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Part 1: The Context

B. Mesland, E. Prodan, A groupoid approach to interacting fermions, arXiv:2107.10681.

Enlarged to a many-body picture, built on the breakthrough works:

J. Bellissard, K-theory of C∗-algebras in solid state physics, Lect. Notes Phys. 257, 99–156 (1986).

J. Kellendonk, Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys. 7, 1133-1180 (1995).
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Algebra of Local Observables

For fermions hopping over a lattice L

CAR(L) := lim−→CAR(Lk ) (Algebra of Local Observable)

where CAR(Lk ) := C∗(ax , x ∈ Lk ) with the anti-commutation relations:

axax′ + ax′ax = 0, a∗x ax′ + ax′a
∗
x = δx,x′ , x , x ′ ∈ Lk .

Until specified otherwise, L will always be an (r ,R)-Delone set (r ,R fixed), hence L is

uniformly discrete: ∀x ∈ Rd : |B(x , r) ∩ L| ≤ 1,

relatively dense: ∀x ∈ Rd : |B(x ,R) ∩ L)| ≥ 1.

Important: we do not assume any translational symmetry for L.
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A Closer Look at Words from CAR(L)

To generate a word from a′x s, we need:

a set of indices V = {x , x ′, . . .} ⊂ L

an order of the indices χV : {1, . . . , |V |} → V .

Then we can form the word

aJ(χJ) := aχJ (|J|) · · · aχJ (|1|) ∈ CAR(L).

Proposition [The many-body covers, Mesland-Prodan 2021]:

If we let L take values in Del(r,R)(Rd ), then the set

D̂el
(n)

(r,R)(Rd ) of triples ξ = (L,V , χV ), (|V | = n ∈ N×)

can be topologized such that
an(L,V , χ) := L

becomes a cover of Del(r,R)(Rd ).
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Symmetric presentation of the CAR elements

Any element from CAR(L) accepts a unique presentation as a convergent sum of the type

A =
∑
n,m

1
n!m!

∑
ξ∈a−1

n (L)

∑
ζ∈a−1

m (L)

c(ξ, ζ) a(ξ)∗a(ζ),

where the coefficients are bi-equivariant in the sense (SN := group of permutations)

c(s1 · ξ, ζ · s2) = (−1)s1c(ξ, ζ)(−1)s2 , s1 ∈ Sn, s2 ∈ Sm.

The interest, however, is not in CAR(L) but in the dynamics of the local observables

α : R→ Aut
(
CAR(L)

)
and the generators δα. The challenge, of course, is that α’s are outer automorphisms.

The plan:

Consider a core algebra of well behaved Hamiltonians

Complete this algebra and characterize the completion.
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The Physical Hamiltonians

A Galilean & gauge invariant Hamiltonian with finite interaction range is a correspondence

Del
(n)
(r,R)

(Rd ) 3 L 7→ HL =
∑

n∈N×

1
n!

∑
ξ,ζ∈a−1

n (L)

hn(ξ, ζ) a∗(ξ)a(ζ),

where the C-valued hn’s are defined globally and continuously on the n-body covers and obey:

hn(ζ, ξ) = hn(ξ, ζ)

hn’s are bi-equivariant w.r.t. Sn
hn(tx · ξ, tx · ζ) = hn(ξ, ζ) (equivariance under rigid shifts ⇔ Galilean invariance)

hn’s vanish whenever the diameter of Vξ ∪ Vζ exceeds a fixed value Ri.

Proposition: Let HLk
be the truncation to an element of CAR(Lk ). Then the map

adHL (A) = lim
k→∞

ı[A,HLk
], A ∈ D(L) := ∪

k
CAR(Lk ),

is a derivation that leaves D(L) invariant. Furthermore,

adHL (A)∗ := adHL (A∗), ∀ A ∈ D(L),

and adHL is closable and in fact a pre-generator of a time evolution.
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The Core Algebra of Physical Derivations

Defined as the sub-algebra Σ̇(L) ⊂ End
(
D(L)

)
generated by derivations adQn

L
corresponding to

Qn
L = 1

n!

