A robust framework for pricing and hedging American options

Beatrice Acciaio

Based on joint works with D.Bartl, M.Beiglböck, G.Pammer

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Outline

- Model-independent framework for American options (we cannot apply Martingale Optimal Transport)
- Introduce new transport framework
- Robust pricing and hedging of American options in the new framework
- Further developments

Model-independent setting

- no fixed model or probability space

Model-independent setting

- no fixed model or probability space
- assume T_{i}-Calls on S liquidly traded in $t=0$ for all strikes

$$
\mathbb{E}^{\mathbb{Q}}\left[\left(S_{T_{i}}-K\right)^{+}\right] \quad \forall K \geq 0 \quad \Longrightarrow \quad \mu_{i}:=\mathcal{L}_{\mathbb{Q}}\left(S_{T_{i}}\right)
$$

for any market-compatible martingale measure \mathbb{Q}

Model-independent setting

- no fixed model or probability space
- assume T_{i}-Calls on S liquidly traded in $t=0$ for all strikes

$$
\mathbb{E}^{\mathbb{Q}}\left[\left(S_{T_{i}}-K\right)^{+}\right] \quad \forall K \geq 0 \quad \Longrightarrow \quad \mu_{i}:=\mathcal{L}_{\mathbb{Q}}\left(S_{T_{i}}\right)
$$

for any market-compatible martingale measure \mathbb{Q}

- set of all market-compatible martingale measures for $i=1,2$:
$\mathcal{M}\left(\mu_{1}, \mu_{2}\right)=$ martingale measures with marginals μ_{1} and μ_{2}
$=\Pi\left(\mu_{1}, \mu_{2}\right) \bigcap$ martingale $\quad\left(\neq \emptyset \Leftrightarrow \mu_{1} \leq_{c} \mu_{2}\right)$

Model-independent setting

- no fixed model or probability space
- assume T_{i}-Calls on S liquidly traded in $t=0$ for all strikes

$$
\mathbb{E}^{\mathbb{Q}}\left[\left(S_{T_{i}}-K\right)^{+}\right] \quad \forall K \geq 0 \quad \Longrightarrow \quad \mu_{i}:=\mathcal{L}_{\mathbb{Q}}\left(S_{T_{i}}\right)
$$

for any market-compatible martingale measure \mathbb{Q}

- set of all market-compatible martingale measures for $i=1,2$:
$\mathcal{M}\left(\mu_{1}, \mu_{2}\right)=$ martingale measures with marginals μ_{1} and μ_{2}
$=\Pi\left(\mu_{1}, \mu_{2}\right) \bigcap$ martingale $\left(\neq \emptyset \Leftrightarrow \mu_{1} \leq_{c} \mu_{2}\right)$
- robust pricing of European options $\Phi\left(S_{T_{1}}, S_{T_{2}}\right)$ expressed as Martingale Optimal Transport of μ_{1} to μ_{2} along the cost Φ :

$$
P(\Phi):=\sup _{\mathbb{Q} \in \mathcal{M}\left(\mu_{1}, \mu_{2}\right)} \mathbb{E}^{\mathbb{Q}}\left[\Phi\left(S_{T_{1}}, S_{T_{2}}\right)\right]=\sup _{\substack{\pi \in \Pi\left(\mu_{1}, \mu_{2}\right) \\ \pi \text { martingale }}} \mathbb{E}^{\pi}[\Phi(X, Y)]
$$

Robust pricing of European options

- Classical OT duality:

$$
\sup _{\pi \in \Pi\left(\mu_{1}, \mu_{2}\right)} \mathbb{E}^{\pi}[c(X, Y)]=\inf \left\{\int \varphi d \mu_{1}+\int \psi d \mu_{2}: \varphi(x)+\psi(y) \geq c(x, y)\right\}
$$

Robust pricing of European options

- Classical OT duality:

$$
\sup _{\pi \in \Pi\left(\mu_{1}, \mu_{2}\right)} \mathbb{E}^{\pi}[c(X, Y)]=\inf \left\{\int \varphi d \mu_{1}+\int \psi d \mu_{2}: \varphi(x)+\psi(y) \geq c(x, y)\right\}
$$

- MOT duality (model-independent super-hedging duality):

$$
\begin{aligned}
& \sup _{\substack{\pi \in \Pi\left(\mu_{1}, \mu_{2}\right) \\
\pi \text { martingale }}} \mathbb{E}^{\pi}[\Phi(X, Y)]=\inf \left\{\int \varphi d \mu_{1}+\int \psi d \mu_{2}: \exists H: \mathbb{R} \rightarrow \mathbb{R}\right. \text { s.t. } \\
& \qquad \underbrace{\varphi(x)+\psi(y)}_{\substack{\varphi\left(S_{T_{1}}\right)+\psi\left(S_{T_{2}}\right) \\
\text { static trad. }}}+\underbrace{H(x)(y-x)}_{\begin{array}{c}
(H \cdot S)_{T_{2}} \\
\text { dynamic trad. }
\end{array}} \geq \Phi(x, y)\}
\end{aligned}
$$

