Pushing cyclic cocycles over Sobolev domains & the extraordinary consequences for materials science

Emil Prodan (Yeshiva University, New York, USA)

A talk for the workshop:

Cyclic Cohomology at 40: achievements and future prospects

Many thanks to my collaborators and mentors.

Work supported by U.S. NSF grant DMR-1823800.

Part 1: The Context

B. Mesland, E. Prodan, A groupoid approach to interacting fermions, arXiv:2107.10681.

Enlarged to a many-body picture, built on the breakthrough works:

J. Bellissard, K-theory of C*-algebras in solid state physics, Lect. Notes Phys. 257, 99-156 (1986).

J. Kellendonk, Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys. 7, 1133-1180 (1995).

Algebra of Local Observables

For fermions hopping over a lattice ${\mathcal L}$

 $\operatorname{CAR}(\mathcal{L}) := \varinjlim \operatorname{CAR}(\mathcal{L}_k)$ (Algebra of Local Observable)

where $CAR(\mathcal{L}_k) := C^*(a_x, x \in \mathcal{L}_k)$ with the anti-commutation relations:

$$a_{x}a_{x'} + a_{x'}a_{x} = 0, \quad a_{x}^{*}a_{x'} + a_{x'}a_{x}^{*} = \delta_{x,x'}, \quad x, x' \in \mathcal{L}_{k}.$$

Until specified otherwise, \mathcal{L} will always be an (r, R)-Delone set (r, R fixed), hence \mathcal{L} is

• uniformly discrete:
$$\forall x \in \mathbb{R}^d : |B(x, r) \cap \mathcal{L}| \leq 1$$
,

• relatively dense: $\forall x \in \mathbb{R}^d : |B(x, R) \cap \mathcal{L})| \ge 1$.

Important: we do not assume any translational symmetry for \mathcal{L} .

A Closer Look at Words from $\operatorname{CAR}(\mathcal{L})$

To generate a word from a'_x s, we need:

- a set of indices $V = \{x, x', \ldots\} \subset \mathcal{L}$
- an order of the indices $\chi_V : \{1, \ldots, |V|\} \to V$.

Then we can form the word

$$a_J(\chi_J) := a_{\chi_J(|J|)} \cdots a_{\chi_J(|1|)} \in \operatorname{CAR}(\mathcal{L}).$$

Proposition [The many-body covers, Mesland-Prodan 2021]:

If we let \mathcal{L} take values in $\mathrm{Del}_{(r,R)}(\mathbb{R}^d)$, then the set

$$\widehat{\mathrm{Del}}_{(r,R)}^{(n)}(\mathbb{R}^d) \quad \text{of triples} \quad \xi = (\mathcal{L}, V, \chi_V), \quad (|V| = n \in \mathbb{N}^{\times})$$

can be topologized such that

$$\mathfrak{a}_n(\mathcal{L}, V, \chi) := \mathcal{L}$$

becomes a cover of $\operatorname{Del}_{(r,R)}(\mathbb{R}^d)$.

Any element from $\operatorname{CAR}(\mathcal{L})$ accepts a unique presentation as a convergent sum of the type

$$A = \sum_{n,m} \frac{1}{n!m!} \sum_{\xi \in \mathfrak{a}_n^{-1}(\mathcal{L})} \sum_{\zeta \in \mathfrak{a}_m^{-1}(\mathcal{L})} c(\xi,\zeta) \, a(\xi)^* a(\zeta),$$

where the coefficients are bi-equivariant in the sense ($S_N :=$ group of permutations)

$$c(s_1 \cdot \xi, \zeta \cdot s_2) = (-1)^{s_1} c(\xi, \zeta) (-1)^{s_2}, \quad s_1 \in \mathcal{S}_n, \ s_2 \in \mathcal{S}_m.$$

The interest, however, is not in $CAR(\mathcal{L})$ but in the dynamics of the local observables

```
\alpha : \mathbb{R} \to \operatorname{Aut}(\operatorname{CAR}(\mathcal{L}))
```

and the generators δ_{α} . The challenge, of course, is that α 's are outer automorphisms.

The plan:

- Consider a core algebra of well behaved Hamiltonians
- Complete this algebra and characterize the completion.