∑
(ξ,ζ)∈b−1

n (L)

qn(ξ, ζ)a∗(ξ)a(ζ),

where q’s are defined over the many-body covers and satisfy the four constraints except the first
one. Henceforth, an element of Σ̇(L) can be presented as a finite sum

Q =
∑
{Q}

c{Q} ad
Q

n1
L
◦ . . . ◦ ad

Q
nk
L
, c{Q} ∈ C.

The multiplication is given by the composition of linear maps over D(L), (Q1,Q2) 7→ Q1 ◦ Q2.

Remark:

The linear space spanned by adQn
L

is invariant against the Lie bracket

(adQn
L
, adQm

L
) 7→ adQn

L
◦ adQm

L
− adQm

L
◦ adQn

L

hence Σ̇(L) is the associative envelope of this Lie algebra.
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Shift of Gears: The Canonical Groupoid Associated to a Delone Set

Notions from the generic theory of patterns:

Definition

The continuous hull of a fixed L0 is the topological dynamical system (ΩL0
, t,Rd ), where

ΩL0
= {ta(L0) = L0 − a, a ∈ Rd},

with the closure in the metric space C(Rd ) of closed patterns.

Definition

The canonical transversal of a continuous hull (ΩL0
, t,Rd ) of a Delone set L0 is defined as

ΞL0
= {L ∈ ΩL0

, 0 ∈ L}.

The transversal is a compact subspace of C(Rd ).
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The Canonical Groupoid Associated to a Delone Set

The topological groupoid associated to a fixed Delone set L0 consists of:

1. The set
G1 := {(L, x) ∈ ΞL0

× Rd , x ∈ L} ⊂ ΞL0
× Rd

equipped with the inversion map (L, x)−1 = (L − x ,−x).

2. The subset of G1 × G1

G(2)
1 =

{(
(L, x), (L′, y)

)
∈ G1 × G1, L′ = L − x

}
equipped with the composition (L, x) · (L − x , y) = (L, x + y).

The topology on G1 is the relative topology inherited from ΞL0
× Rd .

Theorem (Bellissard (1986)-Kellendonk (1995))

The groupoid G is étale and the (separable) C∗-algebra C∗(G) contains all Galilean invariant
Hamiltonians for the dynamics of a single fermion.

Emil Prodan (Yeshiva University) TIs at Strong Disorder Sept 2021 9 / 32



Blowing up the Space of Units

Definition (Williams 2021)

Let G be a locally compact Hausdorff groupoid with open range map. Suppose that Z is locally
compact Hausdorff and that f : Z → G(0) is a continuous open map. Then

G[Z ] :=
{

(z, γ,w) ∈ Z × G × Z : f (z) = r(γ) and s(γ) = f (w)
}

is a topological groupoid when considered with the natural operations

(z, γ,w)(w , η, x) = (z, γη, x) and (z, γ,w)−1 = (w , γ−1, z),

and the topology inherited from Z × G × Z .

Proposition (Mesland-Prodan 2021)

The canonical transversal of a Delone set L0 (= G(0)
1 ) accepts the blow-up

ΞN
L0

= {(L,V , χV ) ∈ D̂el
(n)

(r,R)(Rd ), L ∈ ΞL0
, χV (1) = 0}

with the open map ΞN
L0
3 (L,V , χV ) 7→ L ∈ ΞL0

.
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The Blown-Up Groupoids Spelled Out

Proposition (Mesland-Prodan 2021)

The blown up groupoids can be characterized as:

1. The topological space

GN =
{

(ξ, ζ), Lξ = Lζ ∈ ΞL0
, χξ(1) = 0

}
,

equipped with the inversion map

(ξ, ζ)−1 = t̂χζ (1)(ζ, ξ).

