STRUCTURED (IN)FEASIBILITY: NONMONOTONE OPERATOR SPLITTING IN NONLINEAR SPACES

Russell Luke

Universität Göttingen

Optimization: Theory, Algorithms, Applications Lecture Series
Fields Institute and University of Waterloo

Deutsche
Forschungsgemeinschaft

Outline I

Introduction

Two Examples
Problem \#1: Linear systems of equations
Problem \#2: inconsistent, nonconvex feasibility

Proximal Splitting in Nonlinear Spaces
Preliminaries
Elements of Fixed Point Theory
Quantifying Convergence

References

Appendix

Appendix I: Model Categories
Appendix II: necessity of metric subregularity
Appendix III: DR

Model Problems

Systems of Linear Inequalities

Given $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $b \in \mathbb{R}^{m}$ find $x \in \mathbb{R}^{n}$ so that

$$
A x \leq b
$$

The Cone and Sphere Problem:

Find a point nearest (in some sense) to a cone and to spheres in the image of affine transformations.

Model Problems

Find a point \bar{x} closest, in some sense, to sets $C_{j}(j=1,2, \ldots, m)$.
Systems of Linear Inequalities
Given the vectors $a_{j} \in \mathbb{R}^{n}(j=1,2, \ldots, m)$ and the scalars $b_{j} \in \mathbb{R}$ define $C_{j}:=\left\{x \mid a_{j} x \leq b_{j}\right\}$

Cone and Sphere
Given affine mappings $\mathcal{F}_{j}:\left(\mathbb{R}^{d}\right)^{n} \rightarrow\left(\mathbb{R}^{d}\right)^{n}(j=1,2, \ldots, m)$ with $\mathcal{F}_{j}(z)=\widehat{z}=\left(\widehat{z}_{1}, \widehat{z}_{2}, \ldots, \widehat{z}_{n}\right)$ for $\widehat{z}_{i} \in \mathbb{R}^{d}$. Seek vectors satisfying measurement/data given by

$$
C_{j}:=\left\{z \in\left(\mathbb{R}^{d}\right)^{n} \mid\left\|\left(\mathcal{F}_{j}(z)\right)_{i}\right\|=b_{i j}, \quad \forall i=1,2, \ldots, n\right\} .
$$

Qualitative constraints: support, nonnegativity, sparsity, symmetry modeled with the cone C_{0}

Model Categories

I Feasibility:

$$
\text { Find } x^{*} \in \cap_{j=0}^{m} C_{j}
$$

II Product Space Formulations
Find $X^{*} \in D \cap\left(C_{0} \times C_{1} \times \cdots \times C_{m}\right)$
where $D=\left\{X=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mid x_{i}=x_{j} \in \mathbb{X}\right\}$.
III Smooth Optimization

$$
\underset{x \in \mathbb{X}}{\operatorname{minimize}} \sum_{j=0}^{m} \operatorname{dist}^{2}\left(x, C_{j}\right)
$$

IV Constrained Optimization

$$
\begin{array}{ll}
\underset{x \in \mathbb{X}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & x \in \Omega
\end{array}
$$

Algorithms

Let

$$
\iota_{\Omega}(x):= \begin{cases}0 & \text { when } x \in \Omega \subset \mathbb{X} \\ +\infty & \text { else, }\end{cases}
$$

Main question: starting with the fixed point iteration, when can one follow the implications upward?
Answer \#1: when f and Ω are convex and \mathbb{X} is a linear space.
More interesting cases: when f and/or Ω are non-convex and/or \mathbb{X} is a non-Euclidean space.

Splitting Algorithms

Let $\left(x^{k}\right)_{k \in \mathbb{N}}$ be generated by the fixed point iteration

$$
x^{k+1} \in T\left(x^{k}\right)
$$

or

$$
x^{k+1} \in T_{\alpha}\left(x^{k}\right):=((1-\alpha) \operatorname{ld} \oplus \alpha T)\left(x^{k}\right)
$$

where $T: C \rightrightarrows C \subset \mathbb{X}$ is a composition/average of resolvents* (implicit steps) and descent mappings* (explicit steps) with Fix $T \neq \emptyset$: for example

$$
T:=\left(\alpha_{1} r \oplus\left(1-\alpha_{1}\right) \mathrm{ld}\right) \circ\left(\alpha_{2} g \oplus\left(1-\alpha_{2}\right) \mathrm{Id}\right) .
$$

* for instance, $g=-\nabla f$ (descent) and $r=(\mathrm{Id}+\nabla f)^{-1}$ (resolvent)

Outline I

Introduction

Two Examples
Problem \#1: Linear systems of equations
Problem \#2: inconsistent, nonconvex feasibility

Proximal Splitting in Nonlinear Spaces
Preliminaries
Elements of Fixed Point Theory
Quantifying Convergence

References

Appendix
Appendix I: Model Categories
Appendix II: necessity of metric subregularity
Appendix III: DR λ

Problem \#1: Inconsistent convex feasibility

Linear Systems of Equations

Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ solve

$$
A x=b
$$

Problem \#1: Inconsistent convex feasibility

Linear Systems of Equations

Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ solve

$$
A x=b \quad \Longleftrightarrow
$$

Problem \#1: Inconsistent convex feasibility

Linear Systems of Equations

Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ solve

$$
\begin{aligned}
A x=b \quad & x \in \bigcap_{j=1,2, \ldots, m} L_{j} \\
\text { where } & L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\}
\end{aligned}
$$

Cyclic Projections

$$
x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}
$$

Problem \#1

Linear Systems of Equations
Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ find

$$
\begin{array}{rll}
x \in L:=\bigcap_{j=1,2, \ldots, m} L_{j} \neq \emptyset & \Longrightarrow & \text { Cyclic Projections: } \\
\text { where } L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\} & & x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}
\end{array}
$$

Problem \#1

Linear Systems of Equations

Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ find

$$
\begin{array}{rll}
x \in L:=\bigcap_{j=1,2, \ldots, m} L_{j} \neq \emptyset & \Longrightarrow & \text { Cyclic Projections: } \\
\text { where } L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\} & & x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}
\end{array}
$$

Convergence Theory

If A is full rank then cyclic projections converges either finitely or linearly to some $\bar{x} \in L$ from any starting point.

Problem \#1

Linear Systems of Equations

Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ find

$$
x \in L:=\bigcap_{j=1,2, \ldots, m} L_{j} \Longrightarrow \quad \text { Cyclic Projections: }
$$

where $L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\}$
$x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}$

$$
m=50, n=60
$$

Problem \#1

Linear Systems of Equations
Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ find

$$
\begin{array}{rll}
x \in L:=\bigcap_{j=1,2, \ldots, m} L_{j} & \Longrightarrow & \text { Cyclic Projections with errors: } \\
\text { where } L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\} & & x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}+\epsilon_{k}
\end{array}
$$

Problem \#1

Linear Systems of Equations
Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ find

$$
x \in L:=\bigcap_{j=1,2, \ldots, m} L_{j} \Longrightarrow \quad \text { Cyclic Projections with errors: }
$$

where $L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\}$

$$
x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}+\epsilon_{k}
$$

Convergence Theory

If A is full rank then cyclic projections with vanishing errors converges.