A Galilean & gauge invariant Hamiltonian with finite interaction range is a correspondence

$$\mathrm{Del}_{(r,R)}^{(n)}(\mathbb{R}^d) \ni \mathcal{L} \mapsto \mathcal{H}_{\mathcal{L}} = \sum_{n \in \mathbb{N}^{\times}} \frac{1}{n!} \sum_{\xi, \zeta \in \mathfrak{a}_n^{-1}(\mathcal{L})} h_n(\xi,\zeta) \, \mathsf{a}^*(\xi) \mathsf{a}(\zeta),$$

where the \mathbb{C} -valued h_n 's are defined globally and continuously on the *n*-body covers and obey:

- $h_n(\zeta,\xi) = \overline{h_n(\xi,\zeta)}$
- *h_n*'s are bi-equivariant w.r.t. S_n
- $h_n(\mathfrak{t}_x \cdot \xi, \mathfrak{t}_x \cdot \zeta) = h_n(\xi, \zeta)$ (equivariance under rigid shifts \Leftrightarrow Galilean invariance)
- *h_n*'s vanish whenever the diameter of *V_ξ* ∪ *V_ζ* exceeds a fixed value R_i.

Proposition: Let $H_{\mathcal{L}_k}$ be the truncation to an element of $CAR(\mathcal{L}_k)$. Then the map

$$\operatorname{ad}_{\mathcal{H}_{\mathcal{L}}}(A) = \lim_{k \to \infty} \iota[A, \mathcal{H}_{\mathcal{L}_k}], \quad A \in \mathcal{D}(\mathcal{L}) := \bigcup_k \operatorname{CAR}(\mathcal{L}_k),$$

is a derivation that leaves $\mathcal{D}(\mathcal{L})$ invariant. Furthermore,

$$\operatorname{ad}_{H_{\mathcal{L}}}(A)^* := \operatorname{ad}_{H_{\mathcal{L}}}(A^*), \quad \forall \ A \in \mathcal{D}(\mathcal{L}),$$

and $\operatorname{ad}_{H_{\mathcal{L}}}$ is closable and in fact a pre-generator of a time evolution.

The Core Algebra of Physical Derivations

Defined as the sub-algebra $\dot{\Sigma}(\mathcal{L}) \subset \operatorname{End}(\mathcal{D}(\mathcal{L}))$ generated by derivations $\operatorname{ad}_{Q_{\mathcal{L}}^n}$ corresponding to

$$Q_{\mathcal{L}}^{n} = \frac{1}{n!} \sum_{(\xi,\zeta) \in \mathfrak{b}_{n}^{-1}(\mathcal{L})} q_{n}(\xi,\zeta) \mathfrak{a}^{*}(\xi) \mathfrak{a}(\zeta),$$

where q's are defined over the many-body covers and satisfy the four constraints except the first one. Henceforth, an element of $\dot{\Sigma}(\mathcal{L})$ can be presented as a finite sum

$$\mathcal{Q} = \sum_{\{Q\}} c_{\{Q\}} \operatorname{ad}_{Q_{\mathcal{L}}^{n_1}} \circ \ldots \circ \operatorname{ad}_{Q_{\mathcal{L}}^{n_k}}, \quad c_{\{Q\}} \in \mathbb{C}.$$

The multiplication is given by the composition of linear maps over $\mathcal{D}(\mathcal{L})$, $(\mathcal{Q}_1, \mathcal{Q}_2) \mapsto \mathcal{Q}_1 \circ \mathcal{Q}_2$.

Remark:

The linear space spanned by $\mathrm{ad}_{\mathcal{Q}_{\mathcal{C}}^n}$ is invariant against the Lie bracket

$$(\mathrm{ad}_{Q_{\mathcal{L}}^{n}},\mathrm{ad}_{Q_{\mathcal{L}}^{m}})\mapsto\mathrm{ad}_{Q_{\mathcal{L}}^{n}}\circ\mathrm{ad}_{Q_{\mathcal{L}}^{m}}-\mathrm{ad}_{Q_{\mathcal{L}}^{m}}\circ\mathrm{ad}_{Q_{\mathcal{L}}^{n}}$$

hence $\dot{\Sigma}(\mathcal{L})$ is the associative envelope of this Lie algebra.

Shift of Gears: The Canonical Groupoid Associated to a Delone Set

Notions from the generic theory of patterns:

Definition

The continuous hull of a fixed \mathcal{L}_0 is the topological dynamical system $(\Omega_{\mathcal{L}_0}, \mathfrak{t}, \mathbb{R}^d)$, where

$$\Omega_{\mathcal{L}_0} = \overline{\{\mathfrak{t}_a(\mathcal{L}_0) = \mathcal{L}_0 - a, \ a \in \mathbb{R}^d\}},$$

with the closure in the metric space $\mathcal{C}(\mathbb{R}^d)$ of closed patterns.

Definition

The canonical transversal of a continuous hull $(\Omega_{\mathcal{L}_0}, \mathfrak{t}, \mathbb{R}^d)$ of a Delone set \mathcal{L}_0 is defined as

$$\Xi_{\mathcal{L}_0}=\{\mathcal{L}\in\Omega_{\mathcal{L}_0},\ 0\in\mathcal{L}\}.$$

The transversal is a compact subspace of $\mathcal{C}(\mathbb{R}^d)$.