MOT duality: A., Backhoff, Bartl, Bayraktar, Beglböck, Burzoni, Campi, Cheridito, Cox, De March, De Marco, Dolinsky, Frittelli, Ghoussoub, Guo, H-Labordère, Huesmann, Hou, Kiiski, Kim, Kupper, Lim, Maggis, Martini, Neufeld, Nutz, Obloj, Pammer, Penkner, Prömel, Schachermayer, Sester, Soner, Stoev, Tan, Tangpi, Touzi, Trevisan, Wiesel,...

Geometric characterization of primal optimizers

- Cyclical monotonicity in OT \rightarrow geometric characterization of (the support of) the optimizers

Geometric characterization of primal optimizers

- Cyclical monotonicity in OT \rightarrow geometric characterization of (the support of) the optimizers
- Cyclical monotonicity in MOT \rightarrow • characterization of the extremal pricing measures (e.g. left-curtains)
- optimizers as solutions to Skorokhod Embedding pb: optimal barriers
see e.g. Beiglböck et al. 2017

From European to American options

- In the same model-independent framework: What if, instead of European options, we want to price American options?

From European to American options

- In the same model-independent framework: What if, instead of European options, we want to price American options?
- The canonical setting not suitable: $\Phi_{t}=\Phi_{t}\left(S_{1}, \ldots, S_{t}\right)=$ payoff functions of an American claim, we may have a duality gap:

$$
\sup _{\mathbb{Q} \in \mathcal{M}\left(\mu_{1}, \ldots, \mu_{n}\right)} \sup _{\tau \mathcal{F}^{S} \text {-st.t. }} \mathbb{E}^{\mathbb{Q}}\left[\Phi_{\tau}\right]<\text { super-replication price }
$$

From European to American options

- In the same model-independent framework: What if, instead of European options, we want to price American options?
- The canonical setting not suitable: $\Phi_{t}=\Phi_{t}\left(S_{1}, \ldots, S_{t}\right)=$ payoff functions of an American claim, we may have a duality gap:

$$
\sup _{\mathbb{Q} \in \mathcal{M}\left(\mu_{1}, \ldots, \mu_{n}\right)} \sup _{\tau \mathcal{F}^{S} \text {-st.t. }} \mathbb{E}^{\mathbb{Q}}\left[\Phi_{\tau}\right]<\text { super-replication price }
$$

- Already noticed by Neuberger 2007, Hobson and Neuberger 2017, Bayraktar et al. 2015
\rightarrow Some ways to recover duality: Hobson and Neuberger 2017, Bayraktar and Zhou 2017, Aksamit et al. 2017

From European to American options

- In the same model-independent framework: What if, instead of European options, we want to price American options?
- The canonical setting not suitable: $\Phi_{t}=\Phi_{t}\left(S_{1}, \ldots, S_{t}\right)=$ payoff functions of an American claim, we may have a duality gap:

$$
\sup _{\mathbb{Q} \in \mathcal{M}\left(\mu_{1}, ., \mu_{n}\right)} \sup _{\tau \mathcal{F}^{S} \text {-st.t. }} \mathbb{E}^{\mathbb{Q}}\left[\Phi_{\tau}\right]<\text { super-replication price }
$$

- Already noticed by Neuberger 2007, Hobson and Neuberger 2017, Bayraktar et al. 2015
\rightarrow Some ways to recover duality: Hobson and Neuberger 2017, Bayraktar and Zhou 2017, Aksamit et al. 2017
\rightarrow We suggest a new general setting to ensure duality, existence and characterization of optimizers

Issue in the American options case

- Problem: considering canonical filtrations is too restrictive
- Need to allow for more general evolution of information

Issue in the American options case

- Problem: considering canonical filtrations is too restrictive
- Need to allow for more general evolution of information
- We resort to new optimal transport problems where couplings take information structure into account, suitable for stochastic optimizations problems such as optimal stopping
- Idea: transport the mass in a non-anticipative way with respect to the available information

Causal and bicausal transport plans

$(\mathcal{X}, \mu),(\mathcal{Y}, v)$ path spaces (e.g. $\left.\mathbb{R}^{n}, C[0, T]\right)$ with filtrations $\mathcal{F}^{X}, \mathcal{F}^{\boldsymbol{y}}$

Definition

A transport plan $\pi \in \Pi(\mu, v)$ is called:

- causal between $\left(\mathcal{X},\left(\mathcal{F}_{t}^{X}\right)_{t}, \mu\right)$ and $\left(\boldsymbol{Y},\left(\mathcal{F}_{t}^{y}\right)_{t}, v\right)$ if, for any t, $\mathcal{F}_{t}^{Y} \perp \mathcal{F}^{X} \mid \mathcal{F}_{t}^{X} \quad$ under π;
- bicausal if π and π^{\prime} (inverting role of \mathcal{X} and \mathcal{Y}) are both causal.

