From Ramanujan Graphs to Ramanujan Complexes

Alex Lubotzky

Einstein Institute of Mathematics, Hebrew University Jerusalem, ISRAEL

1 Ramanujan graphs

X - a connected k-regular graph with $A = A_X$ - adjacency matrix $A_{v,u} = \#$ edges between u and v Eigenvalues: $k = \lambda_0 \geq \lambda_1 \geq \ldots \geq \lambda_{n-1} \geq -k$

Definition

X is called Ramanujan graph if for every λ eigenvalue of A, either $|\lambda| = k$ or $|\lambda| \leq 2\sqrt{k-1}$ i.e. for all non-trivial e.v. λ , $\lambda \in \text{Spec}\left(A\big|_{L^2(T_k)}\right)$.

• The eigenvalues control the rate of convergence of the random walk to uniform distribution

• Ramanujan \Rightarrow a) fastest rate

b) best expanders (Alon-Boppana)

Explicit construction

Let $p \neq q$ primes $p \equiv q \equiv 1 \pmod{4}$

Jacobi Theorem:

$$r_4(n) := \#\left\{ (x_0, x_1, x_2, x_3) \in \mathbb{Z}^4 \, \middle| \, \sum_{i=0}^3 x_i^2 = n \right\} = 8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d$$

Thus $r_4(p) = 8(p+1)$

For our $p, p \equiv 1 \pmod{4}$ so one x_i is odd and three are even. Let $S = \{ \alpha = (x_0, x_1, x_2, x_3) \in \mathbb{Z}^4 \mid \sum x_i^2 = p, x_0 > 0, \text{ odd} \}$ $\therefore |S| = p + 1$ Think of α as integral quaternion $\alpha = x_0 + x_1 i + x_2 j + x_3 k$ so $\alpha \in S \Rightarrow \overline{\alpha} \in S$ and $\|\alpha\| = \alpha \overline{\alpha} = p$. As $q \equiv 1 (4)$ take $\varepsilon \in \mathbb{F}_q$ with $\varepsilon^2 = -1$ For $\alpha \in S$, let:

$$\widetilde{\alpha} = \begin{pmatrix} x_0 + \varepsilon x_1 & x_2 + \varepsilon x_3 \\ -x_2 + \varepsilon x_3 & x_0 - \varepsilon x_1 \end{pmatrix} \in \operatorname{PGL}_2(\mathbb{F}_q)$$

Theorem (Lubotzky-Phillips-Sarnak 1986)

Let $H = \langle \widetilde{\alpha} \mid \alpha \in S \rangle$ and $X^{p,q} = \text{Cay}(H, \{\widetilde{\alpha}\})$. Then $X^{p,q}$ is a (p+1)-regular Ramanujan graph.

Note

- $|\lambda| = p + 1$ or $|\lambda| \le 2\sqrt{p}$ (Riemann hypothesis over finite fields).
- Zea functions approach (Ihara, Sunada, Hashimoto, ...) .

Why Ramanujan?

$$\triangle(q) = q \prod_{n \ge 1} (1 - q^n)^{24} = \Sigma \tau(n) q^n = q - 24q^2 + 252q^3 + \dots$$

 τ - Ramanujan tau function

Ramanujan Conjecture

 $\forall \; p \; {\rm prime}, \; \tau(p) \leq 2p^{\frac{11}{2}}$ write $q=e^{2\pi i z}$ then $\bigtriangleup(z)$ is weight 12 cusp form on

$$H = \{ z = x + iy \, | \, x, y \in \mathbb{R}, \, y > 0 \}$$
 w.r.t. $\Gamma = SL_2(\mathbb{Z}) = \Gamma_0(1)$

In fact, a Hecke eigenform of all T_p = Hecke operator with e.v. $\tau(p)$.

