From Noncommutative geometry to tropical geometry

Alain Connes, (joint work with C. Consani)

September 2021

▶ I will first explain the noncommutative geometry origin of the adele class space and how topos theory together with tropical geometry combine together.

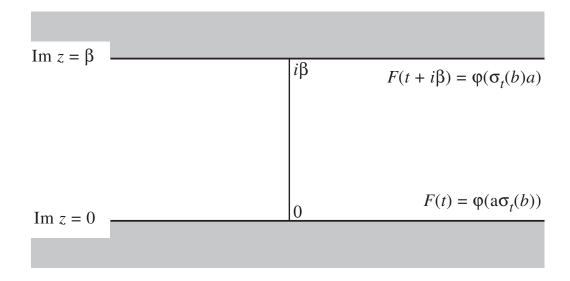
► After discussing the Riemann-Roch theorem for periodic orbits I will move to absolute algebraic geometry.

Thermodynamics of noncommutative spaces

Foliations

Discrete Groups, pairs $\Gamma_0 \subset \Gamma$

KMS Condition



Boltzman State $\varphi(x) = \text{Tr}(x \exp(-\beta H))$ and Heisenberg evolution $\sigma_t(x) = \exp(itH)x \exp(-itH)$.

Hecke algebra

Affine group of rationals

$$P^+(\mathbb{Q})/P^+(\mathbb{Z})$$

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} ac & ad + b \\ 0 & 1 \end{pmatrix}$$

Thermodynamics of BC-system

▶ It exhibits a phase transition with spontaneous symmetry breaking. The KMS_{β} state is unique for $\beta \leq 1$. For $\beta > 1$ the extremal KMS_{β} states are parameterized by the zero-dimensional Shimura variety $Sh(GL_1, \{\pm 1\})$.

► The symmetries of the system are given by the group $GL_1(\widehat{\mathbb{Z}})$. The zerotemperature KMS states evaluated on a natural arithmetic subalgebra of the algebra of observables of the system take values that are algebraic numbers and generate the maximal abelian extension \mathbb{Q}^{cycl} of \mathbb{Q} .

► The class field theory isomorphism intertwines the action of the symmetries and the Galois action on the values of states, thus providing a quantum statistical mechanical reinterpretation of the explicit class field theory of \mathbb{Q} .

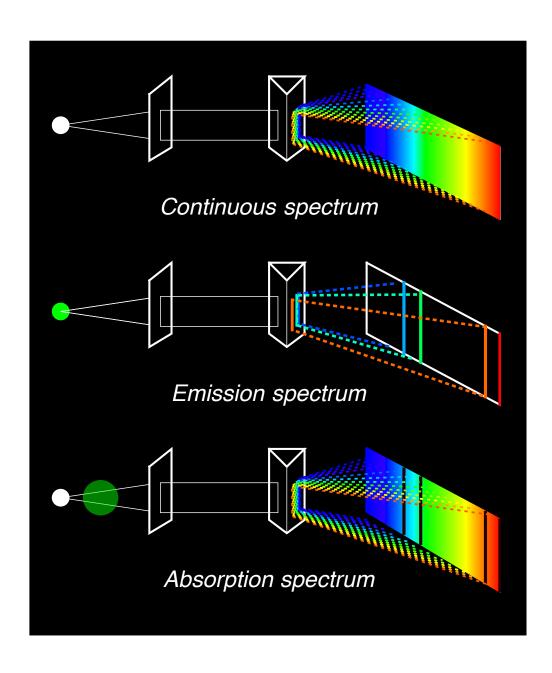
BC and Zeta Absorption spectrum

▶ The partition function $Z(\beta)$ of the system is the Riemann zeta function evaluated at β .