Problem \#1

Does not explain:

$$
m=50, n=60
$$

Problem \#2: inconsistent, nonconvex feasibility

Coherent Diffraction Imaging

$$
\begin{aligned}
& \mathcal{F}_{1}:\left(\mathbb{R}^{2}\right)^{128} \rightarrow\left(\mathbb{R}^{2}\right)^{128} \\
& \mathcal{F}_{1}(z)=\widehat{z} \text { for } \widehat{z} \in \mathbb{R}^{2 \times 128}
\end{aligned}
$$

(Fresnel transform)
define

$$
\begin{aligned}
& C_{1}:=\left\{z \in\left(\mathbb{R}^{2}\right)^{128} \mid\left\|\left(\mathcal{F}_{1}(z)\right)_{i}\right\|=b_{i}, \quad \forall i=1,2, \ldots, 128\right\} \\
& C_{0}=\left(\mathbb{R}_{+} \times\{0\}\right)^{128}
\end{aligned}
$$

Most efficient numerical methods: $x^{k+1} \in T_{*} x^{k}$ where

$$
\begin{aligned}
T_{C P} & :=P_{C_{0}} P_{C_{1}} \\
T_{D R} & :=\frac{1}{2}\left(\left(2 P_{C_{0}}+\mathrm{Id}\right) \circ\left(2 P_{C_{1}}+\mathrm{Id}\right)+\mathrm{Id}\right) \\
T_{D R \lambda} & :=\frac{\lambda}{2}\left(\left(2 P_{C_{0}}+\mathrm{Id}\right) \circ\left(2 P_{C_{1}}+\mathrm{Id}\right)+\mathrm{Id}\right)+(1-\lambda) P_{C_{1}}
\end{aligned}
$$

Problem \#2

CP [L.Tam\& Thao, 2018]

Problem \#2

CP [L.Tam\& Thao, 2018]

DR

Problem \#2

Relaxed Douglas-Rachford

CP [L.Tam\& Thao, 2018]
DR
DR $\lambda^{[L L . M a r t i n s, ~ 2020] ~}$

Goals

- When does $\left\{y \mid 0 \in \partial\left(f(y)+\iota_{\Omega}(y)\right)\right\}=\operatorname{argmin}_{x \in \Omega} f$?
- How do you calculate $\partial\left(f(y)+\iota_{\Omega}(y)\right)$?
- How do you calculate $\left[\partial\left(f(\cdot)+\iota_{\Omega}(\cdot)\right)\right]^{-1}(0)$?
- How do you construct T to find $\bar{x} \in\left\{y \mid 0 \in \partial\left(f(y)+\iota_{\Omega}(y)\right)\right\}$?
- When does Fix $T \sim\left\{\bar{x} \mid 0 \in \partial\left(f(\bar{x})+\iota_{\Omega}(\bar{x})\right)\right\}$?
- When does the sequence defined by $x^{k+1} \in T x^{k}$ converge to a point $\bar{x} \in$ Fix T ?
- How fast does $x^{k} \rightarrow \bar{x} \in \operatorname{Fix} T$?
- At iteration K, what is $d\left(x^{K}\right.$, Fix $\left.T\right)$?

Outline I

Introduction

Two Examples
Problem \#1: Linear systems of equations
Problem \#2: inconsistent, nonconvex feasibility

Proximal Splitting in Nonlinear Spaces
Preliminaries
Elements of Fixed Point Theory
Quantifying Convergence

References

Appendix
Appendix I: Model Categories
Appendix II: necessity of metric subregularity
Appendix III: DR

p-uniformly convex spaces

p-uniformly convex metric spaces
Let $p \in(1, \infty)$. A metric space (G, d) is p-uniformly convex with constant $c>0$ whenever it is uniquely geodesic, and at any
$x, y, z \in G$

$$
(\forall t \in[0,1]) \quad d(z,(1-t) x \oplus t y)^{p} \leq(1-t) d(z, x)^{p}+t d(z, y)^{p}-\frac{c}{2} t(1-t) d(x, y)^{p} .
$$

Distance and Projectors

Distance and projector

Let Ω be a nonempty subset of \mathbb{X}. Then

$$
\operatorname{dist}_{\Omega}: \mathbb{X} \rightarrow \mathbb{R}: x \mapsto \inf _{y \in \mathbb{X}} \operatorname{dist}(x, y)+\iota_{\Omega}(y)
$$

is the distance function of the set Ω and

$$
P_{\Omega}: \mathbb{X} \rightrightarrows \mathbb{X}: x \mapsto\left\{y \in \Omega \mid \operatorname{dist}_{\Omega}(x)=\operatorname{dist}(x, y)\right\}
$$

is the corresponding (metric) projector. An element $y \in P_{\Omega}(x)$ is called a (metric) projection.
The inverse projector P_{Ω}^{-1} is defined by

$$
P_{\Omega}^{-1}(y):=\left\{x \in \mathbb{X} \mid P_{\Omega}(x) \ni y\right\}
$$

Projectors

Nice properties
Let C be a nonempty closed subset of (G, d), a p-uniformly convex space. If C is convex, then
(i) P_{C} is pointwise α-firmly nonexpansive (defined later) at points in C and
(ii) $P_{C}(x)$ is a singleton, for every $x \in G$.

Projectors

Projector onto a sphere

Let $z \in \mathbb{E}$ and $\rho \in \mathbb{R}_{++}$. Set $\mathbb{S}_{\rho}(z):=\{x \mid\|x-z\|=\rho\}$. Then

$$
(\forall x \in \mathbb{E}) \quad P_{\mathbb{S}_{\rho}(z)}(x)= \begin{cases}\rho \frac{x-z}{\|x-z\|}+z, & \text { if } x \neq z ; \\ \mathbb{S}_{\rho}(z), & \text { otherwise } .\end{cases}
$$

while

$$
P_{\mathbb{S}_{\rho}(z)}^{-1}(y)=\{x \mid x=\rho(y-z)+z, \text { for } \rho \geq 0\}
$$

(i) $P_{\mathbb{S}_{\rho}(z)}$ is neither pointwise α-firmly nonexpansive
(ii) nor everywhere a singleton

Proximal Mappings

p-prox mappings

In a complete p-uniformly convex space the p-proximal mapping of a proper and lower semicontinuous function f is defined by

$$
\operatorname{prox}_{f, \lambda}^{p}(x):=\operatorname{argmin}_{y \in G} f(y)+\frac{1}{p \lambda^{p-1}} d(y, x)^{p} \quad(\lambda>0)
$$

Example: projectors
For

$$
\iota_{\Omega}(x):= \begin{cases}0 & \text { when } x \in \Omega \subset G \\ +\infty & \text { else }\end{cases}
$$

then

$$
\operatorname{prox}_{\iota_{\Omega}}^{p}=P_{\Omega}(x)
$$

Multi-mappings

Set-valued mappings
A set- or multi-valued mapping T from X to the set of subsets of Y, 2^{Y}, is denoted $T: X \rightrightarrows Y$. The inverse of a multi-valued mapping is defined by $T^{-1}(y)=\{x \mid T(x) \ni y\}$. The domain is the set $\operatorname{dom} T:=\{x \mid T(x) \neq \emptyset\}$ and the range is
range $T:=\{y \mid \exists x \in X$ with $y \in T(x)\} . T$ is said to be closed-valued at x when $T(x)$ is closed.

