
STRUCTURED (IN)FEASIBILITY:
NONMONOTONE OPERATOR SPLITTING

IN NONLINEAR SPACES

Russell Luke

Universität Göttingen

Optimization: Theory, Algorithms, Applications Lecture Series
Fields Institute and University of Waterloo

SFB1456



Outline I

Introduction

Two Examples
Problem #1: Linear systems of equations
Problem #2: inconsistent, nonconvex feasibility

Proximal Splitting in Nonlinear Spaces
Preliminaries
Elements of Fixed Point Theory
Quantifying Convergence

References

Appendix
Appendix I: Model Categories
Appendix II: necessity of metric subregularity
Appendix III: DRλ



Model Problems

Systems of Linear Inequalities
Given A : Rn → Rm and b ∈ Rm find x ∈ Rn so that

Ax ≤ b

The Cone and Sphere Problem:
Find a point nearest (in some sense) to a cone and to spheres in the
image of affine transformations.



Model Problems

Find a point x closest, in some sense, to sets Cj (j = 1, 2, . . . ,m).

Systems of Linear Inequalities
Given the vectors aj ∈ Rn (j = 1, 2, . . . ,m) and the scalars bj ∈ R define
Cj := {x | ajx ≤ bj }

Cone and Sphere
Given affine mappings Fj :

(
Rd)n →

(
Rd)n

(j = 1, 2, . . . ,m) with
Fj (z) = ẑ =

(
ẑ1, ẑ2, . . . , ẑn

)
for ẑi ∈ Rd . Seek vectors satisfying

measurement/data given by

Cj :=
{

z ∈
(
Rd
)n ∣∣ ∥∥(Fj (z))i

∥∥ = bij , ∀ i = 1, 2, . . . , n
}
.

Qualitative constraints: support, nonnegativity, sparsity, symmetry modeled
with the cone C0



Model Categories

I Feasibility:
Find x∗ ∈ ∩m

j=0Cj

II Product Space Formulations

Find X ∗ ∈ D ∩ (C0 × C1 × · · · × Cm)

where D =
{

X = (x1, x2, . . . , xm)
∣∣ xi = xj ∈ X

}
.

III Smooth Optimization

minimize
x∈X

m∑
j=0

dist2(x ,Cj )

IV Constrained Optimization

minimize
x∈X

f (x)

subject to x ∈ Ω



Algorithms
Let

ιΩ(x) :=

{
0 when x ∈ Ω ⊂ X
+∞ else,

minimize
x∈X

f (x)

subject to x ∈ Ω
⇐⇒ minimize

x∈X
f (x) + ιΩ(x)

↓
solve 0 ∈ ∂ (f (x) + ιΩ(x))

↓
Find x ∈ T (x)

↓
xk+1∈ T (xk )

Main question: starting with the fixed point iteration, when can one follow the
implications upward?
Answer #1: when f and Ω are convex and X is a linear space.
More interesting cases: when f and/or Ω are non-convex and/or X is a
non-Euclidean space.



Splitting Algorithms

Let (xk )k∈N be generated by the fixed point iteration

xk+1∈T (xk )

or
xk+1∈Tα(xk ) := ((1− α) Id⊕αT ) (xk )

where T : C ⇒ C ⊂ X is a composition/average of resolvents∗

(implicit steps) and descent mappings∗ (explicit steps) with Fix T 6= ∅:
for example

T := (α1r ⊕ (1− α1) Id) ◦ (α2g ⊕ (1− α2) Id).

* for instance, g = −∇f (descent) and r = (Id +∇f )−1 (resolvent)
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Problem #1: Inconsistent convex feasibility

Linear Systems of Equations
Given A ∈ Rm×n and bj ∈ Rm solve

Ax = b

⇐⇒ x ∈
⋂

j=1,2,...,m

Lj

where Lj =
{

y
∣∣ 〈aj , y

〉
= bj

}

Cyclic Projections

xk+1 = PL1PL2 · · ·PLm xk
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Problem #1

Linear Systems of Equations
Given A ∈ Rm×n and bj ∈ Rm find

x ∈ L :=
⋂

j=1,2,...,m

Lj 6= ∅ =⇒ Cyclic Projections:

where Lj =
{

y
∣∣ 〈aj , y

〉
= bj

}
xk+1 = PL1PL2 · · ·PLm xk

Convergence Theory
If A is full rank then cyclic projections converges either finitely or
linearly to some x ∈ L from any starting point.
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Problem #1

Linear Systems of Equations
Given A ∈ Rm×n and bj ∈ Rm find

x ∈ L :=
⋂

j=1,2,...,m

Lj =⇒ Cyclic Projections with errors:

where Lj =
{

y
∣∣ 〈aj , y

〉
= bj

}
xk+1 = PL1PL2 · · ·PLm xk + εk

Convergence Theory
If A is full rank then cyclic projections with vanishing errors converges.