► Spectral realization as absorption spectrum on the NC-space underlying the

dual of the BC-system

$$X = \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^{*}$$



The adele class space and the explicit formulas

 $\mathbb{K} = \mathsf{global} \; \mathsf{field}$

The adele class space of \mathbb{K} is the quotient $X_{\mathbb{K}} = \mathbb{A}_{\mathbb{K}}/\mathbb{K}^{\times}$ of the adeles of \mathbb{K} by the action of \mathbb{K}^{\times} by multiplication

$$T\xi(x) := \xi(ux) = \int k(x,y)\xi(y)dy$$
$$k(x,y) = \delta(ux - y)$$
$$\operatorname{Tr}_{\mathsf{distr}}(T) := \int k(x,x)dx = \int \delta(ux - x)dx$$
$$= \frac{1}{|u - 1|} \int \delta(z)dz = \frac{1}{|u - 1|}$$

The limit $q \rightarrow 1$ and the Hasse-Weil formula

(C. Soulé)
$$\zeta_X(s) := \lim_{q \to 1} Z(X, q^{-s})(q-1)^{N(1)}$$
 $s \in \mathbb{R}$

 $Z(X,q^{-s})=$ evaluation at $T=q^{-s}$ of the Hasse-Weil exponential series

$$Z(X,T) := \exp\left(\sum_{r\geq 1} N(q^r) \frac{T^r}{r}\right)$$

For the projective space \mathbb{P}^n : $N(q) = 1 + q + \ldots + q^n$

$$\zeta_{\mathbb{P}^n(\mathbb{F}_1)}(s) = \lim_{q \to 1} (q-1)^{n+1} \zeta_{\mathbb{P}^n(\mathbb{F}_q)}(s) = \frac{1}{\prod_{k=0}^n (s-k)}$$

The limit $q \rightarrow 1$

The Riemann sums of an integral appear on the right hand side :

$$\frac{\partial_s \zeta_N(s)}{\zeta_N(s)} = -\int_1^\infty N(u) \, u^{-s} d^* u$$

Thus, the integral equation produces a precise equation for the **counting function** $N_C(q) = N(q)$ associated to the hypothetical curve C:

$$\frac{\partial_s \zeta_{\mathbb{Q}}(s)}{\zeta_{\mathbb{Q}}(s)} = -\int_1^\infty N(u) \, u^{-s} d^* u$$

The distribution N(u)

This equation admits a solution which is a **distribution** and is given by the equality

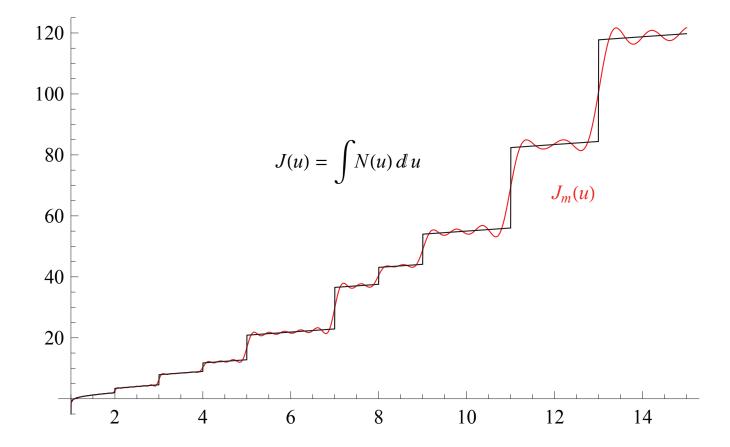
$$N(u) = \frac{d}{du}\varphi(u) + \kappa(u);$$
 $\varphi(u) := \sum_{n < u} n \Lambda(n)$

 $\kappa(u) =$ distribution in the explicit formula :

$$\int_{1}^{\infty} \kappa(u)f(u)d^{*}u = \int_{1}^{\infty} \frac{u^{2}f(u) - f(1)}{u^{2} - 1}d^{*}u + cf(1), \quad c = \frac{1}{2}(\log \pi + \gamma)$$

Thus : the **distribution** N(u) is **positive** on $(1,\infty)$ and is given by

$$N(u) = u - \frac{d}{du} \left(\sum_{\rho \in Z(\zeta)} \operatorname{order}(\rho) \frac{u^{\rho+1}}{\rho+1} \right) + 1$$



The space $X_{\mathbb{Q}} := \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^{\times}$

The quotient $X_{\mathbb{Q}}:=\mathbb{Q}^{\times}\backslash\mathbb{A}_{\mathbb{Q}}/\widehat{\mathbb{Z}}^{\times}$ of the adèle class space of the rational numbers $(\mathbb{Q}^{\times}\backslash\mathbb{A}_{\mathbb{Q}})$ by the maximal compact subgroup $\widehat{\mathbb{Z}}^{\times}$ of the idèle class group, gives by considering the induced action of \mathbb{R}_{+}^{\times} , the above counting distribution N(u), $u\in[1,\infty)$.