Fixed points of set-valued mappings
The set of fixed points of a set-valued mapping $T: X \rightrightarrows X$ is defined by

$$
\{x \in X \mid x \in T(x)\}
$$

Elements of fixed point theory

Pointwise almost nonexpansive mappings
Let (G, d) be a metric space and $D \subset G$. The mapping $T: D \rightrightarrows G$ is said to be pointwise almost nonexpansive at $x_{0} \in D$ on D if there exists a constant $\epsilon \in[0,1)$ such that

$$
\begin{aligned}
& d\left(x^{+}, x_{0}^{+}\right) \leq \sqrt[p]{1+\epsilon} d\left(x, x_{0}\right) \\
& \quad \forall x^{+} \in T x \text { and } \forall x_{0}^{+} \in T x_{0} \text { whenever } x \in D .
\end{aligned}
$$

When the above inequality holds for all $x_{0} \in D$ then F is said to be almost nonexpansive on D. If $\epsilon=0$ in (1) the qualifier "almost" is dropped.

Single-valuedness of pointwise almost nonexpansive mappings
Any mapping $T: D \rightrightarrows G(D \subset G)$ that is pointwise almost nonexpansive at $y \in \operatorname{Fix} T$ is single-valued there.

Elements of fixed point theory

Pointwise almost α-firmly nonexpansive mappings
Let (G, d) be a p-uniformly convex metric space with constant c ($p \in(1, \infty), c>0)$ and $D \subset G$. The mapping T is said to be pointwise almost α-firmly nonexpansive at $x_{0} \in D$ on D whenever there exist constants $\alpha \in(0,1)$ and $\epsilon \in[0,1)$ such that

$$
\begin{align*}
d^{p}\left(x^{+}, x_{0}^{+}\right) \leq & (1+\epsilon) d^{p}\left(x, x_{0}\right)-\frac{1-\alpha}{\alpha} \psi_{T}^{(p, c)}\left(x, x_{0}\right) \\
\text { where } \quad & \psi_{T}^{(p, c)}\left(x, x_{0}\right):=\frac{c}{4}\left(d^{p}\left(x^{+}, x\right)+d^{p}\left(x_{0}^{+}, x_{0}\right)-d^{p}\left(x^{+}, x_{0}\right)\right. \\
& \left.+d^{p}\left(x, x_{0}\right)+d^{p}\left(x^{+}, x_{0}^{+}\right)-d^{p}\left(x, x_{0}^{+}\right)\right) \\
& \forall x^{+} \in T x \text { and } \forall x_{0}^{+} \in T x_{0} \quad \forall x \in D .
\end{align*}
$$

When the above inequality holds for all $x_{0} \in D$ then T is said to be almost α-firmly nonexpansive on D. If $\epsilon=0$ in (1), the qualifier "almost" is dropped.
We call $\psi_{T}^{(p, c)}$ the transport discrepancy.

Elements of fixed point theory

On Euclidean spaces

- prox $_{f}$ for f convex is α-firmly nonexpansive everywhere with $\alpha=1 / 2-$ no violation, not pointwise
- Projectors onto convex sets: α-firmly nonexpansive everywhere with $\alpha=1 / 2$ - no violation, not pointwise
- Projectors onto smooth manifolds: almost α-firmly nonexpansive on neighborhoods, with violation arbitrarily small for small enough neighborhoods [L., Tam, Thao, 2018]
- $T:=\mathrm{Id}-\lambda \nabla f$: steepest gradient descent with step length λ is almost α-firmly nonexpansive with violation arbitrarily small for small enough steps [L., Tam, Thao, 2018]

Elements of fixed point theory

On p-uniformly convex spaces

- prox $_{f}$ for f convex is pointwise almost α-firmly nonexpansive at fixed points with constant and violation dependent on the curvature constant c of the space [Berdellima, Lauster,L., 2021]
- Projectors onto convex sets: pointwise α-firmly nonexpansive at fixed points with $\alpha=1 / 2$ [Berdellima, Lauster,L., 2021]
- $T:=\beta \operatorname{ld} \oplus(1-\beta)$ prox $_{f, \lambda}^{p}$: nonlinear gradient descent with step length λ is pointwise almost α-firmly nonexpansive with constant and violation dependent on β and the curvature constant c [Lauster, L. 2021]

Elements of fixed point theory

Calculus

When fixed points coincide, convex combinations and compositions of almost α-firmly nonexpansive mappings are almost α-firmly nonexpansive. In CAT(0) spaces the operators need not have common fixed points.

- This means that we can apply these ideas to all the leading algorithms for the problems of interest.
- In convex settings, pointwise α-firm nonexpansiveness at fixed points is all that is needed to prove convergence of fixed point iterations.

Inverse Regularity

Metric regularity on a set

Let $\left(G_{1}, d_{1}\right)$ and $\left(G_{2}, d_{2}\right)$ be metric spaces and let $\mathcal{T}: G_{1} \rightrightarrows G_{2}$, $U_{1} \subset G_{1}, U_{2} \subset G_{2}$. The mapping \mathcal{T} is called metrically regular on $U_{1} \times U_{2}$ with gauge ρ whenever

$$
d_{1}\left(x, \mathcal{T}^{-1}(y)\right) \leq \rho\left(d_{2}(y, \mathcal{T}(x))\right)
$$

holds for all $x \in U_{1}$ and $y \in U_{2}$ with $0<\rho\left(d_{2}(y, \mathcal{T}(x))\right)$ where $\mathcal{T}^{-1}(y):=\{z \mid \mathcal{T}(z)=y\}$. When the set U_{2} consists of a single point, $U_{2}=\{\bar{y}\}$, then \mathcal{T} is said to be metrically subregular for \bar{y} on U_{1} with gauge ρ.
[Aze (06), Klatte\&Kummer (09), loffe (11, 13), Ngai\& Théra (04, 08)], Dontchev\&Rockafellar (14), Kruger, L. \&Thao (16)]

Generic Quantitative Convergence [L., Tam, \& Thao 2018; Berdellima, Lauster\& L. 2020/21]

From the transport discrepancy $\psi_{T}^{(p, c)}$ and a subset $S \subset G$ we construct the following surrogate mapping $\mathcal{T}_{S}: G \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ by

$$
\mathcal{T}_{S}(x):=\left(\inf _{y \in S} \psi_{T}^{(p, c)}(x, y)\right)^{1 / p}
$$

Basic Result

Let (G, d) be a p-uniformly convex space, let $T: D \rightrightarrows D$ for $D \subseteq G$ and $T(D)$ boundedly compact, and let Fix T be nonempty. Assume
(i) T is pointwise almost α-firmly nonexpansive at all points $y \in S=\operatorname{Fix} T$ with the same constant α on D and arbitrarily small violation on small enough neighborhoods of Fix T;
(ii) \mathcal{T}_{S} is metrically subregular for 0 on D with gauge ρ, that is,

$$
\begin{equation*}
d\left(x, \mathcal{T}_{S}^{-1}(0)\right) \leqslant \rho\left(\left|\mathcal{T}_{S}(x)\right|\right), \quad \forall x \in D \tag{2}
\end{equation*}
$$

Then for any $x_{0} \in D$ close enough to Fix T, the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ defined by $x_{k+1}:=T x_{k}$ converges in the metric d to some $x^{*} \in$ Fix T with rate characterized by ρ and the violation ϵ.