Causality w.r.t. canonical processes X, Y and filtrations $\mathcal{F}^{X}, \mathcal{F}^{Y}$:

$$
\pi\left(Y_{\leq t} \in \cdot \mid X\right)=\pi\left(Y_{\leq t} \in \cdot \mid X_{\leq t}\right)
$$

Causal and bicausal transport plans

$(\mathcal{X}, \mu),(\mathcal{Y}, v)$ path spaces (e.g. $\left.\mathbb{R}^{n}, C[0, T]\right)$ with filtrations $\mathcal{F}^{X}, \mathcal{F}^{y}$

Definition

A transport plan $\pi \in \Pi(\mu, v)$ is called:

- causal between $\left(\mathcal{X},\left(\mathcal{F}_{t}^{\mathcal{X}}\right)_{t}, \mu\right)$ and $\left(\mathcal{Y},\left(\mathcal{F}_{t}^{y}\right)_{t}, v\right)$ if, for any t, $\mathcal{F}_{t}^{Y} \perp \mathcal{F}^{X} \mid \mathcal{F}_{t}^{X} \quad$ under $\pi ;$
- bicausal if π and π^{\prime} (inverting role of \mathcal{X} and \mathcal{Y}) are both causal.

Causality w.r.t. canonical processes X, Y and filtrations $\mathcal{F}^{X}, \mathcal{F}^{Y}$:

$$
\pi\left(Y_{\leq t} \in \cdot \mid X\right)=\pi\left(Y_{\leq t} \in \cdot \mid X_{\leq t}\right)
$$

- Yamada and Watanabe 1971, Brémaud and Yor 1978
- Lassalle 2013, Backhoff et al. 2016, A., Backhoff and Zalashko 2016

(Bi)causal Optimal Transport

Definition

(Bi)causal Optimal Transport problem

$$
\begin{aligned}
& \inf \left\{\mathbb{E}^{\pi}[c(X, Y)]: \pi \in \Pi_{(b) c}(\mu, v)\right\}, \\
\text { where } \Pi_{(b) c}(\mu, v) & =\{\pi \in \Pi(\mu, v): \pi \text { (bi)causal }\}
\end{aligned}
$$

- Rüschendorf 1985, Pflug,Pichler 2012, Bion-Nadal,Talay 2018
- Backhoff et al. 2019+: Adapted Wasserstein distance

(Bi)causal Optimal Transport

Definition

(Bi)causal Optimal Transport problem

$$
\inf \left\{\mathbb{E}^{\boldsymbol{\pi}}[c(X, Y)]: \pi \in \Pi_{(b) c}(\mu, v)\right\},
$$

where $\Pi_{(b) c}(\mu, v)=\{\pi \in \Pi(\mu, v): \pi$ (bi)causal $\}$

- Rüschendorf 1985, Pflug,Pichler 2012, Bion-Nadal,Talay 2018
- Backhoff et al. 2019+: Adapted Wasserstein distance

Remark: (bi)causality can be expressed as infinitely many linear constraints:

$$
\pi \text { (bi)causal } \Leftrightarrow \mathbb{E}^{\pi}[s(X, Y)]=0 \forall s \in \mathbb{S} \text {, }
$$

for some well-defined linear space \mathbb{S}.

Adapted Wasserstein distance

For $\mathcal{X}=\mathcal{Y}$ path space with a metric d on it, we define:

$$
\mathcal{A} \mathcal{W}_{p}(\mu, v):=\inf \left\{\mathbb{E}^{\pi}\left[d(X, Y)^{p}\right]: \pi \in \Pi_{b c}(\mu, v)\right\}^{1 / p}
$$

Adapted Wasserstein distance

For $\mathcal{X}=\mathcal{Y}$ path space with a metric d on it, we define:

$$
\mathcal{A} \mathcal{W}_{p}(\mu, v):=\inf \left\{\mathbb{E}^{\pi}\left[d(X, Y)^{p}\right]: \pi \in \Pi_{b c}(\mu, v)\right\}^{1 / p}
$$

- Discrete time \mathbb{R}^{n} :

$$
\mathcal{A W}_{p}(\mu, v)^{p}=\inf _{\pi \in \Pi_{b c}(\mu, v)} \mathbb{E}^{\pi}\left[\sum_{t=1}^{n}\left|X_{t}-Y_{t}\right|^{p}\right]
$$