This determines, using the Hasse-Weil formula in the limit $q \rightarrow 1$, the **complete** Riemann zeta function.

Link with Topos 2014

A. Connes and C. Consani

ightharpoonup The space X is the set of points of the topos

$$X = [0, \infty) \rtimes \mathbb{N}^{\times}$$

Geometric structure of $X_{\mathbb{Q}}$

The action of \mathbb{R}_+^{\times} on $X_{\mathbb{Q}} = \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \mathbb{Z}^{\times}$ is **exactly** the action of the Frobenius automorphisms $\operatorname{Fr}_{\lambda}$ on the points of the Arithmetic Site over \mathbb{R}_+^{\max}

Topos + characteristic 1 (idempotency)

Arithmetic Site

- Frobenius correspondences
- ullet Extension of scalars to \mathbb{R}_+^{\max}

Why semirings?

A category $\mathcal C$ is *semiadditive* if it has finite products and corpoducts, the morphism $0 \to 1$ is an isomorphism (thus $\mathcal C$ has a 0), and the morphisms

$$\gamma_{M,N}: M \vee N \to M \times N$$

are isomorphisms.

Then End(M) is naturally a semiring for any object M.

Finite semifields, characteristic 1

 $\mathbb{K}=$ finite semifield : then \mathbb{K} is a field or $\mathbb{K}=\mathbb{B}$:

$$\mathbb{B} := \{0, 1\}, \quad 1 + 1 = 1$$

The semifield \mathbb{Z}_{max}

Addition $\vee : u^n \vee u^m = u^k$, with $k = \sup(n, m)$ Multiplication : $u^n u^m = u^{n+m}$, 1+1=1 (char. 1)

<u>Lemma</u> Let F be a semifield of characteristic 1. Then for $n \in \mathbb{N}^{\times}$ the map $\operatorname{Fr}_n \in \operatorname{End}(F)$, $\operatorname{Fr}_n(x) := x^n \forall x \in F$, defines an injective endomorphism of F.

 $\mathbb{Z}_{max} := (\mathbb{Z} \cup \{-\infty\}, max, +)$, **unique** semifield with multiplicative group infinite cyclic

The map : $\mathbb{N}^{\times} \to \operatorname{End}(\mathbb{F})$, $n \mapsto \operatorname{Fr}_n$ is an isomorphism of semigroups. (extend to 0)

Arithmetic Site $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{max})$

 $\mathbb{Z}_{\max} := (\mathbb{Z} \cup \{-\infty\}, \max, +) \text{ on which } \mathbb{N}^{\times} \text{ acts by } n \mapsto \operatorname{Fr}_n \text{ is a semiring in the topos } \widehat{\mathbb{N}^{\times}}.$

The Arithmetic Site $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{max})$ is the topos $\widehat{\mathbb{N}^{\times}}$ endowed with the structure sheaf : $\mathcal{O} := \mathbb{Z}_{max}$

Characteristic 1

The role of \mathbb{F}_q in idempotent algebra is played by

$$\mathbb{B} := \{0, 1\}, \quad 1 + 1 = 1$$

No finite extension, but

$$\operatorname{Fr}_{\lambda}(x) = x^{\lambda}$$
 automorphisms of \mathbb{R}_{+}^{\max}

$$\mathsf{Gal}_{\mathbb{B}}(\mathbb{R}^{\mathsf{max}}_{+}) = \mathbb{R}^{\times}_{+}$$