The Canonical Groupoid Associated to a Delone Set

The topological groupoid associated to a fixed Delone set \mathcal{L}_0 consists of:

The set

$$\mathcal{G}_1 := \{ (\mathcal{L}, x) \in \Xi_{\mathcal{L}_0} \times \mathbb{R}^d, \ x \in \mathcal{L} \} \subset \Xi_{\mathcal{L}_0} \times \mathbb{R}^d$$

equipped with the inversion map $(\mathcal{L}, x)^{-1} = (\mathcal{L} - x, -x).$

2 The subset of
$$\mathcal{G}_1 \times \mathcal{G}_1$$

$$\mathcal{G}_1^{(2)} = \left\{ \left((\mathcal{L}, x), (\mathcal{L}', y) \right) \in \mathcal{G}_1 \times \mathcal{G}_1, \ \mathcal{L}' = \mathcal{L} - x \right\}$$

equipped with the composition $(\mathcal{L}, x) \cdot (\mathcal{L} - x, y) = (\mathcal{L}, x + y).$

The topology on \mathcal{G}_1 is the relative topology inherited from $\Xi_{\mathcal{L}_0} \times \mathbb{R}^d$.

Theorem (Bellissard (1986)-Kellendonk (1995))

The groupoid \mathcal{G} is étale and the (separable) C^* -algebra $C^*(\mathcal{G})$ contains all Galilean invariant Hamiltonians for the dynamics of a single fermion.

Emil Prodan (Yeshiva University)

Blowing up the Space of Units

Definition (Williams 2021)

Let \mathcal{G} be a locally compact Hausdorff groupoid with open range map. Suppose that Z is locally compact Hausdorff and that $f: Z \to \mathcal{G}^{(0)}$ is a continuous open map. Then

$$\mathcal{G}[Z] := \left\{ (z, \gamma, w) \in Z \times \mathcal{G} \times Z : f(z) = r(\gamma) \text{ and } s(\gamma) = f(w) \right\}$$

is a topological groupoid when considered with the natural operations

$$(z,\gamma,w)(w,\eta,x)=(z,\gamma\eta,x) \text{ and } (z,\gamma,w)^{-1}=(w,\gamma^{-1},z),$$

and the topology inherited from $Z \times \mathcal{G} \times Z$.

Proposition (Mesland-Prodan 2021)

The canonical transversal of a Delone set \mathcal{L}_0 $(=\mathcal{G}_1^{(0)})$ accepts the blow-up

$$\Xi_{\mathcal{L}_0}^N = \{ (\mathcal{L}, V, \chi_V) \in \widehat{\mathrm{Del}}_{(r,R)}^{(n)}(\mathbb{R}^d), \ \mathcal{L} \in \Xi_{\mathcal{L}_0}, \ \chi_V(1) = 0 \}$$

with the open map $\Xi_{\mathcal{L}_0}^N \ni (\mathcal{L}, V, \chi_V) \mapsto \mathcal{L} \in \Xi_{\mathcal{L}_0}$.

The Blown-Up Groupoids Spelled Out

Proposition (Mesland-Prodan 2021)

The blown up groupoids can be characterized as:

The topological space

$$\mathcal{G}_N = \{(\xi,\zeta), \ \mathcal{L}_{\xi} = \mathcal{L}_{\zeta} \in \Xi_{\mathcal{L}_0}, \ \chi_{\xi}(1) = 0\},\$$

equipped with the inversion map

$$(\xi,\zeta)^{-1}=\hat{\mathfrak{t}}_{\chi_{\zeta}(1)}(\zeta,\xi).$$

2

The set of composable elements

$$\mathcal{G}_{N}^{(2)} := \left\{ \left((\xi, \zeta), (\xi', \zeta') \right) \in \mathcal{G}_{N} \times \mathcal{G}_{N} : \xi' = \hat{\mathfrak{t}}_{\chi_{\zeta}(1)} \zeta \right\} \subset \mathcal{G}_{N} \times \mathcal{G}_{N},$$

equipped with the composition map

$$(\xi,\zeta) \cdot \hat{\mathfrak{t}}_{\chi_{\zeta}(1)}(\zeta,\zeta') := (\xi,\zeta').$$

The Group of Bisections of a Groupoid

Definition

Let $\mathcal G$ be a locally compact Hausdorff groupoid. The group of (global) bisections $\mathcal S(\mathcal G)$ of $\mathcal G$ is the space of continuous maps

$$\mathcal{S}(\mathcal{G}):=\left\{b:\mathcal{G}^{(0)}
ightarrow\mathcal{G}:s\circ b=\mathsf{Id},\quad r\circ b ext{ is a homeomorphism}
ight\}.$$