Adapted Wasserstein distance

For $\mathcal{X}=\mathcal{Y}$ path space with a metric d on it, we define:

$$
\mathcal{A} \mathcal{W}_{p}(\mu, v):=\inf \left\{\mathbb{E}^{\pi}\left[d(X, Y)^{p}\right]: \pi \in \Pi_{b c}(\mu, v)\right\}^{1 / p}
$$

- Discrete time \mathbb{R}^{n} :

$$
\mathcal{A W}_{p}(\mu, v)^{p}=\inf _{\pi \in \Pi_{b c}(\mu, v)} \mathbb{E}^{\pi}\left[\sum_{t=1}^{n}\left|X_{t}-Y_{t}\right|^{p}\right]
$$

- Continuous time $\mathcal{C}[0, T]$, continuous semimartingales:

$$
\mathcal{A W}_{p}(\mu, v)^{p}=\inf _{\pi \in \Pi_{b c}(\mu, v)} \mathbb{E}^{\pi}\left[\left[M^{X}-M^{Y}\right]_{T}^{p / 2}+\left|A^{X}-A^{Y}\right|_{1-v a r}^{p}\right]
$$

$X=M^{X}+A^{X}, Y=M^{Y}+A^{Y}$ semimartingale decompositions

Application of $\mathscr{A} \mathcal{W}$

AW robust with respect to many optimization problems in finance:

- optimal stopping
- hedging error
- indifference pricing
- risk measures
- utility maximization
- quantification of arbitrage
- sequential learning
\Rightarrow good distance for laws of asset price processes under model uncertainty
A., Backhoff, Zalashko 2020, Bartl et al. 2020, Backhoff et al. 2020, A., Backhoff, Pammer 2021, A., Munn, Wenliang, Xu 2020,...

Optimal stopping

Proposition (A., Backhoff, Zalashko 2020, Bartl et al. 2020)

Consider either discrete-time, or continuous semimartingale setting. If $L(\cdot, t)$ is K-Lipschitz for all t, then

$$
\left|\sup _{\tau \text { st.t. }} \mathbb{E}_{\mu}[L(X, \tau)]-\sup _{\tau \text { st.t. }} \mathbb{E}_{v}[L(X, \tau)]\right| \leq K \cdot \mathcal{A} \mathcal{W}_{1}(\mu, v) .
$$

Optimal stopping

Proposition (A., Backhoff, Zalashko 2020, Bartl et al. 2020)

Consider either discrete-time, or continuous semimartingale setting. If $L(\cdot, t)$ is K-Lipschitz for all t, then

$$
\left|\sup _{\tau \text { st.t. }} \mathbb{E}_{\mu}[L(X, \tau)]-\sup _{\tau \text { st.t. }} \mathbb{E}_{v}[L(X, \tau)]\right| \leq K \cdot \mathcal{A} \mathcal{W}_{1}(\mu, v)
$$

- Lipschitz continuity w.r.t. $\mathcal{A} \mathcal{W}$ for optimal stopping and many stochastic optimization problems

Optimal stopping

Proposition (A., Backhoff, Zalashko 2020, Bartl et al. 2020)

Consider either discrete-time, or continuous semimartingale setting. If $L(\cdot, t)$ is K-Lipschitz for all t, then

$$
\left|\sup _{\tau \text { st.t. }} \mathbb{E}_{\mu}[L(X, \tau)]-\sup _{\tau \text { st.t. }} \mathbb{E}_{v}[L(X, \tau)]\right| \leq K \cdot \mathcal{A} \mathcal{W}_{1}(\mu, v)
$$

- Lipschitz continuity w.r.t. $\mathcal{A} \mathcal{W}$ for optimal stopping and many stochastic optimization problems
- One may wonder if $\mathcal{A} \mathcal{W}$-distance is too severe

Optimal stopping

Proposition (A., Backhoff, Zalashko 2020, Bartl et al. 2020)

Consider either discrete-time, or continuous semimartingale setting. If $L(\cdot, t)$ is K-Lipschitz for all t, then

$$
\sup _{\tau \text { st.t. }} \mathbb{E}_{\mu}[L(X, \tau)]-\sup _{\tau \text { st.t. }} \mathbb{E}_{v}[L(X, \tau)] \mid \leq K \cdot \mathcal{A} \mathcal{W}_{1}(\mu, v)
$$

- Lipschitz continuity w.r.t. $\mathcal{A} \mathcal{W}$ for optimal stopping and many stochastic optimization problems
- One may wonder if $\mathcal{A} \mathcal{W}$-distance is too severe
- But it turns out that the topology induced by $\mathcal{A W}$ is actually the weakest to ensure continuity of optimal stopping