Problem #1

Linear Systems of Equations
Given A ∈ Rm×n and bj ∈ Rm find

x ∈ L :=
⋂

j=1,2,...,m

Lj =⇒ Cyclic Projections with errors:

where Lj =
{

y
∣∣ 〈aj , y

〉
= bj

}
xk+1 = PL1PL2 · · ·PLm xk + εk

Convergence Theory
If A is full rank then cyclic projections with vanishing errors converges.



Problem #1

Does not explain:

m = 50,n = 60



Problem #2: inconsistent, nonconvex feasibility
Coherent Diffraction Imaging

F1 :
(
R2
)128

→
(
R2
)128

(Fresnel transform)

F1(z) = ẑ for ẑ ∈ R2×128

define

C1 :=

{
z ∈

(
R2
)128 ∣∣ ∥∥(F1(z))i

∥∥ = bi , ∀ i = 1, 2, . . . , 128
}

C0 = (R+ × {0})128

Most efficient numerical methods: xk+1 ∈ T∗xk where

TCP := PC0 PC1

TDR := 1
2

(
(2PC0 + Id) ◦ (2PC1 + Id) + Id

)
TDRλ := λ

2

(
(2PC0 + Id) ◦ (2PC1 + Id) + Id

)
+ (1− λ)PC1



Problem #2

CP [L.Tam& Thao, 2018]



Problem #2

CP [L.Tam& Thao, 2018] DR



Problem #2

Relaxed Douglas-Rachford

CP [L.Tam& Thao, 2018] DR DRλ[L.Martins, 2020]



Goals

I When does {y |0 ∈ ∂ (f (y) + ιΩ(y))} = argmin x∈Ω f?
I How do you calculate ∂ (f (y) + ιΩ(y))?
I How do you calculate [∂ (f (·) + ιΩ(·))]−1(0)?

I How do you construct T to find x ∈ {y |0 ∈ ∂ (f (y) + ιΩ(y))}?
I When does Fix T ∼ {x |0 ∈ ∂ (f (x) + ιΩ(x))}?
I When does the sequence defined by xk+1 ∈ Txk converge to a

point x ∈ Fix T ?
I How fast does xk → x ∈ Fix T ?
I At iteration K , what is d(xK ,Fix T )?
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p-uniformly convex spaces

p-uniformly convex metric spaces
Let p ∈ (1,∞). A metric space (G,d) is p-uniformly convex with
constant c > 0 whenever it is uniquely geodesic, and at any
x , y , z ∈ G

(∀t ∈ [0,1]) d(z, (1−t)x⊕ty)p ≤ (1−t)d(z, x)p+td(z, y)p− c
2 t(1−t)d(x , y)p.



Distance and Projectors

Distance and projector
Let Ω be a nonempty subset of X. Then

distΩ : X→ R : x 7→ inf
y∈X

dist(x , y) + ιΩ(y)

is the distance function of the set Ω and

PΩ : X⇒ X : x 7→ {y ∈ Ω | distΩ(x) = dist(x , y)}

is the corresponding (metric) projector. An element y ∈ PΩ(x) is
called a (metric) projection.
The inverse projector P−1

Ω is defined by

P−1
Ω (y) := {x ∈ X |PΩ(x) 3 y } .



Projectors

Nice properties
Let C be a nonempty closed subset of (G,d), a p-uniformly convex
space. If C is convex, then

(i) PC is pointwise α-firmly nonexpansive (defined later) at points in
C and

(ii) PC(x) is a singleton, for every x ∈ G.



Projectors

Projector onto a sphere
Let z ∈ E and ρ ∈ R++. Set Sρ(z) := {x | ‖x − z‖ = ρ}. Then

(∀x ∈ E) PSρ(z)(x) =

{
ρ x−z
‖x−z‖ + z, if x 6= z;

Sρ(z), otherwise.

while
P−1
Sρ(z)(y) = {x | x = ρ (y − z) + z, for ρ ≥ 0}

(i) PSρ(z) is neither pointwise α-firmly nonexpansive
(ii) nor everywhere a singleton



Proximal Mappings

p-prox mappings
In a complete p-uniformly convex space the p-proximal mapping of a
proper and lower semicontinuous function f is defined by

proxp
f ,λ(x) := argmin y∈G f (y) +

1
pλp−1 d(y , x)p (λ > 0).

Example: projectors
For

ιΩ(x) :=

{
0 when x ∈ Ω ⊂ G
+∞ else,

then
proxp

ιΩ
= PΩ(x).