• The group structure on $\mathcal{S}(\mathcal{G})$ is given by

$$b_1 \cdot b_2(\alpha) := b_1(r \circ b_2(\alpha))b_2(\alpha), \quad b^{-1}(\alpha) := b((r \circ b)^{-1}(\alpha))^{-1}, \quad \alpha \in \mathcal{G}^{(0)}.$$

Here $(r \circ b)^{-1}$ denotes the inverse homeomorphism to $r \circ b$, whereas $b(\alpha)^{-1}$ denotes the inverse of $b(\alpha)$ in \mathcal{G} .

- The identity element of $\mathcal{S}(\mathcal{G})$ is the inclusion $i : \mathcal{G}^{(0)} \to \mathcal{G}$.
- S(G) is a locally compact group in the compact open topology.
- S(G) affords continuous commuting left and right actions on G via

$$b_1 \cdot \alpha \cdot b_2 := b_1(r(\alpha)) \cdot \alpha \cdot b_2^{-1}(s(\alpha))^{-1}, \quad b \in \mathcal{S}(\mathcal{G}), \quad \alpha \in \mathcal{G}.$$

Definition

Let \mathcal{G} be a locally compact Hausdorff groupoid and H a locally compact group. A 2-action of H on \mathcal{G} is a group homomorphism $H \to S(\mathcal{G})$.

Proposition (Mesland-Prodan 2021)

Let $s \in \mathcal{S}_N$ be a permutation. Then the formula

$$b_{s}(\xi) := \hat{\mathfrak{t}}_{\chi_{\xi} \circ s^{-1}(1)} \big(\Lambda_{s}(\xi), \xi \big)$$

defines a homomorphism $b : S_N \to S(\mathcal{G}_N)$ and thus a 2-action of S_N on \mathcal{G}_N .

The induced commuting left and right actions of S_N on G_N are given by

$$s_1 \cdot (\xi, \zeta) \cdot s_2 = \hat{\mathfrak{t}}_{\chi_{\xi} \circ s_1^{-1}(1)}(s_1 \cdot \xi, s_2^{-1} \cdot \zeta),$$

for $s_i \in S_N$.

Definition

Let *H* be a topological group and *A* a *C**-algebra. A 2-*action* of *H* on *A* is a continuous group homomorphism $\sigma : H \to UM(A)$ (unitary group of the multiplier algebra).

A 2-action induces left and right actions of H on A by unitary multipliers:

$$h \cdot a := \sigma_h a, \quad a \cdot h := a \sigma_h^*.$$

It also induces an action by *-automorphisms through $\alpha_h(a) := \sigma_h a \sigma_h^*$.

Proposition (Bi-equivariant groupoid C^* -algebras, Mesland-Prodan 2021)

Let G a locally compact groupoid with Haar system and A a C*-algebra. Suppose that

$$b: H \to \mathcal{S}(\mathcal{G}), \quad \sigma: H \to UM(A),$$

are 2-actions of a topological group H on G and A. Then the norm closure $C^*_{r,H}(G,A)$ of

$$\{f \in C_c(\mathcal{G}, A) : \forall h_1, h_2 \in H, \quad \forall \xi \in \mathcal{G}, \quad f(h_1 \cdot \xi \cdot h_2) = h_1 \cdot f(\xi) \cdot h_2\}$$

is a C^* -subalgebra of $C^*_r(\mathcal{G}, A)$.

The Context Spelled Out

Proposition (Mesland-Prodan 2021)

Let η be the vacuum state and π_{η}^{N} the associated representation on the N-fermion sectors of the Fock space. Then, with the 2-action $\sigma: S_{N} \to UM(\mathbb{C})$ is $\sigma(s) = (-1)^{s}$, for any $\mathcal{L} \in \Xi_{\mathcal{L}_{0}}$,

$$\pi_{\eta}^{N}(\dot{\Sigma}(\mathcal{L})) \rightarrowtail \pi_{\xi}\Big(\mathcal{M}\big(C^{*}_{r,\mathcal{S}_{N}}(\mathcal{G}_{N},\mathbb{C})\big)\Big),$$

where π_{ξ} is a left regular representation $[\xi \in \mathfrak{a}_N^{-1}(\mathcal{L})]$ and \mathcal{M} indicates the extension to multiplier algebra.