Error bound

In particular, if (ii) holds with the constant κ satisfying
$\sqrt{\frac{1-\alpha}{(1+\epsilon) \alpha}} \leq \kappa<\sqrt{\frac{1-\alpha}{\epsilon \alpha}}$, then for all $x^{0} \in(\mathcal{O} \cap D) \backslash($ Fix $T)$ the iteration $x^{k+1} \in T\left(x^{k}\right) \rightarrow \bar{x} \in$ Fix T R-linearly with rate

$$
c:=\left(1+\epsilon-\frac{1-\alpha}{\alpha \kappa^{2}}\right)^{1 / 2}<1
$$

In other words, when we stop our algorithm at iteration k we can provide an upper bound on the distance of x^{k} to the model solution $x^{*} \in S$.

Proof sketch

Start with the inequality defining metric subregularity, (2), and insert (1), the defining inequality from assumption (i), to get convergence to zero of the distance of the iterates to Fix T. To get convergence of the iterates to a point $x^{*} \in \operatorname{Fix} T$, show that it is a Cauchy sequence.

Verifying condition (i) is a masters thesis.
(ii) is a PhD dissertation, but necessary for convergence with rate characterized by ρ [L, Teboulle, Thao, 2019; Berdellima, Lauster, L, 2021]

Back to Example \#2: inconsistent nonconvex feasibility

Explains inconsistent (realistic) phase retrieval

CP [L.Tam\& Thao, 2018]
DR
DR λ [L.Martins, 2020]

Stochastic Setting:

The above results can be lifted to a stochastic setting:

- (G, d) is a Hilbert space
- $D \subset G$ is compact
- I is an index set (possibly uncountable)
- $T_{i}: D \rightarrow D$ is continuous for all $i \in I$
- \mathcal{P} is the Markov operator with transition kernel p where

$$
(x \in D)(A \in \mathcal{B}(D)) \quad p(x, A):=\mathbb{P}\left(T_{\xi} x \in A\right)
$$

- Define $\mathscr{T}: \mathscr{P}(D) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ by

$$
\mathscr{T}(\mu):=\inf _{\pi \in \operatorname{inv} \mathcal{P}} \inf _{\gamma \in C_{*}(\mu, \pi)}\left(\int_{D \times D} \mathbb{E}_{\xi}\left[\psi_{T_{\xi}}(x, y)\right] \gamma(d x, d y)\right)^{1 / 2} .
$$

Random Function Iterations:
Given $X^{0} \sim \mu_{0}$

$$
X^{k+1}=T_{\xi_{k}} X^{k}
$$

$$
\mu_{k+1}=\mu_{0} \mathcal{P}^{k} \xrightarrow{?} \operatorname{inv} \mathcal{P}
$$

Stochastic Setting [Hermer, Sturm, L. arXiv 2020]

Linear/geometric convergence of Markov Chains Suppose
(a) T_{ξ} is almost α-firmly nonexpansive in expectation with constant

$$
\alpha \in(0,1) \text { on } \mathrm{D}:
$$

$$
\mathbb{E}_{\xi}\left[d^{2}\left(T_{\xi}(x), T_{\xi}(y)\right)\right] \leq(1+\epsilon) d^{2}(x, y)-\frac{1-\alpha}{\alpha} \mathbb{E}_{\xi}\left[\psi_{T_{\xi}}(x, y)\right], \quad \forall x, y \in D
$$

(b) \mathscr{T} is metrically subregular with respect to W_{2} for 0 on $\mathscr{P}_{2}(D)$ with constant κ :

$$
d_{W_{2}}(\mu, \operatorname{inv} \mathcal{P}) \leq \kappa|\mathscr{T}(\mu)| \quad \forall \mu \in \mathscr{P}_{2}(D)
$$

where $\kappa \geq \sqrt{(1-\alpha) /(\alpha(1+\epsilon))}$
Then for any $\mu_{0} \in \mathscr{P}_{2}(D)$ the sequence $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ converges R-linearly to some $\pi^{\mu_{0}} \in \operatorname{inv} \mathcal{P}$:

$$
d_{W_{2}}\left(\mu_{k+1}, \operatorname{inv} \mathcal{P}\right) \leq c d_{W_{2}}\left(\mu_{k}, \operatorname{inv} \mathcal{P}\right)
$$

where $c:=\sqrt{1+\epsilon-\left(\frac{1-\alpha}{\kappa^{2} \alpha}\right)}<1$. If inv \mathcal{P} consists of a single point then convergence is Q -linear (geometric).

Back to Example \#1

Explains iterative methods for linear systems of equations

Given $A \in \mathbb{R}^{m \times n}$ and $b_{j} \in \mathbb{R}^{m}$ find

$$
x \in L:=\bigcap_{j=1,2, \ldots, m} L_{j} \Longrightarrow \quad \text { Cyclic Projections: }
$$

where $L_{j}=\left\{y \mid\left\langle a_{j}, y\right\rangle=b_{j}\right\}$
$x^{k+1}=P_{L_{1}} P_{L_{2}} \cdots P_{L_{m}} x^{k}$

$$
m=50, n=60
$$

TO DO

- In p-uniformly convex spaces: the prox mappings are assumed to have common fixed points for the calculus of α-firmly nonexpansive mappings to hold. Must determine the calculus for the inconsistent case
- In p-uniformly convex spaces: when does metric subregularity come "for free"?
- In p-uniformly convex spaces: algorithms on manifolds/nonlinear spaces (e.g. angle-resolved photon emission spectroscopy, femtosecond X-ray tomography...)
- In p-uniformly convex spaces and Wasserstein spaces:
$T: D \rightrightarrows D$? (can only handle truly multi-valued mappings in Euclidean spaces)
- In p-uniformly convex spaces and Wasserstein spaces: when does Fix T correspond to critical points?
- In p-uniformly convex spaces and Wasserstein spaces: how do you characterize critical points?
- In Wasserstein spaces: new algorithms and methods for MCMC
- In Wasserstein spaces: randomized algorithms for large-scale, distributed optimization (e.g. femtosecond X-ray tomography, machine learning)