Ramanujan-Peterson Conjecture

 $\forall f$ Hecke eigenform in

 $S_k(N,W)$ (= Cusp forms of $\Gamma_0(N)$ w.r.t. Dirichlet character w on $\mathbb{Z}/n\mathbb{Z}$)

the eigenvalues λ_p of T_p (for (p, N) = 1) satisfy $|\lambda_p| \leq 2p^{\frac{k-1}{2}}$

Representation theoretic reformulation (á la Satake)

RP Conj is equivalent to:

Let $\mathbb{A}=\mathbb{A}_{\mathbb{Q}}$ be the ring of adéles of $\mathbb{Q},$

 $\Pi = \otimes^* \Pi_p$ - irreducible cuspidal representations in $L^2(GL_2(\mathbb{A})/GL_2(\mathbb{Q}))$

s.t. Π_{∞} is square integrable, then $\forall p$,

the local *p*-component Π_p is **tempered**.

Tempered means weakly contained in $L^2(GL_2(\mathbb{Q}_p))$

RP Conjecture = Deligne theorem.

Let
$$F = \mathbb{Q}_p$$
 or $\mathbb{F}_p((t))$
 $\mathcal{O} = \mathbb{Z}_p$ or $\mathbb{F}_p[[t]]$ - the ring of integers.
 $G = \operatorname{PGL}_2(F)$, $K = \operatorname{PGL}_2(\mathcal{O})$ - maximal compact in G .

G/K = (p+1)-regular tree = The Bruhat-Tits tree.

If $\Gamma \leq G$ a discrete cocompact subgroup (a lattice) then

 $\Gamma \setminus G/K = \Gamma \setminus T$ = a finite (p+1)-regular graph!!

Theorem

 $\Gamma \setminus G/K = \Gamma \setminus T$ is Ramanujan iff every infinite dimensional irreducible spherical subrepresentation of $L^2(\Gamma \setminus G)$ (as *G*-rep) is tempered.

spherical \equiv has non-zero K-fixed point tempered \equiv matrix coef's are in $L^{2+\varepsilon} \equiv$ weakly contained in $L^2(G)$

So the combinatorial property of being Ramanujan is equivalent to a representation theoretic statement.

The latter one is actually number theoretic (Satake), a la RP conjecture.

This last theorem also holds when $G = Aut({\cal T}_k) =$ auto group of the $k\mbox{-regular}$ tree

Theorem (Deligne)

If Γ is an arithmetic lattice of $\operatorname{PGL}_2(\mathbb{Q}_p)$ and $\Gamma(I)$ a congruence subgroup then every irr. ∞ -dim spherical subrepresentation of $L^2(\Gamma(I)\backslash G)$ is tempered.

Corollary

 $\Gamma(I) \setminus T = \Gamma(I) \setminus G/K$ is a Ramanujan graph.

The explicit expanders above are obtained from an especially nice Γ (Hamiltonian quaternions)

- Similar result by Drinfeld in positive characteristic
- Similar construction by Morgenstern, $\forall k = p^{\alpha} + 1$

Many applications

E.g. Let $X=X^{p,q}, {p \choose q}=1$ then X has large girth and large chromatic number. Compare: Erdös, Lovász

2 Ramanujan Complexes

The generalization of $T = PGL_2(F)/K$ is the Bruhat-Tits building

$$\mathcal{B}_d(F) = G/K = \mathrm{PGL}_d(F)/\mathrm{PGL}_d(\mathcal{O}),$$

a (d-1)-dim contractible simplicial complex.

The vertices of the building $\mathcal{B}_d(F)$ come with "colors" $\nu(gK) \in \mathbb{Z}/d\mathbb{Z}$, $\nu(gK) = \operatorname{val}_p(\det(g)) \pmod{d}$.

Colored adjacency operators (Hecke operators)

 $\begin{aligned} A_i &: L_2\left(\mathcal{B}_d\left(F\right)\right) \to L_2\left(\mathcal{B}_d\left(F\right)\right) & \left(1 \le i \le d-1\right) \\ \text{For } f &: \mathcal{B}_d\left(F\right) \to \mathbb{C}, \\ & \left(A_i f\right)(x) = \sum_{\substack{y \sim x \\ \nu(y) - \nu(x) = i}} f\left(y\right) \\ \text{So: } Adj &= \sum_{i=1}^{d-1} A_i. \end{aligned}$

The A_i 's are normal commutating operators (but not self adjoint; in fact $A_i^* = A_{d-i}$), so can be diagonalized simultaneously

$$\Sigma_d := \operatorname{Spec} \{A_1, \dots, A_{d-1}\} \subseteq \mathbb{C}^{d-1}.$$

Definition

A finite quotient $\Gamma \setminus \mathcal{B}_d(F)$, Γ cocompact discrete subgroup is a Ramanujan complex if every nontrivial simultaneous eigenvalue $(\underline{\lambda}) = (\lambda_1, \ldots, \lambda_{d-1})$ of (A_1, \ldots, A_{d-1}) acting on $L^2(\Gamma \setminus \mathcal{B}_d(F))$ is in Σ_d .