$$\dot{\Sigma}(\mathcal{L}) \rightarrowtail \varprojlim \; \bigoplus_{n=1}^{N} \pi_{\xi} \Big(\mathcal{M} \big(C^*_{r, \mathcal{S}_n}(\mathcal{G}_n, \mathbb{C}) \big) \Big) \otimes \pi_{\xi} \Big(\mathcal{M} \big(C^*_{r, \mathcal{S}_n}(\mathcal{G}_n, \mathbb{C}) \big) \Big)^{\mathrm{op}}$$

Emil Prodan (Yeshiva University)

TIs at Strong Disorder

\mathbb{R}^d -action: The origin

The anti-commutation relations of $CAR(\mathcal{L})$ are invariant against $a_x \mapsto e^{i\,kx}a_x$, $x \in \mathcal{L}$, $k \in \mathbb{R}^d$. As such, there exists an intrinsic \mathbb{R}^d -action by automorphisms,

$$\rho_k(\mathbf{a}_x) = \mathbf{e}^{\imath k x} \mathbf{a}_x, \quad \rho_{k+k'} = \rho_k \circ \rho_{k'}, \quad k, k' \in \mathbb{R}^d.$$

The action is intrinsically related to the electric charge and transport coefficients.

\mathbb{R}^d -action: Explicit form on $C_r^*(\mathcal{G}_N)$

The action trickles down to the inner-limit derivations, hence on $C_r^*(\mathcal{G}_N)$:

$$(\rho_k(f))(\xi,\zeta) = e^{\imath k N(x_\xi - x_\zeta)} f(\xi,\zeta), \quad x_\xi = \text{center of mass of } V_\xi$$

This action commutes with the 2-action by permutations.

Remark:

These are certainly \mathbb{R}^d -action generated from 1-cocycles [Renault 1980]

Traces

The trace on \mathcal{G}_1 :

If the continuous hull $(\Omega_{\mathcal{L}_0}, t, \mathbb{R}^d)$ is equipped with an ergodic measure \mathbb{P} , then $\mathcal{G}_1^{(0)} \subset \Omega_{\mathcal{L}_0}$ can be equipped with a measure and:

C^{*}_r(G₁) comes equipped with a physically sound trace

$$\mathcal{T}_1(f) := \int_{\mathcal{G}_1^{(0)}} \mathrm{d}\mathbb{P}(\mathcal{L}) \, f(\mathcal{L}, 0) = \lim_{V o \mathbb{R}^d} rac{1}{|V|} \mathrm{Tr}_{\mathcal{L}^2(\mathcal{L} \cap V)} \Big(\pi_{\mathcal{L}}(f) \Big) \quad [\mathbb{P} - \mathsf{almost surely}]$$

Furthermore,
$$\mathcal{T}_1 \circ \rho_k = \mathcal{T}_1$$
.

The trace on \mathcal{G}_N :

• If \mathbb{P} is promoted to one of the pull-back measures on $\mathcal{G}_N^{(0)}$, then

$$\mathcal{T}_N(f) := \int_{\mathcal{G}_N^{(0)}} \mathrm{d}\mathbb{P}_N(\xi) \, f(\xi,\xi)$$

supplies a trace on $C_r^*(\mathcal{G}_N)$ such that $\mathcal{T}_N \circ \rho_k = \mathcal{T}_N$.

 However, there are many options to do so and we still need to identify the physically sound ones.

Emil Prodan (Yeshiva University)

Canonical cyclic co-cycles (N = 1 from now on)

If $J \subseteq \{1, 2, \dots, d\}$, then:

$$\varphi_J(f_0, f_1, \ldots, f_{|J|}) = \Lambda_{|J|} \sum_{\sigma \in S_{|J|}} \mathcal{T}\left(f_0 \prod_{j=1}^{|J|} \partial_{\sigma_j} f_j\right)$$

are cyclic co-cycles. Hence, there exist pairings with the K_0/K_1 -classes landing in a countable subgroup of the real axis:

$$\langle [\varphi_J], [p]_0 \rangle := \varphi_J(p, \ldots, p), \quad \langle [\varphi_J], [u]_1 \rangle := \varphi_J(u^*, \ldots, u)$$

Furthermore, the even pairings relate to the transport coefficients:

• (Bellissard et al 1994):

 $\varphi_{\{i,j\}}(p_E, p_E, p_E) = \sigma_{ij}$ (the Hall conductance in the (i, j) plane)

• (Prodan-Schulz-Baldes 2016):

 $\varphi_{J}(p_{E},\ldots,p_{E}) = \partial_{B_{i_{1}i_{2}}}\ldots\partial_{B_{i_{|J|-3}i_{|J-2|}}}\sigma_{i_{|J|-1}i_{|J|}} \quad \text{(non-linear transport coefficients)}$