Outline I

Introduction

Two Examples
Problem \#1: Linear systems of equations
Problem \#2: inconsistent, nonconvex feasibility

Proximal Splitting in Nonlinear Spaces

Preliminaries
Elements of Fixed Point Theory
Quantifying Convergence

References

Appendix

Appendix I: Model Categories
Appendix II: necessity of metric subregularity
Appendix III: DR λ

References I

㞘 A. Berdellima, F. Lauster and D. R. Luke, α-firmly nonexpansive operators on metric spaces
J. Fixed Point Theory (in revision)
https://arxiv.org/abs/2104.11302
N. Hermer, D. R. Luke, and A. K. Sturm, Random Function Iterations for Stochastic Fixed Point Problems https://arxiv.org/abs/2007.06479
(submitted July 2020)
N. Hermer, D. R. Luke, and A. K. Sturm,

Random Function Iterations for Consistent Stochastic Feasibility Numerical Functional Analysis and Optimization 40(4):386-420 (2019)

DOI: 10.1080/01630563.2018.1535507.

References II

F．Lauster and D．R．Luke，
Convergence of proximal splitting algorithms in CAT（ \hat{I}° ）spaces and beyond
Fixed Point Theory Algorithms Sci Eng（2021）2021：13
DOI 10．1186／s13663－021－00698－0
圊 D．R．Luke．，
ProxToolbox，
https：／／num．math．uni－goettingen．de／proxtoolbox／
围 D．R．Luke，A．－L．Martins，
Convergence Analysis of the Relaxed Douglas Rachford Algorithm，
SIAM J．on Optimization，30（1）：542－584（2020）．
國 D．R．Luke，Nguyen H．T．，M．K．Tam
Quantitative convergence analysis of iterated expansive， set－valued mappings
Mathematics of Operations Research 43（4）：1143－1176（2018）．
DOI https：／／doi．org／10．1287／moor．2017．0898．

References III

R
D. R. Luke, S. Sabach and M. Teboulle, Optimization on Spheres: Models and Proximal Algorithms with Computational Performance Comparisons, SIAM J. Mathematics of Data Science, 1(3), 408-445 (2019).
T. Salditt, A. Egner, and D.R. Luke (eds).

Nanoscale Photonic Imaging,
Springer Cham. (2020).

Outline I

Introduction

Two Examples
Problem \#1: Linear systems of equations
Problem \#2: inconsistent, nonconvex feasibility

Proximal Splitting in Nonlinear Spaces
Preliminaries
Elements of Fixed Point Theory
Quantifying Convergence

References

Appendix
Appendix I: Model Categories
Appendix II: necessity of metric subregularity
Appendix III: DR λ

ProxToolbox

https://num.math.uni-goettingen.de/proxtoolbox/ https://gitlab.gwdg.de/nam/ProxPython

ProxToolbox

- Froatosbiax

OMerso versim
OAdthurs thenry data
- oxerinosuaterot
- simincture
: 1 pranamber fobla
- II. Tnautrai
- mil Demos

W.

Python version
ı..
- Sourcar

Tre orocmentercon indures sutron:
Older versions
-0.2.2 Surce Doommentroun
Matlab version
3.9

Model Category I: feasibility

$$
\text { Find } x^{*} \in \cap_{j=0}^{m} C_{j}
$$

- cyclic projectors: $T:=P_{C_{0}} P_{C_{1}} \cdots P_{C_{m}}$
- Douglas-Rachford (Lions 1979): $T_{D R}:=\frac{1}{2}\left(R_{C_{0}} R_{C_{1}}+\mathrm{Id}\right)$ where $R_{C}:=2 P_{C}-\mathrm{Id}$
- Relaxed Dougals-Rachford, DR λ (L. 2005, L. Martins 2020): $T_{D R \lambda}:=\frac{\lambda}{2}\left(R_{C_{0}} R_{C_{1}}+\mathrm{Id}\right)+(1-\lambda) P_{B}$
- Douglas-Rachford-Alternating-Projectors (DRAP, Thao Nguyen 2019)

$$
T_{D R A P}:=P_{C_{0}}\left((1+\lambda) P_{C_{1}}-\lambda I \mathrm{Id}\right)-\lambda\left(P_{C_{1}} \mathrm{Id}-\mathrm{Id}\right)
$$

* Algorithms in red only work for two sets.
* The sets C_{j} are nonconvex so the projectors and fixed point mappings T_{*} are set-valued.

Model Category I: feasibility

Multi-set extensions of Douglas-Rachford:

- Cyclic Douglas-Rachford (Tam\& Borwein 2014):

$$
T_{C D R}=T_{D R}^{01} \circ T_{D R}^{12} \circ \cdots \circ T_{D R}^{m 0}
$$

- Anchored Cyclic Douglas-Rachford (Bauschke,Noll\& Phan 2015):

$$
T_{C D R}=T_{D R}^{01} \circ T_{D R}^{02} \circ \cdots \circ T_{D R}^{0 m}
$$

- Cyclic DR λ (L., Martins, Tam 2018, L. Sabach, Teboulle 2019):

$$
T=T_{D R \lambda}^{01} \cdot T_{D R \lambda}^{12} \cdots \cdots T_{D R \lambda}^{m 0} .
$$

Another motivation for $T_{C D R}$ was to deal with inconsistency:

$$
\cap_{j=0}^{m} C_{j}=\emptyset
$$

Model Category I: feasibility

Before moving to the next model category, brief mention of alternating directions method of multipliers (ADMM ${ }_{1}$, Glowinski\& Marroco 1975) via nonsmooth constrained optimization and the the nonsmooth augmented Lagrangian:

$$
\begin{gathered}
\min _{x, z_{j} \in\left(\mathbb{R}^{d}\right)^{n}}\left\{{ }^{\prime} c_{0}(x)+\sum_{j=1}^{m} \iota c_{j}\left(z_{j}\right) \mid z_{j}=x, j=1,2, \ldots, m\right\}, \\
\widetilde{L}_{\eta}\left(x, z_{j}, v_{j}\right):=\iota_{c_{0}}(x)+\sum_{j=1}^{m}\left(\iota c_{j}\left(z_{j}\right)+\left\langle v_{j}, x-z_{j}\right\rangle+\frac{\eta}{2}\left\|x-z_{j}\right\|^{2}\right),
\end{gathered}
$$

where

$$
\iota_{C}(x):= \begin{cases}0 & \text { wherever } x \in C \\ +\infty & \text { else }\end{cases}
$$