2. The set of composable elements

G(2)
N :=

{(
(ξ, ζ), (ξ′, ζ′)

)
∈ GN × GN : ξ′ = t̂χζ (1)ζ

}
⊂ GN × GN ,

equipped with the composition map

(ξ, ζ) · t̂χζ (1)(ζ, ζ′) := (ξ, ζ′).
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The Group of Bisections of a Groupoid

Definition

Let G be a locally compact Hausdorff groupoid. The group of (global) bisections S(G) of G is
the space of continuous maps

S(G) :=
{
b : G(0) → G : s ◦ b = Id, r ◦ b is a homeomorphism

}
.

The group structure on S(G) is given by

b1 · b2(α) := b1

(
r ◦ b2(α)

)
b2(α), b−1(α) := b

(
(r ◦ b)−1(α)

)−1
, α ∈ G(0).

Here (r ◦ b)−1 denotes the inverse homeomorphism to r ◦ b, whereas b(α)−1 denotes the
inverse of b(α) in G.

The identity element of S(G) is the inclusion i : G(0) → G.

S(G) is a locally compact group in the compact open topology.

S(G) affords continuous commuting left and right actions on G via

b1 · α · b2 := b1

(
r(α)

)
· α · b−1

2

(
s(α)

)−1
, b ∈ S(G), α ∈ G.
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Group 2-actions

Definition

Let G be a locally compact Hausdorff groupoid and H a locally compact group. A 2-action of H
on G is a group homomorphism H → S(G).

Proposition (Mesland-Prodan 2021)

Let s ∈ SN be a permutation. Then the formula

bs(ξ) := t̂χξ◦s−1(1)

(
Λs(ξ), ξ

)
defines a homomorphism b : SN → S(GN) and thus a 2-action of SN on GN .

The induced commuting left and right actions of SN on GN are given by

s1 · (ξ, ζ) · s2 = t̂
χξ◦s

−1
1 (1)

(s1 · ξ, s−1
2 · ζ),

for si ∈ SN .

Emil Prodan (Yeshiva University) TIs at Strong Disorder Sept 2021 13 / 32



Bi-Equivariant Groupoid C∗-Algebras

Definition

Let H be a topological group and A a C∗-algebra. A 2-action of H on A is a continuous group
homomorphism σ : H → UM(A) (unitary group of the multiplier algebra).

A 2-action induces left and right actions of H on A by unitary multipliers:

h · a := σha, a · h := aσ∗h .

It also induces an action by ∗-automorphisms through αh(a) := σhaσ
∗
h .

Proposition (Bi-equivariant groupoid C∗-algebras, Mesland-Prodan 2021)

Let G a locally compact groupoid with Haar system and A a C∗-algebra. Suppose that

b : H → S(G), σ : H → UM(A),

are 2-actions of a topological group H on G and A. Then the norm closure C∗r,H(G,A) of

{f ∈ Cc (G,A) : ∀h1, h2 ∈ H, ∀ξ ∈ G, f (h1 · ξ · h2) = h1 · f (ξ) · h2}

is a C∗-subalgebra of C∗r (G,A).
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The Context Spelled Out

Proposition (Mesland-Prodan 2021)

Let η be the vacuum state and πN
η the associated representation on the N-fermion sectors of the

Fock space. Then, with the 2-action σ : SN → UM(C) is σ(s) = (−1)s , for any L ∈ ΞL0
,

πN
η

(
Σ̇(L)

)
� πξ

(
M
(
C∗r,SN (GN ,C)

))
,

where πξ is a left regular representation [ξ ∈ a−1
N (L)] and M indicates the extension to

multiplier algebra.

Σ̇(L) � lim←−

N⊕
n=1

πξ

(
M
(
C∗r,Sn (Gn,C)

))
⊗ πξ

(
M
(
C∗r,Sn (Gn,C)

))op
.

