physically sound trace

$$
\mathcal{T}_{1}(f):=\int_{\mathcal{G}_{1}^{(0)}} d \mathbb{P}(\mathcal{L}) f(\mathcal{L}, 0)=\lim _{V \rightarrow \mathbb{R}^{d}} \frac{1}{|V|} \operatorname{Tr}_{\mathcal{L}^{2}(\mathcal{L} \cap V)}\left(\pi_{\mathcal{L}}(f)\right) \quad[\mathbb{P}-\text { almost surely }]
$$

- Furthermore, $\mathcal{T}_{1} \circ \rho_{k}=\mathcal{T}_{1}$.

The trace on \mathcal{G}_{N} :

- If \mathbb{P} is promoted to one of the pull-back measures on $\mathcal{G}_{N}^{(0)}$, then

$$
\mathcal{T}_{N}(f):=\int_{\mathcal{G}_{N}^{(0)}} d \mathbb{P}_{N}(\xi) f(\xi, \xi)
$$

supplies a trace on $C_{r}^{*}\left(\mathcal{G}_{N}\right)$ such that $\mathcal{T}_{N} \circ \rho_{k}=\mathcal{T}_{N}$.

- However, there are many options to do so and we still need to identify the physically sound ones.

Canonical cyclic co-cycles ($N=1$ from now on)

If $J \subseteq\{1,2, \ldots, d\}$, then:

$$
\varphi_{J}\left(f_{0}, f_{1}, \ldots, f_{|J|}\right)=\Lambda_{|J|} \sum_{\sigma \in \mathcal{S}_{|J|}} \mathcal{T}\left(f_{0} \prod_{j=1}^{|J|} \partial_{\sigma_{j}} f_{j}\right)
$$

are cyclic co-cycles. Hence, there exist pairings with the K_{0} / K_{1}-classes landing in a countable subgroup of the real axis:

$$
\left\langle\left[\varphi_{J}\right],[p]_{0}\right\rangle:=\varphi_{J}(p, \ldots, p), \quad\left\langle\left[\varphi_{J}\right],[u]_{1}\right\rangle:=\varphi_{J}\left(u^{*}, \ldots, u\right)
$$

Furthermore, the even pairings relate to the transport coefficients:

- (Bellissard et al 1994):

$$
\varphi_{\{i, j\}}\left(p_{E}, p_{E}, p_{E}\right)=\sigma_{i j} \quad \text { (the Hall conductance in the }(i, j) \text { plane) }
$$

- (Prodan-Schulz-Baldes 2016):

$$
\varphi_{J}\left(p_{E}, \ldots, p_{E}\right)=\partial_{B_{i_{1} i_{2}}} \ldots \partial_{B_{i|J|-3^{i}|J-2|}} \sigma_{i_{|J|-1^{i}|J|}} \quad \text { (non-linear transport coefficients) }
$$

Part 2: Interesting Physical Phenomena

Numerical Results for a 2-Dimensional Model [Prodan, J. Phys. A (2011)]

$$
\begin{gathered}
H_{\omega}=\sum_{\langle x, y\rangle}|x\rangle\langle y|+0.6 \imath \sum_{\langle\langle x, y\rangle\rangle}(|x\rangle\langle y|-|y\rangle\langle x|)+W \sum_{x} \omega_{x}|x\rangle\langle x|, \quad(\langle,\rangle /\langle\langle,\rangle\rangle=\text { first/second neighbors }) \\
h \in M_{2} \otimes C\left(\left[-\frac{1}{2}, \frac{1}{2} \mathbb{Z}^{\mathbb{Z}^{2}}\right) \rtimes \mathbb{Z}^{2}, \quad h \sim\left(1-p_{\text {top }}\right)-p_{\text {top }}, \quad H_{\omega}=\pi_{\omega}(h), \quad \omega \in\left[-\frac{1}{2}, \frac{1}{2}\right]^{\mathbb{Z}^{2}}\right.
\end{gathered}
$$

The spectacular observations are:

- A manifold of critical extended states develops.
- The change in the quantized values of the pairing occurs at this critical manifold.