Points of Arithmetic Site

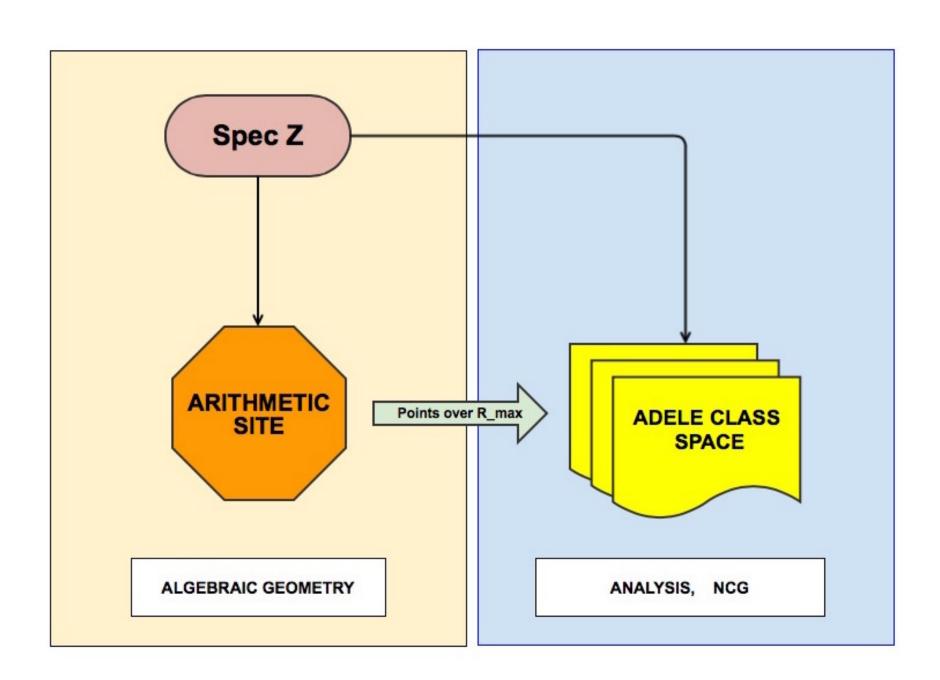
over $\mathbb{R}_+^{\text{max}}$

These are defined as pairs $(p, f_p^{\#})$ of a point p of $\widehat{\mathbb{N}^{\times}}$ and local morphism $f_p^{\#}: \mathcal{O}_p \to \mathbb{R}_+^{\max}$

Theorem

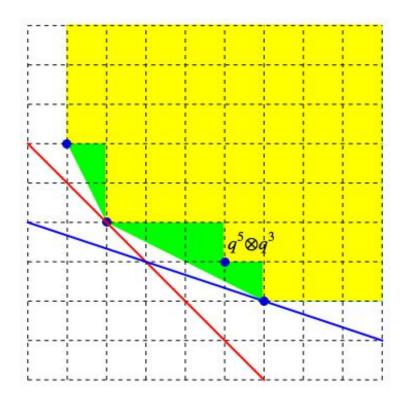
The points $\mathcal{A}(\mathbb{R}_+^{\max})$ of $(\widehat{\mathbb{N}^{\times}}, \mathbb{Z}_{\max})$ over \mathbb{R}_+^{\max} form the double quotient $X_{\mathbb{Q}} = \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \widehat{\mathbb{Z}}^*$

The action of the Frobenius $\operatorname{Fr}_{\lambda}$ of \mathbb{R}_{+}^{\max} corresponds to the action of the idèle class group



C curve defined over \mathbb{F}_q	Arithmetic Site $\mathcal{A}=(\widehat{\mathbb{N}^{ imes}},\mathbb{Z}_{max})$ over \mathbb{B}
Structure sheaf \mathcal{O}_C	Structure sheaf \mathbb{Z}_{max}
Galois on $C(\overline{\mathbb{F}}_q)$	$Gal_{\mathbb{B}}(\mathbb{R}^{max}_{+}) \ \mathbf{on} \ \mathcal{A}(\mathbb{R}^{max}_{+})$
Ψ Frobenius Correspondence	Correspondences $\Psi(\lambda)$ $\lambda \in \mathbb{R}_+^*$ on $\mathcal{A} \times \mathcal{A}$

Frobenius Correspondences



Theorem

Let $\lambda, \lambda' \in \mathbb{R}_+^*$ with $\lambda \lambda' \notin \mathbb{Q}$. The composite fullfils the rule

$$\Psi(\lambda) \circ \Psi(\lambda') = \Psi(\lambda \lambda')$$

Same result holds if λ and λ' are rational

If $\lambda \notin \mathbb{Q}, \lambda' \notin \mathbb{Q}$ and $\lambda \lambda' \in \mathbb{Q}$:

$$\Psi(\lambda) \circ \Psi(\lambda') = \Psi(\lambda \lambda') \circ \operatorname{Id}_{\epsilon} = \operatorname{Id}_{\epsilon} \circ \Psi(\lambda \lambda')$$