Multi-mappings
Set-valued mappings
A set- or multi-valued mapping T from X to the set of subsets of Y ,
2Y , is denoted T : X ⇒ Y . The inverse of a multi-valued mapping is
defined by T−1(y) = {x |T (x) 3 y }. The domain is the set
dom T := {x |T (x) 6= ∅} and the range is
range T := {y | ∃ x ∈ X with y ∈ T (x)}. T is said to be closed-valued
at x when T (x) is closed.

Fixed points of set-valued mappings
The set of fixed points of a set-valued mapping T : X ⇒ X is defined
by

{x ∈ X | x ∈ T (x)} .



Elements of fixed point theory

Pointwise almost nonexpansive mappings
Let (G,d) be a metric space and D ⊂ G. The mapping T : D ⇒ G is
said to be pointwise almost nonexpansive at x0 ∈ D on D if there
exists a constant ε ∈ [0,1) such that

d(x+, x+
0 ) ≤ p

√
1 + ε d(x , x0)

∀ x+ ∈ Tx and ∀x+
0 ∈ Tx0 whenever x ∈ D.

When the above inequality holds for all x0 ∈ D then F is said to be
almost nonexpansive on D. If ε = 0 in (1) the qualifier “almost” is
dropped.

Single-valuedness of pointwise almost nonexpansive mappings
Any mapping T : D ⇒ G (D ⊂ G) that is pointwise almost
nonexpansive at y ∈ Fix T is single-valued there.



Elements of fixed point theory

Pointwise almost α-firmly nonexpansive mappings
Let (G,d) be a p-uniformly convex metric space with constant c
(p ∈ (1,∞), c > 0) and D ⊂ G. The mapping T is said to be pointwise
almost α-firmly nonexpansive at x0 ∈ D on D whenever there exist
constants α ∈ (0,1) and ε ∈ [0,1) such that

dp(x+, x+
0 ) ≤ (1 + ε)dp(x , x0)− 1− α

α
ψ

(p,c)
T (x , x0)

where ψ
(p,c)
T (x , x0) := c

4

(
dp(x+, x) + dp(x+

0 , x0)− dp(x+, x0)

+dp(x , x0) + dp(x+, x+
0 )− dp(x , x+

0 )
)

∀ x+ ∈ Tx and ∀x+
0 ∈ Tx0 ∀x ∈ D. (1)

When the above inequality holds for all x0 ∈ D then T is said to be
almost α-firmly nonexpansive on D. If ε = 0 in (1), the qualifier
“almost” is dropped.

We call ψ(p,c)
T the transport discrepancy.



Elements of fixed point theory

On Euclidean spaces
I proxf for f convex is α-firmly nonexpansive everywhere with
α = 1/2 - no violation, not pointwise

I Projectors onto convex sets: α-firmly nonexpansive everywhere
with α = 1/2 - no violation, not pointwise

I Projectors onto smooth manifolds: almost α-firmly nonexpansive
on neighborhoods, with violation arbitrarily small for small
enough neighborhoods [L., Tam, Thao, 2018]

I T := Id−λ∇f : steepest gradient descent with step length λ is
almost α-firmly nonexpansive with violation arbitrarily small for
small enough steps [L., Tam, Thao, 2018]



Elements of fixed point theory

On p-uniformly convex spaces
I proxf for f convex is pointwise almost α-firmly nonexpansive at

fixed points with constant and violation dependent on the
curvature constant c of the space [Berdellima, Lauster,L., 2021]

I Projectors onto convex sets: pointwise α-firmly nonexpansive at
fixed points with α = 1/2 [Berdellima, Lauster,L., 2021]

I T := β Id⊕(1− β) proxp
f ,λ: nonlinear gradient descent with step

length λ is pointwise almost α-firmly nonexpansive with constant
and violation dependent on β and the curvature constant c
[Lauster, L. 2021]



Elements of fixed point theory

Calculus
When fixed points coincide, convex combinations and compositions
of almost α-firmly nonexpansive mappings are almost α-firmly
nonexpansive. In CAT(0) spaces the operators need not have
common fixed points.

I This means that we can apply these ideas to all the leading
algorithms for the problems of interest.

I In convex settings, pointwise α-firm nonexpansiveness at fixed
points is all that is needed to prove convergence of fixed point
iterations.