Anderson Localization-Delocalization transition in 1D chiral model

Mondragon-Shem,Hughes, Song, Prodan, Phys. Rev. Lett. 2014

The model defined (comes from $M_{2} \otimes C(\Omega) \rtimes \mathbb{Z}$):

Data:

- Ergodic dynamical system $(\tau: \mathbb{Z} \rightarrow \operatorname{Homeo}(\Omega), \mathrm{d} \mathbb{P})$
- Two functions $t: \Omega \rightarrow \mathbb{R}$ and $m: \Omega \rightarrow \mathbb{R}$.

Then:

$$
H_{\omega}=\sum_{x \in \mathbb{Z}}\left\{\frac{1}{2} t\left(\tau_{x} \omega\right)\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \otimes|x\rangle\langle x+1|+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \otimes|x+1\rangle\langle x|\right]+m\left(\tau_{x} \omega\right)\left(\begin{array}{cc}
0 & -\imath \\
2 & 0
\end{array}\right) \otimes|x\rangle\langle x| \cdot\right\}
$$

Key symmetry:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) H_{\omega}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=-H_{\omega}, \quad H_{\omega} \sim\left(\begin{array}{cc}
0 & u_{\mathrm{top}}^{*} \\
u_{\mathrm{top}} & 0
\end{array}\right) .
$$

Task: We are going to solve $H \psi=E \psi$ at $E=0$.

Lyapunov exponent

The Schroedinger equation at $E=0$ reduces to ($\alpha= \pm 1$ indexes the top/bottom of ψ)

$$
t_{x} \psi_{x-\alpha}^{\alpha}+i \alpha m_{x} \psi_{x}^{\alpha}=0 \Rightarrow \psi_{x}^{\alpha}=\prod_{j=1}^{x}\left(\frac{t_{x}}{m_{x}}\right) \psi_{0}^{\alpha}
$$

The Lyapunov exponent comes to be

$$
\lambda=\max _{\alpha= \pm}\left[-\lim _{x \rightarrow \infty} \frac{1}{x} \log \left|\psi_{x}^{\alpha}\right|\right]=\left\lvert\, \lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n=1}^{x}\left(\ln \left|t\left(\tau_{x} \omega\right)\right|-\ln \left|m\left(\tau_{x} \omega\right)\right| \mid\right.\right.
$$

Fromm Birkhoff's theorem

$$
\lambda=\left|\ln \frac{\int \mathrm{d} \mathbb{P}(\omega)|t(\omega)|}{\int \mathrm{d} \mathbb{P}(\omega)|m(\omega)|}\right|
$$

A typical example

White noise disorder:

$$
\Omega=\left[-\frac{1}{2}, \frac{1}{2}\right]^{\mathbb{Z}}, \quad \mathbb{P}=\text { product measure, } \quad t\left(\left\{\omega_{x}\right\}\right)=1+W_{1} \omega_{0}, \quad m\left(\left\{\omega_{x}\right\}\right)=m+W_{2} \omega_{0}
$$

The spectacular phenomenon:
The emergence of a manifold of zero Lyapunov exponent at very high levels of disorder.

Numerical Results for the Odd Pairing

$$
\frac{H_{\omega}}{\left|H_{\omega}\right|}=\left(\begin{array}{cc}
0 & u^{*} \\
u & 0
\end{array}\right) \text { and we are going to look at } \nu=\varphi_{\{1\}}\left(u^{*}, u\right) \text {. }
$$

The Conjectured Topological Classification Table

j	TRS	PHS	CHS	CAZ	0,8	1	2	3	4	5	6	7
0	0	0	0	A	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
1	0	0	1	AIII		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
0	+1	0	0	AI	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}
1	+1	+1	1	BDI	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$		\mathbb{Z}_{2}
2	0	+1	0	D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$	
3	-1	+1	1	DIII		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}				$2 \mathbb{Z}$
4	-1	0	0	AII	$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}			
5	-1	-1	1	CII		$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}		
6	0	-1	0	C			$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
7	+1	-1	1	Cl				$2 \mathbb{Z}$		\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}

- A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).
- A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conference Proceedings 1134, 22-30 (2009).
- S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

Part 3: Pushing the Cocycle Pairings on Sobolev Domains via Index Theorems

- J. Bellissard, A. van Elst, H. Schulz-Baldes, The non-commutative geometry of the quantum Hall-effect, J. Math. Phys. 35, 5373-5451 (1994).
- E. Prodan, B. Leung, J. Bellissard, The non-commutative n-th Chern number ($n \geq 1$), J. Phys. A: Math. Theor. 46, 485202 (2013). To be followed here.
- E. Prodan, H. Schulz-Baldes, Non-commutative odd Chern numbers and topological phases of disordered chiral systems, J. Func. Anal. 271, 1150-1176 (2016).
- E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics, (Mathematical Physics Studies, Springer, 2016).
- C. Bourne, E. Prodan, Non-Commutative Chern Numbers for Generic Aperiodic Discrete Systems, J. Phys. A: Math. Theor. 51, 235202 (2018).