 $\mathrm{Id}_{\epsilon}=$ tangential deformation of Id

Divisors and intersection

Intersection $D \bullet D'$ of formal divisors

$$D := \int h(\lambda) \Psi_{\lambda} d^* \lambda$$

$$D \bullet D' := \langle D \star \tilde{D}', \Delta \rangle$$

 $\tilde{D}'=$ transposed of D' composition $D\star \tilde{D}'$ is bilinear $< D\star \tilde{D}', \Delta>$: using the distribution N(u) and correspondence Ψ_{λ} of degree λ

Negativity \iff **RH**

- \blacktriangleright Horizontal and vertical ξ_j
- ► RH is equivalent to the inequality :

$$D \bullet D \leq 2(D \bullet \xi_1)(D \bullet \xi_2)$$

Incompatibility of \leq with naive positivity is resolved by a small lemma (cf. Matuck-Tate and Grothendieck)

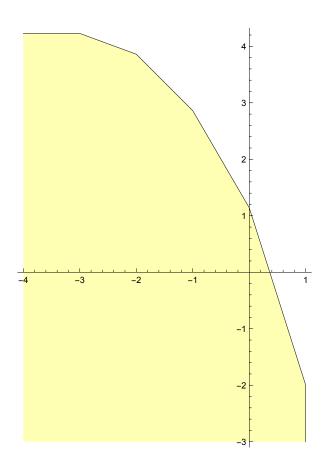
Extension of scalars to \mathbb{R}_{max}

The following holds:

$$\mathbb{Z}_{\mathsf{max}} \widehat{\otimes}_{\mathbb{B}} \mathbb{R}_{\mathsf{max}} \simeq \mathcal{R}(\mathbb{Z})$$

 $\mathcal{R}(\mathbb{Z})=$ semiring of continuous, convex, piecewise affine functions on \mathbb{R}_+ with slopes in $\mathbb{Z}\subset\mathbb{R}$ and only finitely many discontinuities of the derivative

These functions are endowed with the pointwise operations of functions with values in \mathbb{R}_{max}



Points of the topos $[0,\infty) \rtimes \mathbb{N}^{\times}$

<u>Theorem</u> The points of the topos $[0,\infty) \rtimes \mathbb{N}^{\times}$ form the double quotient $X_{\mathbb{Q}} = \mathbb{Q}^{\times} \backslash \mathbb{A}_{\mathbb{Q}} / \mathbb{Z}^{*}$

Corollary There is a canonical isomorphism between the points of the topos $[0,\infty) \rtimes \mathbb{N}^{\times}$ and $\mathcal{A}(\mathbb{R}_{+}^{\max})$ (i.e. the points of the Arithmetic Site defined over \mathbb{R}_{+}^{\max})

Structure sheaf of $[0,\infty) \times \mathbb{N}^{\times}$

This is the sheaf on $[0,\infty) \rtimes \mathbb{N}^{\times}$ associated to convex, piecewise affine functions with integral slopes

Same as for the localization of zeros of analytic functions $f(X) = \sum a_n X^n$ in an annulus

$$A(r_1, r_2) = \{ z \in K \mid r_1 < |z| < r_2 \}$$

$$\tau(f)(x) := \max_{n} \{-nx - v(a_n)\}, \ \forall x \in (-\log r_2, -\log r_1)$$

$$\tau(f)(x) := \frac{1}{2\pi} \int_0^{2\pi} \log|f(e^{-x+i\theta})| d\theta$$

$$\bar{C} = C \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$$
 on $\bar{\mathbb{F}}_q$

Scaling site

$$\widehat{\mathcal{A}}=([0,\infty)\rtimes\mathbb{N}^{ imes},\mathcal{O}) ext{ on } \mathbb{R}_{+}^{\mathsf{max}}$$