Adapted weak topology

The topology induced by $\mathcal{A W}$ (adapted weak topology) is a canonical choice:

Theorem (Backhoff et al. 2020)

The following topologies are equivalent in discrete time:

- adapted weak topology
- Aldous' extended weak topology (stochastic analysis)

Prediction process: $\mathcal{L}\left(X, \mathcal{L}\left(X \mid X_{1}\right), \mathcal{L}\left(X \mid X_{1}, X_{2}\right), \ldots, \mathcal{L}(X \mid X)\right)$

- Hellwig's information topology (economics and games)

Disintegrate future w.r. past: $\mathcal{L}\left(X_{1}, . ., X_{t}, \mathcal{L}\left(X_{t+1}, . ., X_{n} \mid X_{1}, . ., X_{t}\right)\right)$

- Convergence of optimal stopping problems

Continuous outcome of sequential decision procedures

Framework for American options

Recall: we are looking for a suitable framework for robust pricing and hedging of American options (in discrete time)

Framework for American options

Recall: we are looking for a suitable framework for robust pricing and hedging of American options (in discrete time)

- $\mathcal{A W}$ good distance in the path space \mathbb{R}^{n}

Framework for American options

Recall: we are looking for a suitable framework for robust pricing and hedging of American options (in discrete time)

- $\mathcal{A W}$ good distance in the path space \mathbb{R}^{n}
- BUT: $\left(\mathcal{P}\left(\mathbb{R}^{n}\right), \mathcal{A W}\right)$ is not complete
- $\overline{\mathcal{P}\left(\mathbb{R}^{2}\right)}=\mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R})), \overline{\mathcal{P}\left(\mathbb{R}^{3}\right)}=\mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R}))), \ldots$

Framework for American options

Recall: we are looking for a suitable framework for robust pricing and hedging of American options (in discrete time)

- $\mathcal{A W}$ good distance in the path space \mathbb{R}^{n}
- BUT: $\left(\mathcal{P}\left(\mathbb{R}^{n}\right), \mathcal{A W}\right)$ is not complete
- $\overline{\mathcal{P}\left(\mathbb{R}^{2}\right)}=\mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R})), \overline{\mathcal{P}\left(\mathbb{R}^{3}\right)}=\mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R}))), \ldots$
- Filtered Processes: $\mathbf{X}:=\left(\Omega^{\mathbf{X}}, \mathcal{F}^{\mathbf{X}}, \mathbb{P}^{\mathbf{X}},\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n},\left(X_{t}\right)_{t=1}^{n}\right)$
- Equivalence relation: $\mathbf{X} \equiv \mathbf{Y} \Longleftrightarrow \mathcal{A} \mathcal{W}(\mathbf{X}, \mathbf{Y})=0$

Framework for American options

Recall: we are looking for a suitable framework for robust pricing and hedging of American options (in discrete time)

- $\mathcal{A W}$ good distance in the path space \mathbb{R}^{n}
- BUT: $\left(\mathcal{P}\left(\mathbb{R}^{n}\right), \mathcal{A W}\right)$ is not complete
- $\overline{\mathcal{P}\left(\mathbb{R}^{2}\right)}=\mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R})), \overline{\mathcal{P}\left(\mathbb{R}^{3}\right)}=\mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R} \times \mathcal{P}(\mathbb{R}))), \ldots$
- Filtered Processes: $\mathbf{X}:=\left(\Omega^{\mathbf{X}}, \mathcal{F}^{\mathbf{X}}, \mathbb{P}^{\mathbf{X}},\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n},\left(X_{t}\right)_{t=1}^{n}\right)$
- Equivalence relation: $\mathbf{X} \equiv \mathbf{Y} \Longleftrightarrow \mathcal{A} \mathcal{W}(\mathbf{X}, \mathbf{Y})=0$
- Wasserstein space of stochastic processes (Bartl et al. 2020):

$$
(\{F P / \equiv\}, \mathcal{A} \mathcal{W})=\overline{\left(\mathcal{P}\left(\mathbb{R}^{n}\right), \mathcal{A} \mathcal{W}\right)}
$$

E.g. for $n=2: \quad \mathbf{X} \equiv \mathcal{L}_{\mathbf{X}}\left(X_{1}, \mathcal{L}_{\mathbf{X}}\left(X_{2} \mid \mathcal{F}_{1}^{\mathbf{X}}\right)\right)$

Framework for American options

Consider martingales in the WSSP (\{FP/ $\equiv\}, \mathcal{A} \mathcal{W})$:

Framework for American options

Consider martingales in the WSSP (\{FP/ $\equiv\}, \mathcal{A} \mathcal{W})$:

- The space of martingales

$$
\mathbf{M}:=\left\{\mathbf{X} \in \mathrm{WSSP}: \mathbf{X} \text { is a }\left(\mathbb{P}^{\mathbf{X}},\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n}\right) \text {-martingale }\right\}
$$

is $\mathcal{A W}$-closed geodesic space

Framework for American options

Consider martingales in the WSSP (\{FP/ $\equiv\}, \mathcal{A W})$:

- The space of martingales

$$
\mathbf{M}:=\left\{\mathbf{X} \in \mathrm{WSSP}: \mathbf{X} \text { is a }\left(\mathbb{P}^{\mathbf{X}},\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n}\right) \text {-martingale }\right\}
$$

is $\mathcal{A W}$-closed geodesic space

- The space of martingales with prescribed marginals

$$
\mathbf{M}\left(\mu_{1}, . ., \mu_{n}\right):=\left\{\mathbf{X} \in \mathbf{M}: X_{t} \sim \mu_{t}, t=1, . ., n\right\}
$$

is $\mathcal{A} \mathcal{W}$-compact
\Rightarrow convenient framework for model-independent analysis when the information flow is relevant, as for American options pricing

American options pricing

- Stopping times for a FP X:
$\operatorname{ST}(\mathbf{X}):=\left\{\tau: \Omega^{\mathbf{X}} \rightarrow\{1, \ldots, n\}: \tau\right.$ is a $\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n}$-stopping time $\}$

American options pricing

- Stopping times for a FP X:

$$
\operatorname{ST}(\mathbf{X}):=\left\{\tau: \Omega^{\mathbf{X}} \rightarrow\{1, \ldots, n\}: \tau \text { is a }\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n} \text {-stopping time }\right\}
$$

- Consistent pricing models: $\mathbf{M}\left(\mu_{1}, . ., \mu_{n}\right)$

American options pricing

- Stopping times for a FP X:

$$
\operatorname{ST}(\mathbf{X}):=\left\{\tau: \Omega^{\mathbf{X}} \rightarrow\{1, \ldots, n\}: \tau \text { is a }\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n} \text {-stopping time }\right\}
$$

- Consistent pricing models: $\mathbf{M}\left(\mu_{1}, . ., \mu_{n}\right)$

Proposition (Existence)

There exist $\mathbf{X}^{*} \in \mathbf{M}\left(\mu_{1}, . ., \mu_{n}\right)$ and $\tau^{*} \in \mathbf{S T}(\mathbf{X})$ s.t.

$$
\sup _{\mathbf{X} \in \mathbf{M}\left(\mu_{1}, \ldots, \mu_{n}\right)} \sup _{\tau \in \operatorname{ST}(\mathbf{X})} \mathbb{E}_{\mathbf{X}}\left[\Phi_{\tau}\right]=\sup _{\tau \in \operatorname{ST}\left(\mathbf{X}^{*}\right)} \mathbb{E}_{\mathbf{X}^{*}}\left[\Phi_{\tau}\right]=\mathbb{E}_{\mathbf{X}^{*}}\left[\Phi_{\tau^{*}}\right]
$$

American options pricing

- Stopping times for a FP X:

$$
\operatorname{ST}(\mathbf{X}):=\left\{\tau: \Omega^{\mathbf{X}} \rightarrow\{1, \ldots, n\}: \tau \text { is a }\left(\mathcal{F}_{t}^{\mathbf{X}}\right)_{t=1}^{n} \text {-stopping time }\right\}
$$

- Consistent pricing models: $\mathbf{M}\left(\mu_{1}, . ., \mu_{n}\right)$

Proposition (Existence)

There exist $\mathbf{X}^{*} \in \mathbf{M}\left(\mu_{1}, . ., \mu_{n}\right)$ and $\tau^{*} \in \mathbf{S T}(\mathbf{X})$ s.t.

$$
\sup _{\mathbf{X} \in \mathbf{M}\left(\mu_{1}, \ldots, \mu_{n}\right)} \sup _{\tau \in \operatorname{ST}(\mathbf{X})} \mathbb{E}_{\mathbf{X}}\left[\Phi_{\tau}\right]=\sup _{\tau \in \operatorname{ST}\left(\mathbf{X}^{*}\right)} \mathbb{E}_{\mathbf{X}^{*}}\left[\Phi_{\tau}\right]=\mathbb{E}_{\mathbf{X}^{*}}\left[\Phi_{\tau^{*}}\right]
$$

- For $n=2$: Weak Martingale Optimal Transport. For stability of optimizers w.r.t. marginals μ_{1}, μ_{2}, see Beiglböck et al. 2020.