Part 2: Interesting Physical Phenomena

$$H_{\omega} = \sum_{\langle x,y \rangle} |x\rangle \langle y| + 0.6\imath \sum_{\langle \langle x,y \rangle \rangle} \left(|x\rangle \langle y| - |y\rangle \langle x| \right) + W \sum_{x} \omega_{x} |x\rangle \langle x|, \quad (\langle, \rangle / \langle \langle, \rangle \rangle = \text{first/second neighbors} \right)$$

$$h \in M_2 \otimes C\left(\left[-rac{1}{2},rac{1}{2}
ight]^{\mathbb{Z}^2}
ight)
times \mathbb{Z}^2, \quad h \sim (1-p_{ ext{top}}) - p_{ ext{top}}, \quad H_\omega = \pi_\omega(h), \quad \omega \in \left[-rac{1}{2},rac{1}{2}
ight]^{\mathbb{Z}^2}$$

Numerical Results for a 2-Dimensional Model [Prodan, J. Phys. A (2011)]

The spectacular observations are:

- A manifold of critical extended states develops.
- The change in the quantized values of the pairing occurs at this critical manifold.

TIs at Strong Disorder

Anderson Localization-Delocalization transition in 1D chiral model

Mondragon-Shem, Hughes, Song, Prodan, Phys. Rev. Lett. 2014

The model defined (comes from $M_2 \otimes C(\Omega) \rtimes \mathbb{Z}$):

Data:

- Ergodic dynamical system $(\tau:\mathbb{Z} \to \operatorname{Homeo}(\Omega), d\mathbb{P})$
- Two functions $t : \Omega \to \mathbb{R}$ and $m : \Omega \to \mathbb{R}$.

Then:

$$H_{\omega} = \sum_{x \in \mathbb{Z}} \left\{ \frac{1}{2} t(\tau_x \omega) \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes |x\rangle \langle x + 1| + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes |x + 1\rangle \langle x| \right] + m(\tau_x \omega) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \otimes |x\rangle \langle x|. \right\}$$

Key symmetry:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} H_\omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -H_\omega, \qquad H_\omega \sim \begin{pmatrix} 0 & u_{\rm top}^* \\ u_{\rm top} & 0 \end{pmatrix}.$$

Task: We are going to solve $H\psi = E\psi$ at E = 0.

The Schroedinger equation at E = 0 reduces to ($\alpha = \pm 1$ indexes the top/bottom of ψ)

$$t_{x}\psi_{x-\alpha}^{\alpha}+i\alpha m_{x}\psi_{x}^{\alpha}=0 \ \Rightarrow \ \psi_{x}^{\alpha}=\prod_{j=1}^{x}\left(\frac{t_{x}}{m_{x}}\right)\psi_{0}^{\alpha}.$$

The Lyapunov exponent comes to be

$$\lambda = \max_{\alpha = \pm} \left[-\lim_{x \to \infty} \frac{1}{x} \log |\psi_x^{\alpha}| \right] = \left| \lim_{x \to \infty} \frac{1}{x} \sum_{n=1}^{x} \left(\ln |t(\tau_x \omega)| - \ln |m(\tau_x \omega)| \right) \right|$$

Fromm Birkhoff's theorem

$$\lambda = \left| \ln rac{\int \mathrm{d} \mathbb{P}(\omega) \left| t(\omega)
ight|}{\int \mathrm{d} \mathbb{P}(\omega) \left| m(\omega)
ight|}
ight|$$

A typical example

White noise disorder:

 $\Omega = [-\frac{1}{2}, \frac{1}{2}]^{\mathbb{Z}}, \quad \mathbb{P} = \text{product measure}, \quad t(\{\omega_x\}) = 1 + W_1 \,\omega_0, \quad m(\{\omega_x\}) = m + W_2 \,\omega_0$

The spectacular phenomenon:

The emergence of a manifold of zero Lyapunov exponent at very high levels of disorder.

Numerical Results for the Odd Pairing

$$rac{H_\omega}{|H_\omega|}=egin{pmatrix} 0 & u^*\\ u & 0 \end{pmatrix}$$
 and we are going to look at $u=arphi_{\{1\}}(u^*,u)$

The Conjectured Topological Classification Table

j	TRS	PHS	CHS	CAZ	0,8	1	2	3	4	5	6	7
0	0	0	0	A	Z		Z		\mathbb{Z}		Z	
1	0	0	1	AIII		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
0	+1	0	0	AI	Z				2 🛛		\mathbb{Z}_2	\mathbb{Z}_2
1	+1	+1	1	BDI	\mathbb{Z}_2	Z				$2\mathbb{Z}$		\mathbb{Z}_2
2	0	+1	0	D	\mathbb{Z}_2	\mathbb{Z}_2	Z				$2\mathbb{Z}$	
3	-1	+1	1	DIII		\mathbb{Z}_2	\mathbb{Z}_2	Z				2ℤ
4	-1	0	0	All	2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
5	-1	-1	1	CII		2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
6	0	-1	0	C			2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
7	+1	-1	1	CI				2ℤ		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

 A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

 A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conference Proceedings 1134, 22-30 (2009).

