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Outline

Model-independent framework for American options
(we cannot apply Martingale Optimal Transport)

Introduce new transport framework

Robust pricing and hedging of American options in the new
framework

Further developments
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Model-independent setting

no fixed model or probability space

assume Ti -Calls on S liquidly traded in t = 0 for all strikes

EQ[(S Ti − K)+] ∀ K ≥ 0 =⇒ µi := LQ(S Ti)

for any market-compatible martingale measure Q

set of all market-compatible martingale measures for i = 1, 2:

M(µ1, µ2) = martingale measures with marginals µ1 and µ2

= Π(µ1, µ2)
⋂

martingale (, ∅ ⇔ µ1 �c µ2)

robust pricing of European options Φ(S T1 , S T2) expressed as
Martingale Optimal Transport of µ1 to µ2 along the cost Φ:

P(Φ) := sup
Q∈M(µ1,µ2)

EQ[Φ(S T1 , S T2)] = sup
π∈Π(µ1,µ2)
πmartingale

Eπ[Φ(X,Y)]
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Robust pricing of European options

Classical OT duality:

sup
π∈Π(µ1,µ2)

Eπ[c(X,Y)] = inf
{∫

ϕdµ1 +
∫
ψdµ2 : ϕ(x) + ψ(y) ≥ c(x, y)

}

MOT duality (model-independent super-hedging duality):

sup
π∈Π(µ1,µ2)
πmartingale

Eπ[Φ(X,Y)] = inf
{∫

ϕdµ1 +
∫
ψdµ2 : ∃ H : R→ R s.t.

ϕ(x) + ψ(y)︸          ︷︷          ︸
ϕ(S T1 )+ψ(S T2 )

static trad.

+ H(x)(y − x)︸          ︷︷          ︸
(H·S )T2

dynamic trad.

≥ Φ(x, y)
}

MOT duality: A., Backhoff, Bartl, Bayraktar, Beglböck, Burzoni, Campi,
Cheridito, Cox, De March, De Marco, Dolinsky, Frittelli, Ghoussoub, Guo,
H-Labordère, Huesmann, Hou, Kiiski, Kim, Kupper, Lim, Maggis, Martini,
Neufeld, Nutz, Obloj, Pammer, Penkner, Prömel, Schachermayer, Sester,
Soner, Stoev, Tan, Tangpi, Touzi, Trevisan, Wiesel,...
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Geometric characterization of primal optimizers

Cyclical monotonicity in OT → geometric characterization of
(the support of) the optimizers

Cyclical monotonicity in MOT → • characterization of the
extremal pricing measures
(e.g. left-curtains)

• optimizers as solutions
to Skorokhod Embedding pb:
optimal barriers

see e.g. Beiglböck et al. 2017
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From European to American options

In the same model-independent framework: What if, instead
of European options, we want to price American options?

The canonical setting not suitable: Φt = Φt(S 1, ..., S t) = payoff
functions of an American claim, we may have a duality gap:

sup
Q∈M(µ1,..,µn)

sup
τ F S -st.t.

EQ[Φτ] < super-replication price

Already noticed by Neuberger 2007, Hobson and Neuberger
2017, Bayraktar et al. 2015

→ Some ways to recover duality: Hobson and Neuberger 2017,
Bayraktar and Zhou 2017, Aksamit et al. 2017

→ We suggest a new general setting to ensure duality, existence
and characterization of optimizers
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Issue in the American options case

Problem: considering canonical filtrations is too restrictive

Need to allow for more general evolution of information

We resort to new optimal transport problems where couplings
take information structure into account, suitable for stochastic
optimizations problems such as optimal stopping

Idea: transport the mass in a non-anticipative way with
respect to the available information
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Causal and bicausal transport plans

(X, µ), (Y, ν) path spaces (e.g. Rn,C[0,T ]) with filtrations F X,F Y

Definition
A transport plan π ∈ Π(µ, ν) is called:

• causal between (X, (F Xt )t, µ) and (Y, (F Yt )t, ν) if, for any t,

F Yt ⊥ F
X | F Xt under π;

• bicausal if π and π′ (inverting role of X and Y) are both causal.