$$C(\bar{\mathbb{F}}_q) = \bar{C}(\bar{\mathbb{F}}_q)$$

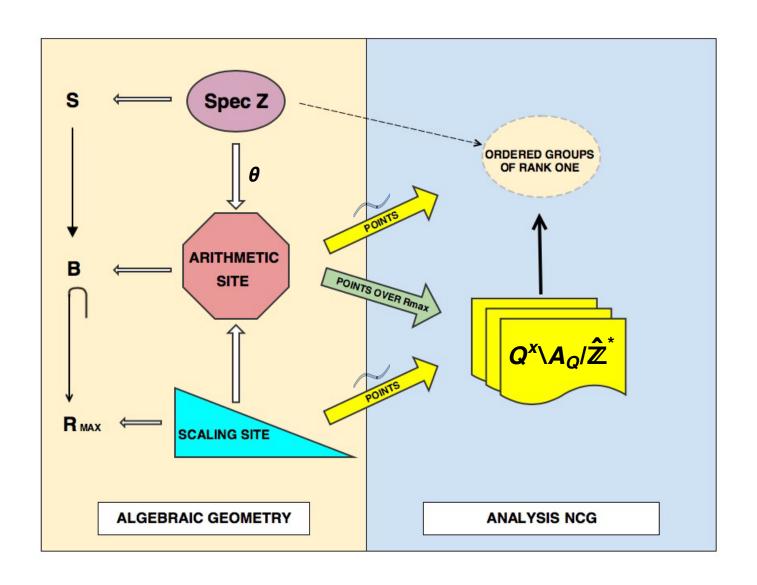
$$\mathcal{A}(\mathbb{R}_+^{\mathsf{max}}) = \widehat{\mathcal{A}}(\mathbb{R}_+^{\mathsf{max}})$$

Structure sheaf $\mathcal{O}_{\bar{C}} \text{ of } \bar{C} \\ = C \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$

 $\mathbb{Z}_{max} \widehat{\otimes}_{\mathbb{B}} \mathbb{R}_{+}^{max} \rightsquigarrow \text{ Sheaf of convex piecewise affine functions, slopes } \in \mathbb{Z}$

Sheaf \mathcal{K} of rational functions

Sheaf of fractions = continuous piecewise affine functions, slopes $\in \mathbb{Z}$



Periodic Orbits

By restriction of the structure sheaf of

$$\widehat{\mathcal{A}} = ([0, \infty) \times \mathbb{N}^{\times}, \mathcal{O})$$

on $\mathbb{R}_+^{\text{max}}$ to periodic orbits (*i.e.* the image of Spec \mathbb{Z}) one obtains, for each prime p, a real analogue

$$C_p = \mathbb{R}_+^*/p^{\mathbb{Z}}$$

of Jacobi elliptic curve $\mathbb{C}^*/q^{\mathbb{Z}}$

Elliptic curve over $\mathbb C$	Periodic orbit Curve C_p over $\mathbb{R}_+^{\sf max}$
Points over $\mathbb{C}:\mathbb{C}^{ imes}/q^{\mathbb{Z}}$	$\mathbb{R}_+^*/p^{\mathbb{Z}}$, $H \subset \mathbb{R}$, $H \sim H_p$
Structure sheaf periodic functions $f(qz) = f(z)$	Sheaf of periodic convex piecewise affine functions, $\mathbf{slopes} \in H_p$
Sheaf \mathcal{K} of rational functions $f(qz)=f(z)$	Sheaf of periodic $f(p\lambda) = f(\lambda)$ continuous piecewise affine functions, $\mathbf{slopes} \in H_p$

Rational functions

For $W \subset C_p$ open, $\mathcal{O}_p(W)$ is simplifiable, one lets \mathcal{K}_p the sheaf associated to the presheaf $W \mapsto \operatorname{Frac} \mathcal{O}_p(W)$

<u>Lemma</u> The sections of the sheaf \mathcal{K}_p are continuous piecewise affine functions with slopes in H_p endowed with max (\vee) and the sum

$$(x-y) \lor (z-t) = ((x+t) \lor (y+z)) - (y+t)$$

Cartier divisors

<u>Lemma</u>: The sheaf $CDiv(C_p)$ of Cartier divisors *i.e.* the quotient sheaf $\mathcal{K}_p^{\times}/\mathcal{O}_p^{\times}$, is isomorphic to the sheaf of naive divisors $H \mapsto D(H) \in H$

$$\forall \lambda, \exists V \text{ open } \lambda \in V, D(\mu) = 0, \forall \mu \in V, \mu \neq \lambda$$

Point \mathfrak{p}_H associated to $H \subset \mathbb{R}$ and f section of \mathcal{K} at \mathfrak{p}_H

$$Order(f) := h_{+} - h_{-} \in H \subset \mathbb{R}$$

$$h_{\pm} = \lim_{\epsilon \to 0 \pm} \frac{f((1+\epsilon)H) - f(H)}{\epsilon}$$

.