 S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

Part 3: Pushing the Cocycle Pairings on Sobolev Domains via Index Theorems

- J. Bellissard, A. van Elst, H. Schulz-Baldes, *The non-commutative geometry of the quantum Hall-effect*, J. Math. Phys. **35**, 5373-5451 (1994).
- E. Prodan, B. Leung, J. Bellissard, *The non-commutative n-th Chern number* $(n \ge 1)$, J. Phys. A: Math. Theor. **46**, 485202 (2013). To be followed here.
- E. Prodan, H. Schulz-Baldes, Non-commutative odd Chern numbers and topological phases of disordered chiral systems, J. Func. Anal. 271, 1150–1176 (2016).
- E. Prodan and H. Schulz-Baldes, *Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics*, (Mathematical Physics Studies, Springer, 2016).
- C. Bourne, E. Prodan, *Non-Commutative Chern Numbers for Generic Aperiodic Discrete Systems*, J. Phys. A: Math. Theor. **51**, 235202 (2018).

A Closer Look at the Domain of the Cocycle (In the context of $C_r^*(\mathcal{G}_1)$)

In the standard approach

• $\mathcal{D}(\varphi_d) = C_r^*(\mathcal{G}_1)^\infty$ (defined by the semi-norms $\|\partial^{\alpha} f\|$).

However, Hölder inequality gives:

•
$$|\varphi_d(f_0, f_1, \dots, f_d)| \le ||f_0||_{\infty} \prod_{j=1}^d \left(\sum_{k=1}^d ||\partial_k f_j||_d \right), \quad ||f||_p = \left[\mathcal{T}(|f|^p) \right]^{\frac{1}{p}}$$

•
$$|\varphi_d(f_0, f_1, \dots, f_d) - \varphi_d(f'_0, f'_1, \dots, f'_d)| \leq \operatorname{Factor} \times \sum_{j=0}^d \left(\sum_{k=1}^d \|\partial_k(f_j - f'_j)\|_d \right)$$

Reasonable conclusion:

The natural domain for φ_d is the Sobolev space $\mathcal{W}_{1,d}(\mathcal{G}_1,\mathcal{T})$ defined by the norm

$$\|f\|_{\mathcal{S}} = \|f\|_{\infty} + \sum_{k=1}^{d} \left[\mathcal{T}\left(|\partial_k f_j|^p\right)\right]^{rac{1}{p}}$$

 p_E 's and u's belong to $\mathcal{W}_{1,d}(\mathcal{G}_1,\mathcal{T})$ whenever quantization of the pairings was observed.

Quantized Calculus

The tuple $\left(\eta_{\mathcal{L}}: C_r^*(\mathcal{G}_1) \to \mathbb{B}(\mathcal{H}), \widehat{D}_{x_0} = \frac{D_{x_0}}{|D_{x_0}|}, \Gamma_0\right)$ is an even Fredholm module, where

•
$$\mathcal{H} = \mathbb{C}^{2^d} \otimes \ell^2(\mathcal{L}), \quad \eta_{\mathcal{L}} = 1 \otimes \pi_{\mathcal{L}} \quad (\pi_{\mathcal{L}} = \mathsf{left regular rep})$$

•
$$D_{x_0} = \sum_{i=1}^d \Gamma_i \otimes (X_i - x_0), \quad x_0 \notin \mathcal{L}$$

For $f \in W_{1,d}(\mathcal{G}_1, \mathcal{T})$ and \mathbb{P} -almost surely (below, $\Gamma(\hat{x}) = \Gamma - \hat{x}(\hat{x} \cdot \Gamma)$):

$$\mathrm{Tr}_{\mathrm{Dix}}\left(\left(\imath[\widehat{D}_{x_0},\eta_{\mathcal{L}}(f)]\right)^d\right) = \frac{1}{d}\int_{S_{d-1}} \mathrm{d}\hat{x} \, \mathrm{tr}_{\Gamma} \otimes \mathcal{T}\left(\left(\Gamma(\hat{x})\cdot\nabla(f)\right)^d\right)$$