Model Category II: product space formulations

Find $Z^{*} \in C \cap D$,
where $Z^{*}=\left(z_{0}^{*}, z_{1}^{*}, \ldots, z_{m}^{*}\right), C:=C_{0} \times C_{1} \times \cdots \times C_{m}$ and D is the diagonal set of $\left(\mathbb{R}^{d}\right)^{n(m+1)}$ which is defined by
$\left\{Z=(z, z, \ldots, z): z \in\left(\mathbb{R}^{d}\right)^{n}\right\}$.
Two important features:
(i) the projector onto the set C is easily computed (in parallel):

$$
P_{C}(Z)=\left(P_{C_{0}}\left(z_{0}\right), P_{C_{1}}\left(z_{1}\right), \ldots, P_{C_{m}}\left(z_{m}\right)\right),
$$

(ii) D is a subspace which also has simple projection given by $P_{D}(Z)=\bar{Z}$ where

$$
\bar{Z}_{j}=\frac{1}{m+1} \sum_{j=0}^{m} z_{j}
$$

Model Category II: product space

Find $x^{*} \in \cap_{j=0}^{m} C_{j}$

- alternating/averaged projectors: $T_{A v P}:=P_{D} P_{C}=\frac{1}{m+1} \sum_{j=0}^{m} P_{C_{j}}$
- projected gradients: $T_{P G}:=P_{C}\left(\mathrm{ld}-\lambda \nabla \operatorname{dist}_{D}^{2}\right)=P_{C} P_{D}(\lambda=1 / 2)$
- Relaxed Dougals-Rachford, DR λ :
$T_{D R \lambda}:=\frac{\lambda}{2}\left(R_{D} R_{C}+\mathrm{Id}\right)+(1-\lambda) P_{C}$
- Douglas-Rachford-Alternating-Projectors (DRAP)

$$
T_{D R A P}:=P_{D}\left((1+\lambda) P_{C}-\lambda \mathrm{Id}\right)-\lambda\left(P_{C} \mathrm{Id}-\mathrm{Id}\right)
$$

We see from projected gradients that this strategy is a hidden way of smoothing the feasibility problem...

Model Category III: smooth optimization

$$
\begin{gathered}
\underset{z \in\left(\mathbb{R}^{d}\right)^{n}}{\operatorname{minimize}} f(z):=\frac{1}{2(m+1)} \sum_{j=0}^{m} \operatorname{dist}^{2}\left(z, C_{j}\right) \\
\underset{z \in\left(\mathbb{R}^{d}\right)^{n}}{\Longleftrightarrow} \underset{\frac{1}{2(m+1)}}{\sum_{j=0}^{m}\left\|\mathcal{F} \mathcal{P}_{j} z-b_{j}\right\|^{2}}
\end{gathered}
$$

Note that

$$
\nabla f(z):=\frac{1}{m+1} \sum_{j=0}^{m}\left(\mathrm{Id}-P_{C_{j}}\right)(z)
$$

So that

$$
T_{A v P}:=\frac{1}{m+1} \sum_{j=0}^{m} P_{C_{j}}=(\mathrm{Id}-\nabla f)
$$

which is just the method of steepest descent without stepsize optimization.

Model Category III: smooth optimization

Replacing the indicator functions in the nonsmooth ADMM $_{1}$ model with squared distance functions yields (L.Sabach, Teboulle, Zatlawey, 2017)

$$
\begin{gathered}
z^{k+1}=\frac{1}{m} \sum_{j=1}^{m}\left(u_{j}^{k}+\frac{1}{\rho_{j}}\left(z^{k}-z^{k-1}\right)\right) \\
u_{j}^{k+1}=P_{C_{j}}\left(u_{j}^{k}+\frac{1}{\rho_{j}}\left(2 z^{k}-z^{k-1}\right)\right) \quad(j=1,2, \ldots, m)
\end{gathered}
$$

which is recognizable as a two-step averaged projections recursion $A v P^{2}$.

Summary and theoretical status

		Global		Local	
	Literature	crit./fixed pts	rates	crit/fixed pts	rates
Model Category I					
CP	L. Tam, Thao 2018	+	0	+	+
CDR	Borwein\& Tam, 2014, 2015	0	-	0	-
CDR λ	L., Martins\& Tam 2018	0	-	0	-
ADMM_{1}	Bolte, Sabach, Teboulle 2018	+	0	+	0
Model Category II					
DR	Hesse\&L. 2013; L., Tam\& Thao 2018	0	-	+	+
DR λ	L.\& Martins 2020,	0	-	+	+
DRAP	Thao 2018	0	-	+	+
Model Category III					
Wirtinger	Candes et al 2014	-	-	+	-
AP/AvP/PG	many	+	+	+	+
AvP^{2}	L., Sabach, Teboulle, Zatlawey 2017	$+$	-	+	-
DyRePr	Beck, Teboulle, Chikishev 2008, L. Burke\& Lyons 2002	-	-	0	-
QNAvP	L. Burke\& Lyons 2002	-	-	+	0

Table: State of the theory for the algorithms in this study. A + indicates that the theory is well developed for settings that cover the cone and sphere problem; a 0 indicates that the theory is developed for certain settings convex, for instance - but that the setting of the cone and sphere problem remains open. A - indicates that the theory remains unexplored.

On Death, Taxes... and Metric Subregularity

A brief detour:
Linear monotonicity
$\left(x_{k}\right)_{k \in \mathbb{N}}$ is said to be linearly monotone with respect to Ω if there is a $c \in[0,1]$ such that

$$
(\forall k \in \mathbb{N}) \quad \operatorname{dist}\left(x_{k+1}, \Omega\right) \leq c \operatorname{dist}\left(x_{k}, \Omega\right)
$$

Compare to Féjer monotonicity:

- $\left(x_{k}\right)_{k \in \mathbb{N}}$ is said to be Féjer monotone with respect to Ω if there is a $c \in[0,1]$ such that

$$
(\forall k \in \mathbb{N})(\forall y \in \Omega) \quad \operatorname{dist}\left(x_{k+1}, y\right) \leq c \operatorname{dist}\left(x_{k}, y\right) .
$$

On Death, Taxes... and Metric Subregularity

Linearly monotone fixed point sequences \Longrightarrow metric subregularity [L.-Teboulle-Thao, 2018]
Let $T: \wedge \rightrightarrows \wedge \subset \mathbb{E}$ with Fix $T \neq \emptyset$. Fix $\delta \in(0, \infty]$. Generate the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ by $x_{k+1} \in T\left(x_{k}\right)$.

- For all $x_{0} \in(($ Fix $T+\delta \mathbb{B}) \cap \Lambda) \backslash$ Fix T the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ is linearly monotone with respect to Fix $T \cap \wedge$ with constant $c \in(0,1)$
$\Phi:=T$ - Id is metrically subregular on (Fix $T+\delta \mathbb{B}$) \backslash Fix T for 0 relative to \wedge with constant $\kappa \leq \frac{1}{1-c}$.
- If, in addition, T is pointwise almost averaged on (Fix $T+\delta \mathbb{B}) \cap \wedge$
$x_{k} \rightarrow \bar{x} \in$ Fix $T \cap \wedge$ R-linearly with rate c.