American options pricing

\rightarrow No duality-gap (here written for $n=2$):

Proposition (Duality)

$$
\sup _{\mathbf{X} \in \mathbf{M}\left(\mu_{1}, \mu_{2}\right)} \sup _{\tau \in \operatorname{ST}(\mathbf{X})} \mathbb{E}_{\mathbf{X}}\left[\Phi_{\tau}(X)\right]=\inf \left\{\int f_{1} d \mu_{1}+\int f_{2} d \mu_{2}\right\}
$$

where infimum taken over admissible strategies $\left(f_{1}, f_{2}, H^{1}, H^{2}\right)$:

$$
\begin{aligned}
\Phi_{1}\left(x_{1}\right) & \leq f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+H^{1}\left(x_{1}\right) \cdot\left(x_{2}-x_{1}\right) \\
\Phi_{2}\left(x_{1}, x_{2}\right) & \leq f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+H^{2}\left(x_{1}\right) \cdot\left(x_{2}-x_{1}\right)
\end{aligned}
$$

American options pricing

\rightarrow No duality-gap (here written for $n=2$):

Proposition (Duality)

$$
\sup _{\mathbf{X} \in \mathbf{M}\left(\mu_{1}, \mu_{2}\right)} \sup _{\tau \in \operatorname{ST}(\mathbf{X})} \mathbb{E}_{\mathbf{X}}\left[\Phi_{\tau}(X)\right]=\inf \left\{\int f_{1} d \mu_{1}+\int f_{2} d \mu_{2}\right\}
$$

where infimum taken over admissible strategies $\left(f_{1}, f_{2}, H^{1}, H^{2}\right)$:

$$
\begin{aligned}
\Phi_{1}\left(x_{1}\right) & \leq f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+H^{1}\left(x_{1}\right) \cdot\left(x_{2}-x_{1}\right) \\
\Phi_{2}\left(x_{1}, x_{2}\right) & \leq f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+H^{2}\left(x_{1}\right) \cdot\left(x_{2}-x_{1}\right)
\end{aligned}
$$

\rightarrow Geometric characterization of optimizers:
martingale monotonicity for the support of the primal optimizers (use Snell-Envelope). E.g. for $n=2$ use cost $C\left(X_{1}, \mathcal{L}_{\mathbf{X}}\left(X_{2} \mid \mathcal{F}_{1}^{\mathbf{X}}\right)\right.$)

American options pricing

Example: considering canonical filtrations is not sufficient

- Consider a two period model with marginals

$$
\mu_{1}=\delta_{0} \quad \text { and } \quad \mu_{2}=\frac{1}{3}\left(\delta_{-1}+\delta_{0}+\delta_{1}\right)
$$

\Rightarrow only one martingale with a raw filtration: $\mathbf{X}^{\text {raw }}$

American options pricing

Example: considering canonical filtrations is not sufficient

- Consider a two period model with marginals

$$
\mu_{1}=\delta_{0} \quad \text { and } \quad \mu_{2}=\frac{1}{3}\left(\delta_{-1}+\delta_{0}+\delta_{1}\right)
$$

\Rightarrow only one martingale with a raw filtration: $\mathbf{X}^{\text {raw }}$

- Let $\Phi_{1}:=1$ and $\Phi_{2}\left(x_{1}, x_{2}\right):=2 \cdot 1_{x_{2}=1}+0 \cdot 1_{x_{2}=0}+1 \cdot 1_{x_{2}=-1}$

American options pricing

Example: considering canonical filtrations is not sufficient

- Consider a two period model with marginals

$$
\mu_{1}=\delta_{0} \quad \text { and } \quad \mu_{2}=\frac{1}{3}\left(\delta_{-1}+\delta_{0}+\delta_{1}\right)
$$

\Rightarrow only one martingale with a raw filtration: $\mathbf{X}^{\text {raw }}$

- Let $\Phi_{1}:=1$ and $\Phi_{2}\left(x_{1}, x_{2}\right):=2 \cdot 1_{x_{2}=1}+0 \cdot 1_{x_{2}=0}+1 \cdot 1_{x_{2}=-1}$
- $\operatorname{ST}\left(\mathbf{X}^{\mathrm{raw}}\right)=\{1,2\}$ and $\mathbb{E}_{\mathbf{X}^{\mathrm{raw}}}\left[\Phi_{\tau}(X)\right]=1 \forall \tau \in \mathrm{ST}\left(\mathbf{X}^{\mathrm{raw}}\right)$

American options pricing

Example: considering canonical filtrations is not sufficient

- Consider a two period model with marginals

$$
\mu_{1}=\delta_{0} \quad \text { and } \quad \mu_{2}=\frac{1}{3}\left(\delta_{-1}+\delta_{0}+\delta_{1}\right)
$$

\Rightarrow only one martingale with a raw filtration: $\mathbf{X}^{\text {raw }}$