Causality w.r.t. canonical processes X,Y and filtrations F X ,F Y :

π (Y≤t ∈ · |X) = π (Y≤t ∈ · |X≤t)

Yamada and Watanabe 1971, Brémaud and Yor 1978

Lassalle 2013, Backhoff et al. 2016, A., Backhoff and
Zalashko 2016
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Lassalle 2013, Backhoff et al. 2016, A., Backhoff and
Zalashko 2016

8/20



(Bi)causal Optimal Transport

Definition
(Bi)causal Optimal Transport problem

inf
{
Eπ[c(X,Y)] : π ∈ Π(b)c(µ, ν)

}
,

where Π(b)c(µ, ν) =
{
π ∈ Π(µ, ν) : π (bi)causal

}
Rüschendorf 1985, Pflug,Pichler 2012, Bion-Nadal,Talay 2018

Backhoff et al. 2019+: Adapted Wasserstein distance

Remark: (bi)causality can be expressed as infinitely many linear
constraints:

π (bi)causal ⇔ Eπ[s(X,Y)] = 0 ∀s ∈ S,

for some well-defined linear space S.
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Adapted Wasserstein distance

For X = Y path space with a metric d on it, we define:

AWp(µ, ν) := inf
{
Eπ[d(X,Y)p] : π ∈ Πbc(µ, ν)

}1/p

Discrete time Rn:

AWp(µ, ν)p = inf
π∈Πbc(µ,ν)

Eπ
[∑n

t=1|Xt − Yt|
p
]

Continuous time C[0,T ], continuous semimartingales:

AWp(µ, ν)p = inf
π∈Πbc(µ,ν)

Eπ
î
[MX − MY ]p/2

T + |AX − AY |
p
1−var

ó
X = MX + AX, Y = MY + AY semimartingale decompositions
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Application of AW

AW robust with respect to many optimization problems in finance:

optimal stopping

hedging error

indifference pricing

risk measures

utility maximization

quantification of arbitrage

sequential learning

⇒ good distance for laws of asset price processes under model
uncertainty

A., Backhoff, Zalashko 2020, Bartl et al. 2020, Backhoff et al.
2020, A., Backhoff, Pammer 2021, A., Munn, Wenliang, Xu 2020,...
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Optimal stopping

Proposition (A., Backhoff, Zalashko 2020, Bartl et al. 2020)

Consider either discrete-time, or continuous semimartingale
setting. If L(·, t) is K-Lipschitz for all t, then∣∣ sup

τ st.t.
Eµ[L(X, τ)] − sup

τ st.t.
Eν[L(X, τ)]

∣∣ ≤ K · AW1(µ, ν).

Lipschitz continuity w.r.t. AW for optimal stopping and many
stochastic optimization problems

One may wonder if AW-distance is too severe

But it turns out that the topology induced by AW is actually
the weakest to ensure continuity of optimal stopping
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Adapted weak topology

The topology induced by AW (adapted weak topology) is a
canonical choice:

Theorem (Backhoff et al. 2020)

The following topologies are equivalent in discrete time:

adapted weak topology

Aldous’ extended weak topology (stochastic analysis)

Prediction process: L(X,L(X|X1),L(X|X1, X2), ...,L(X|X))

Hellwig’s information topology (economics and games)

Disintegrate future w.r. past: L(X1, .., Xt,L(Xt+1, .., Xn|X1, .., Xt))

Convergence of optimal stopping problems

Continuous outcome of sequential decision procedures
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Framework for American options

Recall: we are looking for a suitable framework for robust pricing
and hedging of American options (in discrete time)

AW good distance in the path space Rn

BUT: (P(Rn),AW) is not complete

P(R2) = P(R × P(R)), P(R3) = P(R × P(R × P(R))), ...

Filtered Processes: X := (ΩX,F X,PX, (F X
t )n

t=1, (Xt)n
t=1)

Equivalence relation: X ≡ Y⇐⇒ AW(X,Y) = 0

Wasserstein space of stochastic processes (Bartl et al. 2020):

({FP/ ≡},AW) = (P(Rn),AW)

E.g. for n = 2: X ≡ LX
(
X1,LX

(
X2|F

X
1

))
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Framework for American options

Consider martingales in the WSSP ({FP/ ≡},AW):

The space of martingales

M :=
¶

X ∈ WSSP : X is a
Ä
PX, (F X

t )
n
t=1

ä
-martingale

©
is AW-closed geodesic space

The space of martingales with prescribed marginals

M(µ1, .., µn) := {X ∈M : Xt ∼ µt, t = 1, .., n}

is AW-compact

⇒ convenient framework for model-independent analysis when the
information flow is relevant, as for American options pricing
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American options pricing