History of $D R \lambda$

- [L. 2005] DR λ introduced (called RAAR) and global convergence for convex (inconsistent) feasibilty.
- [L. 2008] DR λ shown to be equivalent to Douglas-Rachford applied to the problem

$$
\underset{x \in C_{1}}{\operatorname{minimize}} \frac{\lambda}{2(1-\lambda)} \operatorname{dist}^{2}\left(x, C_{0}\right)
$$

Fixed points characterized ${ }^{1}$; local nonexpansivity and C_{0} convex \Longrightarrow local convergence to Fix $T_{D R \lambda}$

- [Hesse-L. (2013), Phan (2016)] Showed local linear convergence of Douglas-Rachford for super-regular sets with transversal intersection
- [Li-Pong 2016] rediscovered DR λ and studied convergence when
- C_{0} is convex, and at least one of the sets is compact
- C_{0} convex, one of the sets is compact, and both semi-algebraic
- C_{0} is convex, and at least one of the sets is compact, and both semi-algebraic and $C_{0} \cap C_{1} \neq \emptyset$
- [Dao and Phan 2018] showed local R-linear convergence for superregular sets with linearly regular intersection.

A Simple Counterexample

$$
A:=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}=1\right\}, \text { and } B:=\{(0,0)\} .
$$

Fix $T_{D R \lambda}=\emptyset$ for all $\lambda \in(0,1)$.

We assume throughout that Fix $T_{D R \lambda} \neq \emptyset$

$D R \lambda$ in [L-Martins. 2020]

- Sufficient regularity conditions (super-regularity at a distance) to guarantee that $T_{D R \lambda}$ is single-valued at $\bar{x} \in$ Fix $T_{D R \lambda}$ and almost averaged for any given ϵ on a small enough neighborhood of \bar{x}
- Characterization of Fix $T_{D R \lambda}$ when C_{0} and C_{1} are closed and $T_{D R \lambda}$ is single-valued on Fix $T_{D R \lambda}$
- Sufficient regularity conditions (subtransversality of $\left\{C_{0}, C_{1}, C_{0}^{\prime}, C_{1}^{\prime}\right\}$ and a technical condition) to guarantee that $T_{D R \lambda}$ is metrically subregular at $\bar{x} \in \operatorname{Fix} T_{D R \lambda}$
- Sufficient conditions for local linear convergence of $T_{D R \lambda}$ for C_{0} and C_{1} nonconvex and nonintersecting.

$$
\text { Fix } T_{D R \lambda}=\{\bar{x}\}=\left\{(2,0)-\frac{\lambda}{1-\lambda}(1,0)\right\}
$$

Super-regularity at a distance

super-regularity [Lewis-L.-Malick,2009]

Let $\Omega \subseteq \mathbb{R}^{n}$ and $\bar{x} \in \Omega$. The set Ω is said to be super-regular at \bar{x} if it is locally closed at \bar{x} and, for every $\epsilon>0$, there is a $\delta>0$ such that for all $(x, 0) \in \operatorname{gph} N_{\Omega} \cap\left\{\left(\mathbb{B}_{\delta}(\bar{x}), 0\right)\right\}$

$$
\left\langle y^{\prime}-y, x-y\right\rangle \leq \varepsilon\left\|y^{\prime}-y\right\|\|x-y\|, \quad\left(\forall y^{\prime} \in \mathbb{B}_{\delta}(\bar{x})\right)\left(\forall y \in P_{\Omega}\left(y^{\prime}\right)\right) .
$$

ϵ-subregularity [Daniilidis-L.Tam, 2018]
A set Ω is ϵ-subregular relative to Λ at \bar{x} for $(x, v) \in \operatorname{gph} N_{\Omega}$ if it is locally closed at \bar{x} and, there exists an $\epsilon>0$ together with a neighborhood U_{ϵ} of \bar{x}, such that

$$
\left\langle v-\left(y^{\prime}-y\right), y-x\right\rangle \leq \epsilon\left\|v-\left(y^{\prime}-y\right)\right\|\|y-x\| \quad\left(\forall y^{\prime} \in \Lambda \cap U_{\epsilon}\right)\left(\forall y \in P_{\Omega}\left(y^{\prime}\right)\right.
$$

Ω is subregular relative to Λ at \bar{x} for $(x, v) \in \operatorname{gph} N_{\Omega}$ if it is locally closed and for all $\epsilon>0$ there exists U_{ϵ} such that the above holds.

Super-regularity at a distance

ϵ-subregularity [Daniilidis-L.Tam, 2018]
A set Ω is ϵ-subregular relative to Λ at \bar{x} for $(x, v) \in \operatorname{gph} N_{\Omega}$ if it is locally closed at \bar{x} and, there exists an $\epsilon>0$ together with a neighborhood U_{ϵ} of \bar{x}, such that

$$
\left\langle v-\left(y^{\prime}-y\right), y-x\right\rangle \leq \epsilon\left\|v-\left(y^{\prime}-y\right)\right\|\|y-x\| \quad\left(\forall y^{\prime} \in \Lambda \cap U_{\epsilon}\right)\left(\forall y \in P_{\Omega}\left(y^{\prime}\right)\right.
$$

Ω is subregular relative to Λ at \bar{x} for $(x, v) \in$ gph N_{Ω} if it is locally closed and for all $\epsilon>0$ there exists U_{ϵ} such that teh above holds.

Super-regularity at a distance [L.-Martins, 2020]
A set Ω is called ϵ-super-regular at a distance relative to Λ at \bar{x} if it is ϵ-subregular relative to Λ at \bar{x} for all $(x, v) \in V_{\epsilon}$ where

$$
\begin{equation*}
V_{\epsilon}:=\left\{(x, v) \in \operatorname{gph} N_{\Omega}^{\text {prox }} \mid x+v \in U_{\epsilon}, x \in P_{\Omega}(x+v)\right\} . \tag{3}
\end{equation*}
$$

The set Ω is called super-regular at a distance relative to Λ at \bar{x} if it is ϵ-super-regular relative to Λ at \bar{x} for all $\epsilon>0$.

Super-regularity at a distance: remarks

- \bar{x} is not necessarily in Ω
- Super-regularity first instroduced in [Lewis-L.Malick, 2009] only refers to points in Ω
- Super-regularity at a distance \Longrightarrow super-regularity

Super-regularity at a distance \Longrightarrow almost averagedness of projectors

[L.-Martins 2020]
Let U be a neighborhood of $\bar{x} \in \Omega$. Let $\Lambda:=P_{\Omega}^{-1}(\bar{x}) \cap U$. If Ω is ϵ-super-regular at a distance at \bar{x} relative to Λ with constant ϵ on the neighborhood U, then

- If $\epsilon \in[0,1)$, then P_{Ω} is pointwise almost nonexpansive at each $y^{\prime} \in \Lambda$ with violation $\tilde{\epsilon}$ on U for $\tilde{\epsilon}:=4 \epsilon /(1-\epsilon)^{2}$
- If $\epsilon \in[0,1)$, then P_{Ω} is pointwise almost averaged with $\alpha=1 / 2$ at each $y^{\prime} \in \Lambda$ with violation $\widetilde{\epsilon}_{2}$ on \cup for $\widetilde{\epsilon}_{2}:=4 \epsilon(1+\epsilon) /(1-\epsilon)^{2}$
- R_{Ω} is pointwise almost nonexpansive at each $y^{\prime} \in \Lambda$ with violation $\widetilde{\epsilon}_{3}:=8 \epsilon(1+\epsilon) /(1-\epsilon)^{2}$ on U

From these facts we can conclude almost averagedness of $T_{D R \lambda}$ with arbitrarily small violation ϵ.