Inverse Regularity

Metric regularity on a set
Let (G1,d1) and (G2,d2) be metric spaces and let T : G1 ⇒ G2 ,

U1 ⊂ G1, U2 ⊂ G2. The mapping T is called metrically regular on
U1 × U2 with gauge ρ whenever

d1
(
x , T −1(y)

)
≤ ρ(d2 (y , T (x)))

holds for all x ∈ U1 and y ∈ U2 with 0 < ρ(d2 (y , T (x))) where
T −1(y) := {z | T (z) = y }. When the set U2 consists of a single point,
U2 = {ȳ}, then T is said to be metrically subregular for ȳ on U1 with
gauge ρ.

[Aze (06), Klatte&Kummer (09), Ioffe (11, 13), Ngai& Théra (04, 08)],
Dontchev&Rockafellar (14), Kruger, L. &Thao (16)]



Generic Quantitative Convergence [L., Tam, &
Thao 2018; Berdellima, Lauster& L. 2020/21]

From the transport discrepancy ψ(p,c)
T and a subset S ⊂ G we construct the

following surrogate mapping TS : G→ R+ ∪ {+∞} by

TS(x) :=

(
inf
y∈S

ψ
(p,c)
T (x , y)

)1/p

.

Basic Result
Let (G, d) be a p-uniformly convex space, let T : D ⇒ D for D ⊆ G and T (D)
boundedly compact, and let Fix T be nonempty. Assume

(i) T is pointwise almost α-firmly nonexpansive at all points y ∈ S = Fix T
with the same constant α on D and arbitrarily small violation on small
enough neighborhoods of Fix T ;

(ii) TS is metrically subregular for 0 on D with gauge ρ, that is,

d(x , T −1
S (0)) 6 ρ(|TS(x)|), ∀x ∈ D. (2)

Then for any x0 ∈ D close enough to Fix T , the sequence (xk )k∈N defined by
xk+1 := Txk converges in the metric d to some x∗ ∈ Fix T with rate
characterized by ρ and the violation ε.



Error bound
In particular, if (ii) holds with the constant κ satisfying√

1−α
(1+ε)α ≤ κ <

√
1−α
εα , then for all x0 ∈ (O ∩ D) \ (Fix T ) the iteration

xk+1 ∈ T (xk )→ x ∈ Fix T R-linearly with rate

c :=

(
1 + ε− 1− α

ακ2

)1/2

< 1.

In other words, when we stop our algorithm at iteration k we can
provide an upper bound on the distance of xk to the model solution
x∗ ∈ S.

Proof sketch
Start with the inequality defining metric subregularity, (2), and insert
(1), the defining inequality from assumption (i), to get convergence to
zero of the distance of the iterates to Fix T . To get convergence of the
iterates to a point x∗ ∈ Fix T , show that it is a Cauchy sequence. 2



Verifying condition (i) is a masters thesis.

(ii) is a PhD dissertation, but necessary for convergence with rate
characterized by ρ [L, Teboulle, Thao, 2019; Berdellima, Lauster, L,
2021]



Back to Example #2: inconsistent nonconvex
feasibility

Explains inconsistent (realistic) phase retrieval

CP [L.Tam& Thao, 2018] DR DRλ[L.Martins, 2020]



Stochastic Setting:
The above results can be lifted to a stochastic setting:
I (G,d) is a Hilbert space
I D ⊂ G is compact
I I is an index set (possibly uncountable)
I Ti : D → D is continuous for all i ∈ I
I P is the Markov operator with transition kernel p where

(x ∈ D)(A ∈ B(D)) p(x ,A) := P(Tξx ∈ A)

I Define T : P(D)→ R+ ∪ {+∞} by

T (µ) := inf
π∈invP

inf
γ∈C∗(µ,π)

(∫
D×D

Eξ
[
ψTξ

(x , y)
]
γ(dx ,dy)

)1/2

.

Random Function Iterations:
Given X 0 ∼ µ0

X k+1 = Tξk X k

Markov Chain:
Given µ0

µk+1 = µ0Pk ?→ invP



Stochastic Setting [Hermer, Sturm, L. arXiv 2020]
Linear/geometric convergence of Markov Chains
Suppose

(a) Tξ is almost α-firmly nonexpansive in expectation with constant
α ∈ (0, 1) on D:

Eξ
[
d2(Tξ(x),Tξ(y))

]
≤ (1+ε)d2(x , y)− 1−α

α
Eξ
[
ψTξ

(x , y)
]
, ∀x , y ∈ D;

(b) T is metrically subregular with respect to W2 for 0 on P2(D) with
constant κ:

dW2 (µ, invP) ≤ κ|T (µ)| ∀µ ∈P2(D).

where κ ≥
√

(1− α)/(α(1 + ε))

Then for any µ0 ∈P2(D) the sequence (µk )k∈N converges R-linearly to
some πµ0 ∈ invP:

dW2 (µk+1, invP) ≤ cdW2 (µk , invP)

where c :=
√

1 + ε−
( 1−α
κ2α

)
< 1. If invP consists of a single point then

convergence is Q-linear (geometric).