A Closer Look at the Domain of the Cocycle (In the context of $C_{r}^{*}\left(\mathcal{G}_{1}\right)$)

In the standard approach

- $\mathcal{D}\left(\varphi_{d}\right)=C_{r}^{*}\left(\mathcal{G}_{1}\right)^{\infty}$ (defined by the semi-norms $\left.\left\|\partial^{\alpha} f\right\|\right)$.

However, Hölder inequality gives:

- $\left|\varphi_{d}\left(f_{0}, f_{1}, \ldots, f_{d}\right)\right| \leq\left\|f_{0}\right\|_{\infty} \prod_{j=1}^{d}\left(\sum_{k=1}^{d}\left\|\partial_{k} f_{j}\right\|_{d}\right), \quad\|f\|_{p}=\left[\mathcal{T}\left(|f|^{p}\right)\right]^{\frac{1}{p}}$
- $\left|\varphi_{d}\left(f_{0}, f_{1}, \ldots, f_{d}\right)-\varphi_{d}\left(f_{0}^{\prime}, f_{1}^{\prime}, \ldots, f_{d}^{\prime}\right)\right| \leq$ Factor $\times \sum_{j=0}^{d}\left(\sum_{k=1}^{d}\left\|\partial_{k}\left(f_{j}-f_{j}^{\prime}\right)\right\|_{d}\right)$

Reasonable conclusion:
The natural domain for φ_{d} is the Sobolev space $\mathcal{W}_{1, d}\left(\mathcal{G}_{1}, \mathcal{T}\right)$ defined by the norm

$$
\|f\|_{S}=\|f\|_{\infty}+\sum_{k=1}^{d}\left[\mathcal{T}\left(\left|\partial_{k} f_{j}\right|^{p}\right)\right]^{\frac{1}{p}}
$$

p_{E} 's and u 's belong to $\mathcal{W}_{1, d}\left(\mathcal{G}_{1}, \mathcal{T}\right)$ whenever quantization of the pairings was observed.

Quantized Calculus

The tuple $\left(\eta_{\mathcal{L}}: C_{r}^{*}\left(\mathcal{G}_{1}\right) \rightarrow \mathbb{B}(\mathcal{H}), \widehat{D}_{x_{0}}=\frac{D_{x_{0}}}{\left|D_{x_{0}}\right|}, \Gamma_{0}\right)$ is an even Fredholm module, where

- $\mathcal{H}=\mathbb{C}^{2^{d}} \otimes \ell^{2}(\mathcal{L}), \quad \eta_{\mathcal{L}}=1 \otimes \pi_{\mathcal{L}} \quad\left(\pi_{\mathcal{L}}=\right.$ left regular rep $)$
- $\Gamma_{i}=$ Clifford matrices and $\Gamma_{0}=-i^{n} \Gamma_{1} \cdots \Gamma_{d}$
- $D_{x_{0}}=\sum_{i=1}^{d} \Gamma_{i} \otimes\left(X_{i}-x_{0}\right), \quad x_{0} \notin \mathcal{L}$

For $f \in \mathcal{W}_{1, d}\left(\mathcal{G}_{1}, \mathcal{T}\right)$ and \mathbb{P}-almost surely (below, $\Gamma(\hat{x})=\Gamma-\hat{x}(\hat{x} \cdot \Gamma)$):

$$
\operatorname{Tr}_{\text {Dix }}\left(\left(\imath\left[\widehat{D}_{x_{0}}, \eta_{\mathcal{L}}(f)\right]\right)^{d}\right)=\frac{1}{d} \int_{S_{d-1}} \mathrm{~d} \hat{x} \operatorname{tr}_{\Gamma} \otimes \mathcal{T}\left((\Gamma(\hat{x}) \cdot \nabla(f))^{d}\right)
$$