- Let $\Phi_{1}:=1$ and $\Phi_{2}\left(x_{1}, x_{2}\right):=2 \cdot 1_{x_{2}=1}+0 \cdot 1_{x_{2}=0}+1 \cdot 1_{x_{2}=-1}$
- $\operatorname{ST}\left(\mathbf{X}^{\mathrm{raw}}\right)=\{1,2\}$ and $\mathbb{E}_{\mathbf{X}^{\mathrm{raw}}}\left[\Phi_{\tau}(X)\right]=1 \forall \tau \in \operatorname{ST}\left(\mathbf{X}^{\mathrm{raw}}\right)$
- On the other hand, let \mathbf{X}^{*} with filtration

$$
\mathcal{F}_{1}^{\mathbf{X}^{*}}:=\sigma\left(\left\{X_{1}=X_{2}\right\}\right) \quad \text { and } \quad \mathcal{F}_{2}^{\mathbf{X}^{*}}:=\sigma\left(X_{1}, X_{2}\right)
$$

Then \mathbf{X}^{*} martingale and $\tau:=1_{X_{2}=X_{1}}+21_{X_{2} \neq X_{1}} \in \operatorname{ST}\left(\mathbf{X}^{*}\right)$, with

$$
\mathbb{E}_{\mathbf{X}^{*}}\left[\Phi_{\tau}(X)\right]=4 / 3
$$

\Rightarrow duality gap if we consider only canonical filtration

American options pricing

Example: considering canonical filtrations is not sufficient

- Consider a two period model with marginals

$$
\mu_{1}=\delta_{0} \quad \text { and } \quad \mu_{2}=\frac{1}{3}\left(\delta_{-1}+\delta_{0}+\delta_{1}\right)
$$

\Rightarrow only one martingale with a raw filtration: $\mathbf{X}^{\text {raw }}$

- Let $\Phi_{1}:=1$ and $\Phi_{2}\left(x_{1}, x_{2}\right):=2 \cdot 1_{x_{2}=1}+0 \cdot 1_{x_{2}=0}+1 \cdot 1_{x_{2}=-1}$
- $\operatorname{ST}\left(\mathbf{X}^{\mathrm{raw}}\right)=\{1,2\}$ and $\mathbb{E}_{\mathbf{X}^{\mathrm{raw}}}\left[\Phi_{\tau}(X)\right]=1 \forall \tau \in \operatorname{ST}\left(\mathbf{X}^{\mathrm{raw}}\right)$
- On the other hand, let \mathbf{X}^{*} with filtration

$$
\mathcal{F}_{1}^{\mathbf{X}^{*}}:=\sigma\left(\left\{X_{1}=X_{2}\right\}\right) \quad \text { and } \quad \mathcal{F}_{2}^{\mathbf{X}^{*}}:=\sigma\left(X_{1}, X_{2}\right)
$$

Then \mathbf{X}^{*} martingale and $\tau:=1_{X_{2}=X_{1}}+21_{X_{2} \neq X_{1}} \in \operatorname{ST}\left(\mathbf{X}^{*}\right)$, with

$$
\mathbb{E}_{\mathbf{X}^{*}}\left[\Phi_{\tau}(X)\right]=4 / 3
$$

\Rightarrow duality gap if we consider only canonical filtration
\rightarrow Similarly, easy to construct an example where existence fails when considering canonical filtrations

Related literature

- Neuberger (2007), Hobson and Neuberger (2017): weak formulation, in a Markovian setting
- Bayraktar et al. (2015): finitely many observed prices
- Bayraktar and Zhou (2017): randomized models, under uniform boundedness
- Aksamit et al. (2018): enlarged space, for analytic payoffs

Related literature

- Neuberger (2007), Hobson and Neuberger (2017): weak formulation, in a Markovian setting
- Bayraktar et al. (2015): finitely many observed prices
- Bayraktar and Zhou (2017): randomized models, under uniform boundedness
- Aksamit et al. (2018): enlarged space, for analytic payoffs
\rightarrow we deal with more general payoff functions
\rightarrow and establish a general framework, e.g. to further consider:
- different types of market information
- NA when observing prices of American options
(A., Beiglböck, Pammer ...ongoing)

Conclusions

- Wasserstein space of stochastic processes as natural framework to study pricing and hedging of American processes
- Information flow is intrinsically part of the framework (as basic objects: processes+filtrations)
- We establish existence, super-hedging duality, geometric characterization of extremal ricing measures
- Framework allows to consider different data available in the market

Conclusions

- Wasserstein space of stochastic processes as natural framework to study pricing and hedging of American processes
- Information flow is intrinsically part of the framework (as basic objects: processes+filtrations)
- We establish existence, super-hedging duality, geometric characterization of extremal ricing measures
- Framework allows to consider different data available in the market

Thank you for your attention!