Back to Example #1

Explains iterative methods for linear systems of equations
Given A ∈ Rm×n and bj ∈ Rm find

x ∈ L :=
⋂

j=1,2,...,m

Lj =⇒ Cyclic Projections:

where Lj =
{

y
∣∣ 〈aj , y

〉
= bj

}
xk+1 = PL1PL2 · · ·PLm xk

m = 50,n = 60



TO DO
I In p-uniformly convex spaces: the prox mappings are assumed

to have common fixed points for the calculus of α-firmly
nonexpansive mappings to hold. Must determine the calculus for
the inconsistent case

I In p-uniformly convex spaces: when does metric subregularity
come “for free”?

I In p-uniformly convex spaces: algorithms on manifolds/nonlinear
spaces (e.g. angle-resolved photon emission spectroscopy,
femtosecond X-ray tomography...)

I In p-uniformly convex spaces and Wasserstein spaces:
T : D ⇒ D ? (can only handle truly multi-valued mappings in
Euclidean spaces)

I In p-uniformly convex spaces and Wasserstein spaces: when
does Fix T correspond to critical points?

I In p-uniformly convex spaces and Wasserstein spaces: how do
you characterize critical points?

I In Wasserstein spaces: new algorithms and methods for MCMC
I In Wasserstein spaces: randomized algorithms for large-scale,

distributed optimization (e.g. femtosecond X-ray tomography,
machine learning)
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Model Category I: feasibility

Find x∗ ∈ ∩m
j=0Cj

I cyclic projectors: T := PC0PC1 · · ·PCm

I Douglas-Rachford (Lions 1979):
TDR := 1

2 (RC0RC1 + Id) where RC := 2PC − Id

I Relaxed Dougals-Rachford, DRλ (L. 2005, L. Martins 2020):
TDRλ := λ

2 (RC0RC1 + Id) + (1− λ)PB

I Douglas-Rachford-Alternating-Projectors (DRAP, Thao Nguyen
2019)

TDRAP := PC0 ((1 + λ) PC1 − λ Id)− λ (PC1 Id− Id)

* Algorithms in red only work for two sets.
* The sets Cj are nonconvex so the projectors and fixed point

mappings T∗ are set-valued.



Model Category I: feasibility

Multi-set extensions of Douglas-Rachford:
I Cyclic Douglas-Rachford (Tam& Borwein 2014):

TCDR = T 01
DR ◦ T 12

DR ◦ · · · ◦ T m0
DR

I Anchored Cyclic Douglas-Rachford (Bauschke,Noll& Phan
2015):

TCDR = T 01
DR ◦ T 02

DR ◦ · · · ◦ T 0m
DR

I Cyclic DRλ (L., Martins, Tam 2018, L. Sabach, Teboulle 2019):

T = T 01
DRλ · T 12

DRλ · · · · · T m0
DRλ.

Another motivation for TCDR was to deal with inconsistency:

∩m
j=0Cj = ∅



Model Category I: feasibility

Before moving to the next model category, brief mention of alternating
directions method of multipliers (ADMM1, Glowinski& Marroco 1975)
via nonsmooth constrained optimization and the the nonsmooth
augmented Lagrangian:

min
x,zj∈(Rd )n

ιC0 (x) +
m∑

j=1

ιCj

(
zj
) ∣∣ zj = x , j = 1,2, . . . ,m

 ,

L̃η
(
x , zj , vj

)
:= ιC0 (x) +

m∑
j=1

(
ιCj

(
zj
)

+
〈
vj , x − zj

〉
+
η

2
∥∥x − zj

∥∥2
)
,

where

ιC(x) :=

{
0 wherever x ∈ C
+∞ else

.



Model Category II: product space formulations

Find Z ∗ ∈ C ∩ D,

where Z ∗ = (z∗0 , z
∗
1 , . . . , z

∗
m), C := C0 × C1 × · · · × Cm and D is the

diagonal set of
(
Rd
)n(m+1)

which is defined by{
Z = (z, z, . . . , z) : z ∈

(
Rd
)n
}

.
Two important features:

(i) the projector onto the set C is easily computed (in parallel):

PC (Z ) = (PC0 (z0) ,PC1 (z1) , . . . ,PCm (zm)) ,

(ii) D is a subspace which also has simple projection given by
PD (Z ) = Z̄ where

Z̄j =
1

m + 1

m∑
j=0

zj .