N 
fermions

N1

fermions

N2

fermions

Self-binding Scattered
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Intrinsic Rd Actions

Rd -action: The origin

The anti-commutation relations of CAR(L) are invariant against ax 7→ eıkxax , x ∈ L, k ∈ Rd .
As such, there exists an intrinsic Rd -action by automorphisms,

ρk (ax ) = eıkxax , ρk+k′ = ρk ◦ ρk′ , k, k ′ ∈ Rd .

The action is intrinsically related to the electric charge and transport coefficients.

Rd -action: Explicit form on C∗r (GN)

The action trickles down to the inner-limit derivations, hence on C∗r (GN):

(
ρk (f )

)
(ξ, ζ) = eıkN(xξ−xζ )f (ξ, ζ), xξ = center of mass of Vξ

This action commutes with the 2-action by permutations.

Remark:

These are certainly Rd -action generated from 1-cocycles [Renault 1980]
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Traces

The trace on G1:

If the continuous hull (ΩL0
, t,Rd ) is equipped with an ergodic measure P, then G(0)

1 ⊂ ΩL0
can

be equipped with a measure and:

C∗r (G1) comes equipped with a physically sound trace

T1(f ) :=

∫
G(0)

1

dP(L) f (L, 0) = lim
V→Rd

1
|V |TrL2(L∩V)

(
πL(f )

)
[P− almost surely]

Furthermore, T1 ◦ ρk = T1.

The trace on GN :

If P is promoted to one of the pull-back measures on G(0)
N , then

TN(f ) :=

∫
G(0)
N

dPN(ξ) f (ξ, ξ)

supplies a trace on C∗r (GN) such that TN ◦ ρk = TN .

However, there are many options to do so and we still need to identify the physically
sound ones.
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Canonical cyclic co-cycles (N = 1 from now on)

If J ⊆ {1, 2, . . . , d}, then:

ϕJ(f0, f1, . . . , f|J|) = Λ|J|
∑
σ∈S|J|

T
(
f0

|J|∏
j=1

∂σj fj

)
are cyclic co-cycles. Hence, there exist pairings with the K0/K1-classes landing in a countable
subgroup of the real axis:〈

[ϕJ ], [p]0〉 := ϕJ(p, . . . , p),
〈
[ϕJ ], [u]1〉 := ϕJ(u∗, . . . , u)

Furthermore, the even pairings relate to the transport coefficients:

(Bellissard et al 1994):

ϕ{i,j}(pE , pE , pE ) = σij (the Hall conductance in the (i , j) plane)

(Prodan-Schulz-Baldes 2016):

ϕJ(pE , . . . , pE ) = ∂Bi1 i2
. . . ∂Bi|J|−3 i|J−2|

σi|J|−1 i|J| (non-linear transport coefficients)
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Part 2: Interesting Physical Phenomena
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Numerical Results for a 2-Dimensional Model [Prodan, J. Phys. A (2011)]

Hω =
∑
〈x,y〉
|x〉〈y |+0.6ı

∑
〈〈x,y〉〉

(
|x〉〈y |−|y〉〈x |

)
+W

∑
x

ωx |x〉〈x |, (〈, 〉/〈〈, 〉〉 = first/second neighbors)

h ∈ M2 ⊗ C
(

[− 1
2
, 1

2
]Z

2
)
o Z2, h ∼ (1− ptop)− ptop, Hω = πω(h), ω ∈ [− 1

2
, 1

2
]Z

2
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Numerical Results for a 2-Dimensional Model [Prodan, J. Phys. A (2011)]

The spectacular observations are:

A manifold of critical extended states develops.

The change in the quantized values of the pairing occurs at this critical manifold.
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Anderson Localization-Delocalization transition in 1D chiral model

Mondragon-Shem,Hughes, Song, Prodan, Phys. Rev. Lett. 2014

The model defined (comes from M2 ⊗ C(Ω) o Z):

Data:

Ergodic dynamical system
(
τ : Z→ Homeo(Ω

)
,dP
)

Two functions t : Ω→ R and m : Ω→ R.