Divisors

<u>Definition</u> A divisor is a global section of $\mathcal{K}_p^{\times}/\mathcal{O}_p^{\times}$, *i.e.* a map $H \to D(H) \in H$ vanishing except on finitely many points

Proposition (i) The divisors $Div(C_p)$ form an abelian group under addition

- (ii) The condition $D'(H) \geq D(H)$, $\forall H \in C_p$, defines a partial order on $Div(C_p)$
- (iii) The degree map is additive and order preserving:

$$deg(D) := \sum D(H) \in \mathbb{R}$$

Principal divisors

The sheaf \mathcal{K}_p admits global sections :

$$\mathcal{K} := \mathcal{K}(C_p) = H^0(\mathbb{R}_+^*/p^{\mathbb{Z}}, \mathcal{K}_p)$$

the semifield of global sections

Principal divisors The map

$$\mathcal{K}^{\times} \ni f \mapsto (f) := \sum_{H} (H, \operatorname{Ord}_{H}(f)) \in \operatorname{Div}(C_{p})$$

is a group homomorphism $\mathcal{K}^{\times} \to \mathcal{P} \subset \mathsf{Div}(C_p)$

The subgroup of principal divisors $\mathcal{P} \subset \mathsf{Div}(C_p)$ is contained in the kernel of the morphism deg : $\mathsf{Div}(C_p) \to \mathbb{R}$:

$$\sum_{H} \operatorname{Ord}_{H}(f) = 0, \ \forall f \in \mathcal{K}^{\times}$$

The invariant χ

For p>2 one considers the ideal $(p-1)H_p\subset H_p$

$$0 \to (p-1)H_p \to H_p \stackrel{r}{\to} \mathbb{Z}/(p-1)\mathbb{Z} \to 0$$

Lemma For $H \subset \mathbb{R}$, $H \simeq H_p$, the map

$$\chi: H \to \mathbb{Z}/(p-1)\mathbb{Z}$$

 $\chi(\mu)=r(\mu/\lambda)$, for $H=\lambda H_p$ is independent of the choice of λ

Theorem

The map (\deg, χ) is a group isomorphism

$$(\mathsf{deg},\chi) : \mathsf{Div}(C_p)/\mathcal{P} \stackrel{\sim}{ o} \mathbb{R} imes (\mathbb{Z}/(p-1)\mathbb{Z})$$

P =subgroup of principal divisors

Theta Functions on $C_p = \mathbb{R}_+^*/p^{\mathbb{Z}}$

$$\prod_{0}^{\infty} (1 - t^{m}w) \rightarrow f_{+}(\lambda) := \sum_{0}^{\infty} (0 \lor (1 - p^{m}\lambda))$$

$$\prod_{1}^{\infty} (1 - t^{m} w^{-1}) \to f_{-}(\lambda) := \sum_{1}^{\infty} (0 \lor (p^{-m} \lambda - 1))$$

Theorem

Any $f \in \mathcal{K}(C_p)$ has a canonical decomposition

$$f(\lambda) = \sum_{i} \Theta_{h_i,\mu_i}(\lambda) - \sum_{j} \Theta_{h'_j,\mu'_j}(\lambda) - h\lambda + c$$

$$c \in \mathbb{R}$$
, $(p-1)h = \sum h_i - \sum h'_j$, $h_i \le \mu_i < ph_i$, $h'_j \le \mu_j < ph'_j$

p-adic filtration $H^0(D)^{\rho}$

Definition For $D \in Div(C_p)$ one lets

$$H^{0}(D) := \{ f \in \mathcal{K}(C_{p}) \mid D + (f) \ge 0 \}$$

This is an \mathbb{R}_{max} -module : $f, g \in H^0(D) \Rightarrow f \lor g \in H^0(D)$

<u>Lemma</u> For $D \in Div(C_p)$ a divisor, one obtains a filtration of $H^0(D)$ by \mathbb{R}_{max} -sub-modules :

$$H^{0}(D)^{\rho} := \{ f \in H^{0}(D) \mid ||f||_{p} \le \rho \}$$

using the p-adic norm

Real valued Dimension

$$\operatorname{Dim}_{\mathbb{R}}(H^{0}(D)) := \lim_{n \to \infty} p^{-n} \operatorname{dim}_{\mathsf{top}}(H^{0}(D)^{p^{n}})$$

the **topological dimension** $\dim_{\mathsf{top}}(X)$ is the number of real parameters on which solutions depend