Model Category II: product space

Find x∗ ∈ ∩m
j=0Cj

I alternating/averaged projectors: TAvP := PDPC = 1
m+1

∑m
j=0 PCj

I projected gradients: TPG := PC

(
Id−λ∇ dist2

D

)
= PCPD (λ = 1/2)

I Relaxed Dougals-Rachford, DRλ:
TDRλ := λ

2 (RDRC + Id) + (1− λ)PC

I Douglas-Rachford-Alternating-Projectors (DRAP)

TDRAP := PD ((1 + λ) PC − λ Id)− λ (PC Id− Id)

We see from projected gradients that this strategy is a hidden way of
smoothing the feasibility problem...



Model Category III: smooth optimization

minimize
z∈(Rd )n

f (z) := 1
2(m+1)

∑m
j=0 dist2 (z,Cj

)
⇐⇒

minimize
z∈(Rd )n

1
2(m+1)

∑m
j=0

∥∥FPjz − bj
∥∥2

Note that

∇f (z) :=
1

m + 1

m∑
j=0

(
Id−PCj

)
(z) .

So that

TAvP :=
1

m + 1

m∑
j=0

PCj = (Id−∇f ) ,

which is just the method of steepest descent without stepsize
optimization.



Model Category III: smooth optimization

Replacing the indicator functions in the nonsmooth ADMM1 model
with squared distance functions yields (L.Sabach, Teboulle, Zatlawey,
2017)

zk+1 =
1
m

m∑
j=1

(
uk

j +
1
ρj

(
zk − zk−1

))
.

uk+1
j = PCj

(
uk

j +
1
ρj

(
2zk − zk−1

))
(j = 1,2, . . . ,m)

which is recognizable as a two-step averaged projections recursion
AvP2.



Summary and theoretical status

Global Local
Literature crit./fixed pts rates crit/fixed pts rates

Model Category I
CP L. Tam, Thao 2018 + 0 + +

CDR Borwein& Tam, 2014, 2015 0 - 0 -
CDRλ L., Martins& Tam 2018 0 - 0 -

ADMM1 Bolte, Sabach, Teboulle 2018 + 0 + 0
Model Category II

DR Hesse&L. 2013; L., Tam& Thao 2018 0 - + +
DRλ L.& Martins 2020, 0 - + +
DRAP Thao 2018 0 - + +

Model Category III
Wirtinger Candes et al 2014 - - + -

AP/AvP/PG many + + + +

AvP2 L., Sabach, Teboulle, Zatlawey 2017 + - + -
DyRePr Beck, Teboulle, Chikishev 2008, L. Burke& Lyons 2002 - - 0 -
QNAvP L. Burke& Lyons 2002 - - + 0

Table: State of the theory for the algorithms in this study. A + indicates that
the theory is well developed for settings that cover the cone and sphere
problem; a 0 indicates that the theory is developed for certain settings -
convex, for instance - but that the setting of the cone and sphere problem
remains open. A − indicates that the theory remains unexplored.



On Death, Taxes... and Metric Subregularity

A brief detour:

Linear monotonicity
(xk )k∈N is said to be linearly monotone with respect to Ω if there is a
c ∈ [0,1] such that

(∀k ∈ N) dist(xk+1,Ω) ≤ c dist(xk ,Ω).

Compare to Féjer monotonicity:
I (xk )k∈N is said to be Féjer monotone with respect to Ω if there is

a c ∈ [0,1] such that

(∀k ∈ N)(∀y ∈ Ω) dist(xk+1, y) ≤ c dist(xk , y).



On Death, Taxes... and Metric Subregularity

Linearly monotone fixed point sequences =⇒ metric
subregularity [L.-Teboulle-Thao, 2018]
Let T : Λ⇒ Λ ⊂ E with Fix T 6= ∅. Fix δ ∈ (0,∞]. Generate the
sequence (xk )k∈N by xk+1 ∈ T (xk ).
I For all x0 ∈ ((Fix T + δB) ∩ Λ) \ Fix T the sequence (xk )k∈N is

linearly monotone with respect to Fix T ∩ Λ with constant
c ∈ (0,1)
=⇒

Φ := T − Id is metrically subregular on (Fix T + δB) \ Fix T for 0
relative to Λ with constant κ ≤ 1

1−c .
I If, in addition, T is pointwise almost averaged on (Fix T + δB)∩Λ

=⇒
xk → x ∈ Fix T ∩ Λ R-linearly with rate c.



History of DRλ

I [L. 2005] DRλ introduced (called RAAR) and global convergence for
convex (inconsistent) feasibilty.