Corollary: \mathbb{P} -a.s., the module is (d, ∞) – *summable*, hence the Connes-Chern character comes into play:

$$\operatorname{Tr}_{s}\left(\mathsf{\Gamma}_{0}\left[\widehat{D}_{x_{0}},\eta_{\mathcal{L}}(\boldsymbol{p})\right]^{d}\right) = \operatorname{Ind} \, \eta_{\mathcal{L}}^{-}(\boldsymbol{p}) \, \widehat{D}_{x_{0}} \, \eta_{\mathcal{L}}^{+}(\boldsymbol{p})$$

Emil Prodan (Yeshiva University)

The Index Theorem for Even Dimension

Theorem: For any $p \in \mathcal{W}_{1,d}(\mathcal{G}_1,\mathcal{T})$, \mathbb{P} -almost surely

• $\eta_{\mathcal{L}}^{-}(p)\widehat{D}_{x_{0}}\eta_{\mathcal{L}}^{+}(p)$ is a Fredholm operator.

• Ind
$$\left(\eta_{\mathcal{L}}^{-}(\boldsymbol{p})\widehat{D}_{x_{0}}\eta_{\mathcal{L}}^{+}(\boldsymbol{p})\right) = \varphi_{d}(\boldsymbol{p},\ldots,\boldsymbol{p})$$

If $p(t) \in \mathcal{W}_{1,d}(\mathcal{G}_1,\mathcal{T})$ varies continuously w.r.t. the semi-norm $\sum_{k=1}^d \|\partial_k(\cdot)\|_d$, then

•
$$\varphi_d(p(t),\ldots,p(t)) = \text{constant} \in \mathbb{Z}.$$

Proof:

•
$$\eta^-_{\mathcal{L}-x}(p)\widehat{D}_{x_0}\eta^+_{\mathcal{L}-x}(p) - \eta^-_{\mathcal{L}}(p)\widehat{D}_{x_0}\eta^+_{\mathcal{L}}(p) = \text{compact operator}$$

•
$$\eta_{\mathcal{L}}^{-}(p)\widehat{D}_{x_{0}}\eta_{\mathcal{L}}^{+}(p) - \eta_{\mathcal{L}}^{-}(p)\widehat{D}_{x_{0}'}\eta_{\mathcal{L}}^{+}(p) = \text{compact operator}$$

• Ind
$$\left(\eta_{\mathcal{L}}^{-}(\boldsymbol{p})\,\widehat{D}_{x_{0}}\,\eta_{\mathcal{L}}^{+}(\boldsymbol{p})\right) = \int \mathrm{d}\mathbb{P}(\mathcal{L})\int \mathrm{d}x_{0}\,\operatorname{Tr}_{s}\left(\Gamma_{0}\left[\widehat{D}_{x_{0}},\eta_{\mathcal{L}}(\boldsymbol{p})\right]^{d}\right)$$

• Evaluate the right side

$$\begin{split} &-\sum_{x_{i}\in\mathcal{L}}\int_{\mathbb{R}^{d}}dx\operatorname{tr}_{\gamma}\Big\{\Gamma_{0}\prod_{i=1}^{d}\Big(\widehat{x_{i}+x}-\widehat{x_{i+1}+x}\Big)\cdot\mathbf{\Gamma}\Big\}\\ &\int_{\mathcal{G}_{1}^{(0)}}\mathrm{d}\mathbb{P}(\mathcal{L})\operatorname{Tr}\Big\{\pi_{\mathcal{L}}(\boldsymbol{\rho})\prod_{i=1}^{d}|x_{i}\rangle\langle x_{i}|\pi_{\mathcal{L}}(\boldsymbol{\rho})|x_{i+1}\rangle\langle x_{i+1}|\Big\},\end{split}$$

PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

ALAIN CONNES

Non-commutative differential geometry

Publications mathématiques de l'I.H.É.S., tome 62, nº 2 (1985), p. 41-144.

9. Fredholm modules over the convolution algebra of a Lie group

The case $G = \mathbf{R}^2$

Lemma 2. — One has $c(s^0, s^1, s^2) = 2i\pi(s^1 \wedge s^2)$.

The generalization of this identity is:

$$\int_{\mathbb{R}^d} \mathrm{d}\mathbf{x} \, \mathrm{tr}\Big\{ \Gamma_0 \prod_{i=1}^d \Big(\frac{\Gamma \cdot (\mathbf{x}_i + \mathbf{x})}{|\Gamma \cdot (\mathbf{x}_i + \mathbf{x})|} - \frac{\Gamma \cdot (\mathbf{x}_{i+1} + \mathbf{x})}{|\Gamma \cdot (\mathbf{x}_{i+1} + \mathbf{x})|} \Big) \Big\} = \frac{(2\iota\pi)^{d/2}}{(d/2)!} \sum_{\rho \in \mathcal{S}_d} (-1)^\rho \prod_{i=1}^d x_{i,\rho_i}$$