Theorem (Li) (à la Alon-Boppana)

If a sequence of quotients $X_i = \Gamma_i \setminus \mathcal{B}_d(F)$ has injective radius $\to \infty$, then

$$\Sigma_d \subseteq \bigcup \operatorname{spec}_{X_i} (A_1, \ldots, A_{d-1}).$$

Theorem (Lubotzky-Samuels-Vishne 2005)

 $\Gamma \setminus \mathcal{B}_{d}(F)$ is Ramanujan iff every ∞ -dim irreducible spherical subrepresentation of $L^{2}(\Gamma \setminus \operatorname{PGL}_{d}(F))$ is tempered.

Theorem (Lafforgue 2002)

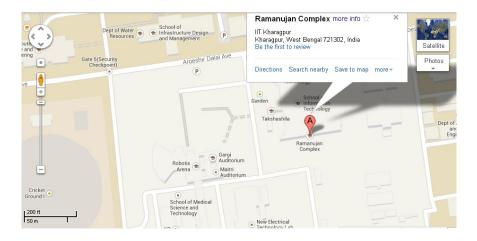
If char F > 0 and Γ an arithmetic subgroup of $\operatorname{PGL}_d(F)$, and $\Gamma(I)$ congruence subgroup then (under some restrictions) every subrepresentation of $L^2(\Gamma(I) \setminus \operatorname{PGL}_d(F))$ is tempered.

Corollary

 $\Gamma\left(I\right) \setminus \mathcal{B}_{d}\left(F\right)$ are Ramanujan complexes.

- Lubotzky-Samuels-Vishne used it for explicit construction
- See also Winnie Li, Sarveniazi

The constructions are quite complicated, but it has turned out to be a good investment



Theorem (Boros-Füredi '84)

Given a set $P \subseteq \mathbb{R}^2$, with |P| = n, $\exists z \in \mathbb{R}^2$ which is covered by $(\frac{2}{9} - o(1))\binom{n}{3}$ of the $\binom{n}{3}$ triangles determined by P.

Remark: $\frac{2}{9}$ is optimal.

Theorem (Barany)

 $\forall d \geq 2, \exists c_d > 0 \text{ s.t. } \forall P \subset \mathbb{R}^d \text{ with } |P| = n, \exists z \in \mathbb{R}^d \text{ which is covered by at least } c_d \binom{n}{d+1} \text{ of the } d\text{-simplices determined by } P.$

Gromov proved the following remarkable result; but first a definition:

Definition (Gromov)

- A simplical complex X of dimension d has ε-geometric (resp. topological) overlapping property if for every f : X(0) → ℝ^d and every affine (resp. continuous) extension f : X → ℝ^d, there exists a point z ∈ ℝ^d which is covered by ε · |X(d)| of the d-cells of X.
- A family of s.c.'s of dim d are geometric (resp. topological) expanders if all have it with the same ε .

Remark:

For d = 1, EXPANDERS \Rightarrow TOP. OVERLAPPING.

Theorem (Boros-Furedi for d = 2, Barany for all d-80's)

The complete d-dim s.c. on n vertices $(n \to \infty)$ geometric expanders.

Theorem (Gromov 2010)

They are also topological expanders!

Think even about $d=2 \mbox{ to see}$ how this special case is non-trivial and even counter intuitive.

Question (Gromov)

What about s.c. of bounded degree?

Theorem (Fox-Gromov-Lafforgue-Naor-Pach 2013)

The Ramanujan complexes of dim d, when q >> 0, are geometric expanders.

What about topological expanders?

Theorem (Kaufman-Kazhdan-Lubotzky 2016 for d = 2, Kaufman-Evra 2017 all d)

Fix q >> 0, the d-skeletons of the (d + 1)-dimensional Ramanujan complexes are d-dim topological expanders.