Riemann-Roch Theorem

(i) For $D \in Div(C_p)$ a divisor with $deg(D) \geq 0$:

$$\lim_{n \to \infty} p^{-n} \operatorname{dim}_{\mathsf{top}}(H^0(D)^{p^n}) = \deg(D)$$

(ii) The following Riemann-Roch formula holds:

$$\operatorname{Dim}_{\mathbb{R}}(H^{0}(D)) - \operatorname{Dim}_{\mathbb{R}}(H^{0}(-D)) = \operatorname{deg}(D), \ \forall D \in \operatorname{Div}(C_{p})$$

Back to the goal: RR on the square

Integrals of Frobenius correspondences

$$D := \int h(\lambda) \Psi_{\lambda} d^* \lambda$$

One needs a Riemann-Roch formula

$$\dim H^0 - \dim H^1 + \dim H^2 = \frac{1}{2}D \bullet D$$

in order to make D effective and get a contradiction (Negativity \iff RH)

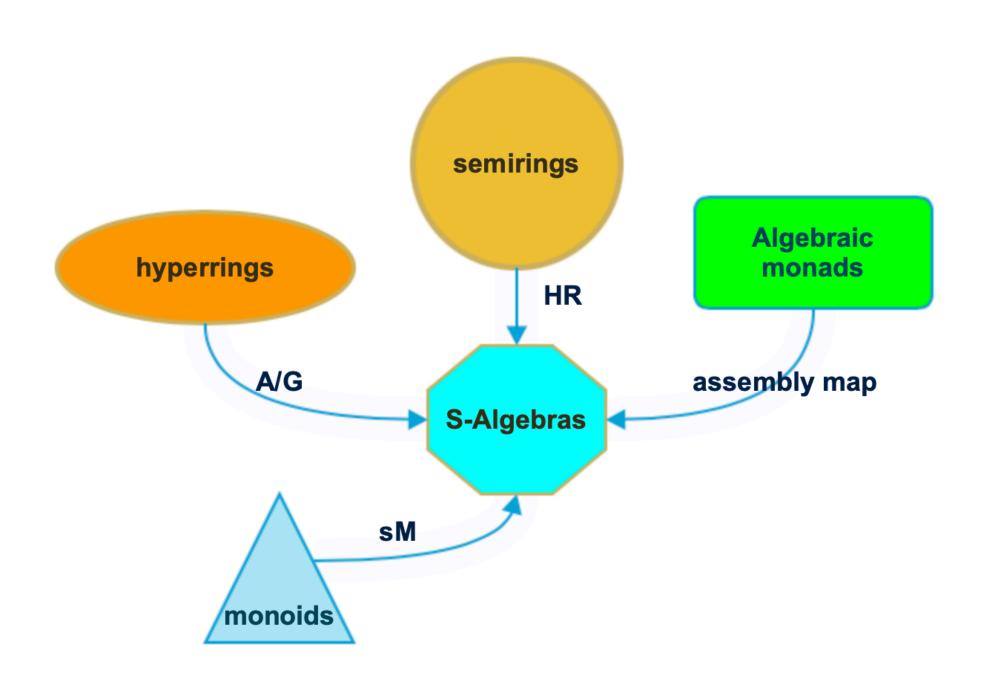
Open problem : suitable definition of H^1

Absolute algebraic geometry

A Γ -set F is a functor $F: \Gamma^{op} \longrightarrow Sets_*$ between pointed categories from Γ^{op} to the category of pointed sets.

The morphisms $\text{Hom}_{\Gamma^{\text{op}}}(M,N)$ between two Γ -sets are natural transformations of functors.

The category $\Gamma Sets_*$ of $\Gamma - sets$ is a symmetric closed monoidal category



Base = Sphere spectrum S = identity functor

At this point one has the following simple but very important observation that Γ -spaces should be viewed as simplicial objects in $\Gamma Sets_*$, so that homotopy theory should be considered as the homological algebra corresponding to the "absolute algebra" taking place over the base $\mathbb S$.

BC-system = Witt(\mathbb{S}) Frobenius, Vershiebung