Metric subregularity of $T_{D R \lambda}$

To show metric subregularity of

$$
T_{D R \lambda}=\left(\frac{\lambda}{2}\left(R_{C_{0}} R_{C_{1}}+\mathrm{Id}\right)+(1-\lambda) P_{C_{1}}\right)
$$

there are two routes:
(a) Compute the coderivative of $T_{D R \lambda}$ and verify that this is injective at $\bar{z} \in \operatorname{Fix} T_{D R \lambda}$, or
(b) Conclude metric subregularity of

$$
T_{\bar{\zeta}}: \mathbb{E}^{4} \rightrightarrows \mathbb{E}^{4}: u \mapsto\left\{\left(u_{1}^{+}, u_{1}^{+}-\bar{\zeta}_{1}, u_{1}^{+}-\bar{\zeta}_{1}-\bar{\zeta}_{2}, u_{1}^{+}+\bar{\zeta}_{4}\right) \mid u_{1}^{+} \in T_{D R \lambda} し\right.
$$

from subtransversality of $\left\{B-\frac{\lambda}{1-\lambda} g, A-\frac{\lambda}{1-\lambda} g, A, B\right\}$ and another technical condition.

We chose path (b).

Geometry of Set Feasibility

Subtransversal collection of sets [Kruger-L.Thao, 18]
Let $\left\{\Omega_{1}, \Omega_{2}, \ldots, \Omega_{m}\right\}$ be a collection of nonempty closed subsets of \mathbb{E} and define $\psi: \mathbb{E}^{m} \rightrightarrows \mathbb{E}^{m}$ by $\psi(x):=P_{\Omega}(\Pi x)-\Pi x$ where $\Omega:=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{m}$, the projection P_{Ω} is with respect to the Euclidean norm on \mathbb{E}^{m} and
$\Pi: x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mapsto\left(x_{2}, x_{3}, \ldots, x_{m}, x_{1}\right)$ is the permutation mapping on the product space \mathbb{E}^{m} for $x_{j} \in \mathbb{E}(j=1,2, \ldots, m)$. Let $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{m}\right) \in \mathbb{E}^{m}$ and $\bar{y} \in \Psi(\bar{x})$. The collection of sets is said to be subtransversal with constant κ relative to $\Lambda \subset \mathbb{E}^{m}$ at \bar{x} for \bar{y} if ψ is metrically subregular at \bar{x} for \bar{y} on some neighborhood U of \bar{x} with constant κ relative to \wedge.

Metric subregularity from subtransversality

[L.Martins, 2020]
Let $\lambda \in(0,1), \bar{x} \in$ Fix $T_{D R \lambda}$ with $T_{D R \lambda}$ being single-valued at \bar{x} and set $g:=P_{B}(\bar{x})-P_{A}\left(P_{B}(\bar{x})\right)$. Furthermore, let $\bar{\zeta} \in \mathcal{Z}(\bar{x}, g)$ and $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}, \bar{u}_{4}\right) \in W_{0}(g)$ satisfy $\bar{\zeta}=\bar{u}-\Pi \bar{u}$ with $\bar{u}_{1}=\bar{x}$. Let $T_{\bar{\zeta}}$ be defined as above and define $\Phi_{\bar{\zeta}}:=T_{\bar{\zeta}}$ - Id. Suppose the following hold:
(i) the collection of sets $\left\{B-\frac{\lambda}{1-\lambda} g, A-\frac{\lambda}{1-\lambda} g, A, B\right\}$ is subtransversal at \bar{u} for $\bar{\zeta}$ relative to $\Lambda \subseteq W(\bar{\zeta})$ with constant κ and neighborhood U of \bar{u};
(ii) there exists a positive constant σ such that

$$
\operatorname{dist}\left(\bar{\zeta}, \Psi_{g}(u)\right) \leq \sigma \operatorname{dist}\left(0, \Phi_{\bar{\zeta}}(u)\right), \quad \forall u \in \Lambda \cap \cup \text { with } u_{1} \in B-\frac{\lambda}{1-\lambda} g .
$$

Then the mapping $\Phi_{\bar{\zeta}}:=T_{\bar{\zeta}}$ - Id is metrically subregular for 0 on U relative to $\wedge \cap \mathcal{N}$ with constant $\bar{\kappa}=\kappa \sigma$, where
$\mathcal{N}:=\left\{z \in \mathbb{E}^{4} \left\lvert\, P_{A}\left(2 z_{4}+\frac{\lambda}{1-\lambda}\right) g=z_{3}\right.\right\}$.

Metric subregularity from subtransversality

Remark
The technical condition (ii) above only appears for inconsistent feasibility.

Harvest time

Local linear convergence of $T_{D R \lambda}$

Under the assumptions discussed above, there exists an $\epsilon^{\prime} \leq \epsilon$ and a neighborhood $U^{\prime} \subset U\left(U^{\prime}=U_{1}^{\prime} \times U_{2}^{\prime} \times U_{3}^{\prime} \times U_{4}^{\prime} \subset \mathbb{E}^{4}\right)$ on which the sequence $\left(u^{k}\right)_{k \in \mathbb{N}}$ generated by $u^{k+1} \in T_{\bar{\zeta}} u^{k}$ seeded by a point $u^{0} \in W(\bar{\zeta}) \cap U^{\prime}$ with $u_{1}^{0} \in U_{1}^{\prime} \cap\left(B-\frac{\lambda}{1-\lambda} g\right)$ satisfies

$$
\operatorname{dist}\left(u^{k+1}, \text { Fix } T_{\bar{\zeta}} \cap S\right) \leq c \operatorname{dist}\left(u^{k}, S\right) \quad(\forall k \in \mathbb{N})
$$

for

$$
c:=\sqrt{1+\epsilon^{\prime}-\frac{1}{2 \bar{\kappa}^{2}}}<1
$$

where $\bar{\kappa}=\kappa \sigma$ with κ and σ. Consequently, dist $\left(u^{k}, \tilde{u}\right) \rightarrow 0$ for some $\tilde{u} \in \operatorname{Fix} T_{\bar{\zeta}} \cap S$, and hence

$$
\operatorname{dist}\left(u_{1}^{k}, \tilde{u}_{1}\right) \rightarrow 0
$$

at least R-linearly with rate $c<1$. If Fix $T_{D R \lambda} \cap S_{1}$ is a singleton, then convergence is Q -linear.