I [L. 2008] DRλ shown to be equivalent to Douglas-Rachford applied to
the problem

minimize
x∈C1

λ

2(1− λ)
dist2(x ,C0)

Fixed points characterized1; local nonexpansivity and C0 convex =⇒
local convergence to Fix TDRλ

I [Hesse-L. (2013), Phan (2016)] Showed local linear convergence of
Douglas-Rachford for super-regular sets with transversal intersection

I [Li-Pong 2016] rediscovered DRλ and studied convergence when
I C0 is convex, and at least one of the sets is compact
I C0 convex, one of the sets is compact, and both semi-algebraic
I C0 is convex, and at least one of the sets is compact, and both

semi-algebraic and C0 ∩ C1 6= ∅
I [Dao and Phan 2018] showed local R-linear convergence for

superregular sets with linearly regular intersection.

1modulo a slight error



A Simple Counterexample

A :=
{

x = (x1, x2) ∈ R2
∣∣ x2

1 + x2
2 = 1

}
, and B := {(0,0)} .

Fix TDRλ = ∅ for all λ ∈ (0,1).

We assume throughout that Fix TDRλ 6= ∅



DRλ in [L-Martins. 2020]
I Sufficient regularity conditions (super-regularity at a distance) to

guarantee that TDRλ is single-valued at x ∈ Fix TDRλ and almost
averaged for any given ε on a small enough neighborhood of x

I Characterization of Fix TDRλ when C0 and C1 are closed and
TDRλ is single-valued on Fix TDRλ

I Sufficient regularity conditions (subtransversality of
{C0,C1,C′0,C

′
1} and a technical condition) to guarantee that

TDRλ is metrically subregular at x ∈ Fix TDRλ

I Sufficient conditions for local linear convergence of TDRλ for C0
and C1 nonconvex and nonintersecting.

Fix TDRλ = {x} =

{
(2,0)− λ

1− λ
(1,0)

}



Super-regularity at a distance

super-regularity [Lewis-L.-Malick,2009]
Let Ω ⊆ Rn and x ∈ Ω. The set Ω is said to be super-regular at x if it
is locally closed at x and, for every ε > 0, there is a δ > 0 such that
for all (x ,0) ∈ gph NΩ ∩ {(Bδ(x),0)}

〈y ′ − y , x − y〉 ≤ ε ||y ′ − y ||‖x − y‖, (∀y ′ ∈ Bδ(x)) (∀y ∈ PΩ(y ′)) .

ε-subregularity [Daniilidis-L.Tam, 2018]
A set Ω is ε-subregular relative to Λ at x for (x , v) ∈ gph NΩ if it is
locally closed at x and, there exists an ε > 0 together with a
neighborhood Uε of x , such that

〈v − (y ′ − y), y − x〉 ≤ ε ‖v − (y ′ − y)‖ ‖y − x‖ (∀y ′ ∈ Λ∩Uε)(∀y ∈ PΩ(y ′)).

Ω is subregular relative to Λ at x for (x , v) ∈ gph NΩ if it is locally
closed and for all ε > 0 there exists Uε such that the above holds.



Super-regularity at a distance

ε-subregularity [Daniilidis-L.Tam, 2018]
A set Ω is ε-subregular relative to Λ at x for (x , v) ∈ gph NΩ if it is
locally closed at x and, there exists an ε > 0 together with a
neighborhood Uε of x , such that

〈v − (y ′ − y), y − x〉 ≤ ε ‖v − (y ′ − y)‖ ‖y − x‖ (∀y ′ ∈ Λ∩Uε)(∀y ∈ PΩ(y ′)).

Ω is subregular relative to Λ at x for (x , v) ∈ gph NΩ if it is locally
closed and for all ε > 0 there exists Uε such that teh above holds.

Super-regularity at a distance [L.-Martins, 2020]
A set Ω is called ε-super-regular at a distance relative to Λ at x if it is
ε-subregular relative to Λ at x for all (x , v) ∈ Vε where

Vε :=
{

(x , v) ∈ gph Nprox
Ω | x + v ∈ Uε, x ∈ PΩ(x + v)

}
. (3)

The set Ω is called super-regular at a distance relative to Λ at x if it is
ε-super-regular relative to Λ at x for all ε > 0.