Stopping times for a FP X:

ST(X) :=
{
τ : ΩX → {1, . . . , n} : τ is a (F X

t )n
t=1-stopping time

}

Consistent pricing models: M(µ1, .., µn)

Proposition (Existence)

There exist X∗ ∈M(µ1, .., µn) and τ∗ ∈ ST(X) s.t.

sup
X∈M(µ1,..,µn)

sup
τ∈ST(X)

EX[Φτ] = sup
τ∈ST(X∗)

EX∗[Φτ] = EX∗[Φτ∗]

For n = 2: Weak Martingale Optimal Transport. For stability of
optimizers w.r.t. marginals µ1, µ2, see Beiglböck et al. 2020.

16/20



American options pricing

Stopping times for a FP X:

ST(X) :=
{
τ : ΩX → {1, . . . , n} : τ is a (F X

t )n
t=1-stopping time

}
Consistent pricing models: M(µ1, .., µn)

Proposition (Existence)

There exist X∗ ∈M(µ1, .., µn) and τ∗ ∈ ST(X) s.t.

sup
X∈M(µ1,..,µn)

sup
τ∈ST(X)

EX[Φτ] = sup
τ∈ST(X∗)

EX∗[Φτ] = EX∗[Φτ∗]

For n = 2: Weak Martingale Optimal Transport. For stability of
optimizers w.r.t. marginals µ1, µ2, see Beiglböck et al. 2020.
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X∈M(µ1,..,µn)

sup
τ∈ST(X)

EX[Φτ] = sup
τ∈ST(X∗)

EX∗[Φτ] = EX∗[Φτ∗]

For n = 2: Weak Martingale Optimal Transport. For stability of
optimizers w.r.t. marginals µ1, µ2, see Beiglböck et al. 2020.
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American options pricing

→ No duality-gap (here written for n = 2):

Proposition (Duality)

sup
X∈M(µ1,µ2)

sup
τ∈ST(X)

EX[Φτ(X)] = inf
{∫

f1dµ1 +
∫

f2dµ2
}
,

where infimum taken over admissible strategies ( f1, f2,H1,H2):

Φ1(x1) ≤ f1(x1) + f2(x2) + H1(x1) · (x2 − x1)

Φ2(x1, x2) ≤ f1(x1) + f2(x2) + H2(x1) · (x2 − x1)

→ Geometric characterization of optimizers:
martingale monotonicity for the support of the primal optimizers
(use Snell-Envelope). E.g. for n = 2 use cost C

(
X1,LX

(
X2|F

X
1

))
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American options pricing

Example: considering canonical filtrations is not sufficient

Consider a two period model with marginals
µ1 = δ0 and µ2 = 1

3 (δ−1 + δ0 + δ1)

⇒ only one martingale with a raw filtration: Xraw

Let Φ1 := 1 and Φ2(x1, x2) := 2 · 1x2=1 + 0 · 1x2=0 + 1 · 1x2=−1

ST(Xraw) = {1, 2} and EXraw[Φτ(X)] = 1 ∀ τ ∈ ST(Xraw)
On the other hand, let X∗ with filtration

F X∗
1 := σ({X1 = X2}) and F X∗

2 := σ(X1, X2)

Then X∗ martingale and τ := 1X2=X1 + 21X2,X1 ∈ ST(X∗), with

EX∗[Φτ(X)] = 4/3

⇒ duality gap if we consider only canonical filtration

→ Similarly, easy to construct an example where existence fails
when considering canonical filtrations
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Related literature

Neuberger (2007), Hobson and Neuberger (2017): weak
formulation, in a Markovian setting

Bayraktar et al. (2015): finitely many observed prices

Bayraktar and Zhou (2017): randomized models, under
uniform boundedness

Aksamit et al. (2018): enlarged space, for analytic payoffs

→ we deal with more general payoff functions

→ and establish a general framework, e.g. to further consider:
- different types of market information

- NA when observing prices of American options

(A., Beiglböck, Pammer ...ongoing)
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Conclusions

Wasserstein space of stochastic processes as natural
framework to study pricing and hedging of American
processes

Information flow is intrinsically part of the framework (as basic
objects: processes+filtrations)

We establish existence, super-hedging duality, geometric
characterization of extremal ricing measures

Framework allows to consider different data available in the
market

Thank you for your attention!
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