Then:

Hω =
∑
x∈Z

{
1
2
t(τxω)

[(
0 1
0 0

)
⊗ |x〉〈x + 1|+

(
0 0
1 0

)
⊗ |x + 1〉〈x |

]
+ m(τxω)

(
0 −ı
ı 0

)
⊗ |x〉〈x |.

}

Key symmetry: (
1 0
0 −1

)
Hω

(
1 0
0 −1

)
= −Hω , Hω ∼

(
0 u∗top

utop 0

)
.

Task: We are going to solve Hψ = Eψ at E = 0.
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Lyapunov exponent

The Schroedinger equation at E = 0 reduces to (α = ±1 indexes the top/bottom of ψ)

txψ
α
x−α + iαmxψ

α
x = 0 ⇒ ψαx =

x∏
j=1

(
tx

mx

)
ψα0 .

The Lyapunov exponent comes to be

λ = max
α=±

[
− lim

x→∞
1
x

log |ψαx |
]

=

∣∣∣∣∣ lim
x→∞

1
x

x∑
n=1

(
ln |t(τxω)| − ln |m(τxω)|

∣∣∣∣∣
Fromm Birkhoff’s theorem

λ =

∣∣∣∣ln
∫
dP(ω) |t(ω)|∫
dP(ω) |m(ω)|

∣∣∣∣
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A typical example

White noise disorder:

Ω = [− 1
2
, 1

2
]Z, P = product measure, t({ωx}) = 1 + W1 ω0, m({ωx}) = m + W2 ω0

The spectacular phenomenon:

The emergence of a manifold of zero Lyapunov exponent at very high levels of disorder.
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Numerical Results for the Odd Pairing

Hω
|Hω|

=

(
0 u∗

u 0

)
and we are going to look at ν = ϕ{1}(u

∗, u).
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The Conjectured Topological Classification Table

j TRS PHS CHS CAZ 0, 8 1 2 3 4 5 6 7

0 0 0 0 A Z Z Z Z
1 0 0 1 AIII Z Z Z Z
0 +1 0 0 AI Z 2Z Z2 Z2

1 +1 +1 1 BDI Z2 Z 2Z Z2

2 0 +1 0 D Z2 Z2 Z 2Z
3 −1 +1 1 DIII Z2 Z2 Z 2Z
4 −1 0 0 AII 2Z Z2 Z2 Z
5 −1 −1 1 CII 2Z Z2 Z2 Z
6 0 −1 0 C 2Z Z2 Z2 Z
7 +1 −1 1 CI 2Z Z2 Z2 Z

A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau
Memorial Conference) AIP Conference Proceedings 1134, 22-30 (2009).

S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and
dimensional hierarchy, New J. Phys. 12, 065010 (2010).
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Part 3: Pushing the Cocycle Pairings on
Sobolev Domains via Index Theorems

J. Bellissard, A. van Elst, H. Schulz-Baldes, The non-commutative geometry of the
quantum Hall-effect, J. Math. Phys. 35, 5373-5451 (1994).

E. Prodan, B. Leung, J. Bellissard, The non-commutative n-th Chern number (n ≥ 1), J.
Phys. A: Math. Theor. 46, 485202 (2013).To be followed here.

E. Prodan, H. Schulz-Baldes, Non-commutative odd Chern numbers and topological
phases of disordered chiral systems, J. Func. Anal. 271, 1150–1176 (2016).

E. Prodan and H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological
Insulators: From K-Theory to Physics, (Mathematical Physics Studies, Springer, 2016).

C. Bourne, E. Prodan, Non-Commutative Chern Numbers for Generic Aperiodic Discrete
Systems, J. Phys. A: Math. Theor. 51, 235202 (2018).
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A Closer Look at the Domain of the Cocycle (In the context of C∗r (G1))

In the standard approach

D(ϕd ) = C∗r (G1)∞ (defined by the semi-norms ‖∂αf ‖).