Super-regularity at a distance: remarks

I x is not necessarily in Ω

I Super-regularity first instroduced in [Lewis-L.Malick, 2009] only
refers to points in Ω

I Super-regularity at a distance =⇒ super-regularity



Super-regularity at a distance =⇒ almost
averagedness of projectors

[L.-Martins 2020]
Let U be a neighborhood of x ∈ Ω. Let Λ := P−1

Ω (x) ∩ U. If Ω is
ε-super-regular at a distance at x relative to Λ with constant ε on the
neighborhood U, then
I If ε ∈ [0,1), then PΩ is pointwise almost nonexpansive at each

y ′ ∈ Λ with violation ε̃ on U for ε̃ := 4ε/ (1− ε)2

I If ε ∈ [0,1), then PΩ is pointwise almost averaged with α = 1/2 at
each y ′ ∈ Λ with violation ε̃2 on U for ε̃2 := 4ε(1 + ε)/ (1− ε)2

I RΩ is pointwise almost nonexpansive at each y ′ ∈ Λ with
violation ε̃3 := 8ε(1 + ε)/(1− ε)2 on U

From these facts we can conclude almost averagedness of TDRλ with
arbitrarily small violation ε.



Metric subregularity of TDRλ
To show metric subregularity of

TDRλ =

(
λ

2
(RC0RC1 + Id) + (1− λ)PC1

)
there are two routes:
(a) Compute the coderivative of TDRλ and verify that this is injective

at z ∈ Fix TDRλ, or
(b) Conclude metric subregularity of

Tζ : E4 ⇒ E4 : u 7→
{(

u+
1 ,u

+
1 − ζ1,u

+
1 − ζ1 − ζ2,u

+
1 + ζ4

) ∣∣ u+
1 ∈ TDRλu1

}
.

from subtransversality of {B − λ
1−λg,A− λ

1−λg,A,B} and
another technical condition.

We chose path (b).



Geometry of Set Feasibility

Subtransversal collection of sets [Kruger-L.Thao, 18]
Let {Ω1,Ω2, . . . ,Ωm} be a collection of nonempty closed subsets of E
and define Ψ : Em ⇒ Em by Ψ(x) := PΩ (Πx)− Πx where
Ω := Ω1 × Ω2 × · · · × Ωm, the projection PΩ is with respect to the
Euclidean norm on Em and
Π : x = (x1, x2, . . . , xm) 7→ (x2, x3, . . . , xm, x1) is the permutation
mapping on the product space Em for xj ∈ E (j = 1,2, . . . ,m). Let
x = (x1, x2, . . . , xm) ∈ Em and y ∈ Ψ(x). The collection of sets is said
to be subtransversal with constant κ relative to Λ ⊂ Em at x for y if Ψ
is metrically subregular at x for y on some neighborhood U of x with
constant κ relative to Λ.



Metric subregularity from subtransversality

[L.Martins, 2020]
Let λ ∈ (0,1), x ∈ Fix TDRλ with TDRλ being single-valued at x and
set g := PB(x)− PA(PB(x)). Furthermore, let ζ ∈ Z (x ,g) and
u = (u1,u2,u3,u4) ∈W0(g) satisfy ζ = u − Πu with u1 = x . Let Tζ be
defined as above and define Φζ := Tζ − Id. Suppose the following
hold:

(i) the collection of sets
{

B − λ
1−λg,A− λ

1−λg,A,B
}

is

subtransversal at u for ζ relative to Λ ⊆W
(
ζ
)

with constant κ
and neighborhood U of u;

(ii) there exists a positive constant σ such that

dist
(
ζ,Ψg(u)

)
≤ σ dist

(
0,Φζ(u)

)
, ∀u ∈ Λ∩U with u1 ∈ B− λ

1−λg.

Then the mapping Φζ := Tζ − Id is metrically subregular for 0 on U
relative to Λ ∩N with constant κ̄ = κσ, where
N :=

{
z ∈ E4

∣∣∣PA(2z4 + λ
1−λ )g = z3

}
.



Metric subregularity from subtransversality

Remark
The technical condition (ii) above only appears for inconsistent
feasibility.



Harvest time

Local linear convergence of TDRλ

Under the assumptions discussed above, there exists an ε′ ≤ ε and a
neighborhood U ′ ⊂ U (U ′ = U ′1 ×U ′2 ×U ′3 ×U ′4 ⊂ E4) on which the sequence(
uk)

k∈N generated by uk+1 ∈ Tζu
k seeded by a point u0 ∈ W

(
ζ
)
∩ U ′ with

u0
1 ∈ U ′1 ∩

(
B − λ

1−λg
)

satisfies

dist
(

uk+1,Fix Tζ ∩ S
)
≤ c dist

(
uk ,S

)
(∀k ∈ N)

for

c :=

√
1 + ε′ − 1

2κ̄2 < 1

where κ̄ = κσ with κ and σ. Consequently, dist
(
uk , ũ

)
→ 0 for some

ũ ∈ Fix Tζ ∩ S, and hence

dist
(

uk
1 , ũ1

)
→ 0

at least R-linearly with rate c < 1. If Fix TDRλ ∩ S1 is a singleton, then
convergence is Q-linear.
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