Corollary: \mathbb{P}-a.s., the module is (d, ∞) - summable, hence the Connes-Chern character comes into play:

$$
\operatorname{Tr}_{\mathrm{s}}\left(\Gamma_{0}\left[\widehat{D}_{x_{0}}, \eta_{\mathcal{L}}(p)\right]^{d}\right)=\operatorname{Ind} \eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}}^{+}(p)
$$

The Index Theorem for Even Dimension

Theorem: For any $p \in \mathcal{W}_{1, d}\left(\mathcal{G}_{1}, \mathcal{T}\right), \mathbb{P}$-almost surely

- $\eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}}^{+}(p)$ is a Fredholm operator.
- $\operatorname{Ind}\left(\eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}}^{+}(p)\right)=\varphi_{d}(p, \ldots, p)$

If $p(t) \in \mathcal{W}_{1, d}\left(\mathcal{G}_{1}, \mathcal{T}\right)$ varies continuously w.r.t. the semi-norm $\sum_{k=1}^{d}\left\|\partial_{k}(\cdot)\right\|_{d}$, then

- $\varphi_{d}(p(t), \ldots, p(t))=$ constant $\in \mathbb{Z}$.

Proof:

- $\eta_{\mathcal{L}-x}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}-x}^{+}(p)-\eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}}^{+}(p)=$ compact operator
- $\eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}}^{+}(p)-\eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}^{\prime}} \eta_{\mathcal{L}}^{+}(p)=$ compact operator
- $\operatorname{Ind}\left(\eta_{\mathcal{L}}^{-}(p) \widehat{D}_{x_{0}} \eta_{\mathcal{L}}^{+}(p)\right)=\int \mathrm{dP}(\mathcal{L}) \int \mathrm{d} x_{0} \operatorname{Tr}_{\mathrm{s}}\left(\Gamma_{0}\left[\widehat{D}_{x_{0}}, \eta_{\mathcal{L}}(p)\right]^{d}\right)$
- Evaluate the right side

$$
\begin{aligned}
&-\sum_{x_{i} \in \mathcal{L}} \int_{\mathbb{R}^{d}} d \boldsymbol{x} \operatorname{tr} \gamma\left\{\Gamma_{0} \prod_{i=1}^{d}\left(\widehat{\boldsymbol{x}_{i}+\boldsymbol{x}}-\widehat{\boldsymbol{x}_{i+1}+\boldsymbol{x}}\right) \cdot \boldsymbol{\Gamma}\right\} \\
& \int_{\mathcal{G}_{1}^{(0)}} \mathrm{d} \mathbb{P}(\mathcal{L}) \operatorname{Tr}\left\{\pi_{\mathcal{L}}(p) \prod_{i=1}^{d}\left|x_{i}\right\rangle\left\langle x_{i}\right| \pi_{\mathcal{L}}(p)\left|x_{i+1}\right\rangle\left\langle x_{i+1}\right|\right\}
\end{aligned}
$$

Geometric Identity

PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

Alain Connes
Non-commutative differential geometry
Publications mathématiques de l'I.H.E.S. , tome 62, $\mathrm{n}^{\circ} 2$ (1985), p. 41-144.

9. Fredholm modules over the convolution algebra of a Lie group

The case $\mathbf{G}=\mathbf{R}^{2}$
Lemma 2. - One has $c\left(s^{0}, s^{1}, s^{2}\right)=2 i \pi\left(s^{1} \wedge s^{2}\right)$.

The generalization of this identity is:

$$
\int_{\mathbb{R}^{d}} \mathrm{~d} \boldsymbol{x} \operatorname{tr}\left\{\Gamma_{0} \prod_{i=1}^{d}\left(\frac{\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i}+\boldsymbol{x}\right)}{\left|\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i}+\boldsymbol{x}\right)\right|}-\frac{\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i+1}+\boldsymbol{x}\right)}{\left|\boldsymbol{\Gamma} \cdot\left(\boldsymbol{x}_{i+1}+\boldsymbol{x}\right)\right|}\right)\right\}=\frac{(2 \imath \pi)^{d / 2}}{(d / 2)!} \sum_{\rho \in \mathcal{S}_{d}}(-1)^{\rho} \prod_{i=1}^{d} x_{i, \rho_{i}}
$$

Summary

Certain spectral statements can be made at this level

Compute cyclic cohomologies

Pairings with the K-theories supply numerical invariants with physical interpretation.

Local index formulas
Enable the push into the Sobolev.

Dynamical statements can be made at this level.