However, Hölder inequality gives:

|ϕd (f0, f1, . . . , fd )| ≤ ‖f0‖∞
∏d

j=1

(∑d
k=1 ‖∂k fj‖d

)
, ‖f ‖p =

[
T (|f |p)]

1
p

|ϕd (f0, f1, . . . , fd )− ϕd (f ′0 , f
′

1 , . . . , f
′
d )| ≤ Factor×

∑d
j=0

(∑d
k=1 ‖∂k (fj − f ′j )‖d

)

Reasonable conclusion:

The natural domain for ϕd is the Sobolev space W1,d (G1, T ) defined by the norm

‖f ‖S = ‖f ‖∞ +
d∑

k=1

[
T
(
|∂k fj |p

)] 1
p

pE ’s and u’s belong to W1,d (G1, T ) whenever quantization of the pairings was observed.
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Quantized Calculus

The tuple
(
ηL : C∗r (G1)→ B(H), D̂x0 =

Dx0
|Dx0
| , Γ0

)
is an even Fredholm module, where

H = C2d ⊗ `2(L), ηL = 1⊗ πL (πL = left regular rep)

Γi = Clifford matrices and Γ0 = −inΓ1 · · · Γd

Dx0 =
∑d

i=1 Γi ⊗ (Xi − x0), x0 /∈ L

For f ∈ W1,d (G1, T ) and P-almost surely (below, Γ(x̂) = Γ− x̂ (x̂ · Γ)):

TrDix

((
ı[D̂x0 , ηL(f )]

)d)
= 1

d

∫
Sd−1

dx̂ trΓ ⊗ T
((

Γ(x̂) · ∇(f )
)d)

Corollary: P-a.s., the module is (d ,∞)− summable, hence the Connes-Chern character comes
into play:

Trs
(

Γ0

[
D̂x0 , ηL(p)

]d)
= Ind η−L (p) D̂x0 η

+
L(p)
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The Index Theorem for Even Dimension

Theorem: For any p ∈ W1,d (G1, T ), P-almost surely

η−L (p)D̂x0η
+
L(p) is a Fredholm operator.

Ind
(
η−L (p)D̂x0η

+
L(p)

)
= ϕd (p, . . . , p)

If p(t) ∈ W1,d (G1, T ) varies continuously w.r.t. the semi-norm
∑d

k=1 ‖∂k (·)‖d , then

ϕd

(
p(t), . . . , p(t)

)
= constant ∈ Z.

Proof:
η−L−x (p)D̂x0η

+
L−x (p)− η−L (p)D̂x0η

+
L(p) = compact operator

η−L (p)D̂x0η
+
L(p)− η−L (p)D̂x′0

η+
L(p) = compact operator

Ind
(
η−L (p) D̂x0 η

+
L(p)

)
=
∫
dP(L)

∫
dx0 Trs

(
Γ0

[
D̂x0 , ηL(p)

]d)
Evaluate the right side

−
∑
xi∈L

∫
Rd

dx trγ

{
Γ0

d∏
i=1

(
x̂i + x − ̂xi+1 + x

)
· Γ
}

∫
G(0)

1

dP(L) Tr
{
πL(p)

d∏
i=1

|xi 〉〈xi |πL(p)|xi+1〉〈xi+1|
}
,
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Geometric Identity

The generalization of this identity is:∫
Rd

dx tr
{

Γ0

d∏
i=1

( Γ · (xi + x)

|Γ · (xi + x)|
−

Γ · (xi+1 + x)

|Γ · (xi+1 + x)|

)}
= (2ıπ)d/2

(d/2)!

∑
ρ∈Sd

(−1)ρ
d∏

i=1

xi,ρi

Emil Prodan (Yeshiva University) TIs at Strong Disorder Sept 2021 31 / 32



Summary
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