Phase Retrieval for Wide Band Signals

Philippe Jaming ${ }^{1}$, Karim Kellay ${ }^{1}$, Rolando Perez ${ }^{2}$

1 Institut de Mathématiques de Bordeaux, Université de Bordeaux
2 Institute of Mathematics, University of the Philippines Diliman

Fields Institute's Focus Program on Analytic Function Spaces and their Applications

21 September 2021

The Phase Retrieval Problem

The phase retrieval problem refers to the recovery of the phase of a function f using given data on its magnitude $|f|$ and a priori assumptions on f.
physical quantity $:\left\{\begin{array}{l}\text { magnitude } \longrightarrow \text { easily obtainable } \\ \text { phase } \longrightarrow \text { difficult to measure }\end{array}\right.$

Phase Retrieval for Band-limited Signals

Recall that a function $f \in L^{2}(\mathbb{R})$ is said to be band-limited if f has a compactly-supported Fourier transform.

Phase Retrieval Problem for Band-limited Functions

Given a band-limited function $f \in L^{2}(\mathbb{R})$, find all band-limited functions $g \in L^{2}(\mathbb{R})$ such that

$$
|f(x)|=|g(x)|, \quad x \in \mathbb{R}
$$

This problem was independently solved by Akutowicz (1956-1957), Walther (1963), and Hofstetter (1964).

Sketch of the Proof

- Use the Paley-Wiener Theorem which states that f and g extend into entire functions of exponential type, i.e. $|f(z)|,|g(z)| \lesssim e^{a|z|}, z \in \mathbb{C}$. Thus,

$$
|f(x)|=|g(x)|, \quad x \in \mathbb{R}
$$

is then equivalent to

$$
f(z) \overline{f(\bar{z})}=g(z) \overline{g(\bar{z})}, \quad z \in \mathbb{C}
$$

- Use the Hadamard Factorization Theorem which states that holomorphic functions of exponential type are essentially characterized by their zeros.

$$
f(z)=c e^{\alpha z} z^{m} \prod_{k \in \mathbb{N}} \underbrace{\left(1-\frac{z}{z_{k}}\right) e^{z / z_{k}}}_{\text {canonical factors }}, \quad z \in \mathbb{C}
$$

Zero-flipping

- To reconstruct g, one thus changes arbitrarily many zeroes of f into their complex conjugates in the Hadamard factorization of g and this is called zero flipping.

$Z(f)$ (zero set of f)

$$
Z(g)=A \cup \overline{(Z(f) \backslash A)}
$$

Extension

McDonald (2004) extended Walther's proof to functions that have Fourier transforms with very fast decrease at infinity, i.e. exponential decay condition of the form

$$
|\hat{f}(\xi)|,|\hat{g}(\xi)| \lesssim \exp \left(-c|\xi|^{\alpha}\right), \quad c>0 \text { and } \alpha>1
$$

but breaks down at $\alpha=1$.

What happens to this phase retrieval problem when $\alpha=1$?

When $\alpha=1$, the functions f and g only extend holomorphically to a horizontal strip

$$
S_{c}=\{z \in \mathbb{C}:|\operatorname{Im} z|<c\}
$$

Hence, Hadamard factorization cannot be used. Functions with this decay are sometimes called wide band signals.

Phase Retrieval Problem for Wide Band Signals

Given $f \in L^{2}(\mathbb{R})$ with Fourier transform in $L^{2}\left(\mathbb{R}, e^{2 c|x|} \mathrm{d} x\right)$, determine all functions $g \in L^{2}(\mathbb{R})$ with Fourier transform in $L^{2}\left(\mathbb{R}, e^{2 c|x|} d x\right)$, such that

$$
|f(x)|=|g(x)|, \quad x \in \mathbb{R}
$$

Hardy Spaces on the Disc

Recall that the Hardy space on the disc \mathbb{D} denoted by $H^{2}(\mathbb{D})$ is defined as

$$
H^{2}(\mathbb{D})=\left\{F \in \operatorname{Hol}(\mathbb{D}): \sup _{0 \leq r<1} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|F\left(r e^{i \theta}\right)\right|^{2} \mathrm{~d} \theta<\infty\right\} .
$$

Every $F \in H^{2}(\mathbb{D})$ admits a radial limit

$$
F_{*}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} F\left(r e^{i \theta}\right)
$$

for almost every $e^{i \theta} \in \mathbb{T}$.

Inner-Outer Factorization in $H^{2}(\mathbb{D})$

Recall also that every function $F \in H^{2}(\mathbb{D})$ can be uniquely decomposed as

$$
F=e^{i \gamma} B_{F} S_{F} O_{F}
$$

where $e^{i \gamma} \in \mathbb{T}, B_{F}$ is the Blaschke product formed by the zeros of F, S_{F} is a singular inner function, and O_{F} is the outer part of F.

- The Blaschke product is defined as

$$
B_{F}(w)=\prod_{\alpha \in Z(F)} b_{\alpha}(w),
$$

where

$$
b_{\alpha}(w)=\left\{\begin{array}{ll}
w & \text { if } \alpha=0 \\
\frac{\alpha}{|\alpha|} \frac{\alpha-w}{1-\bar{\alpha} w} & \text { if } \alpha \neq 0
\end{array} .\right.
$$

Inner-Outer Factorization in $H^{2}(\mathbb{D})$

- The singular inner part is given by

$$
S_{F}(w)=\exp \left(\int_{\mathbb{T}} \frac{w+e^{i \theta}}{w-e^{i \theta}} \mathrm{~d} v_{F}\left(e^{i \theta}\right)\right),
$$

where v_{F} is a finite positive singular measure (with respect to the Lebesgue measure).

- The outer part is determined by the modulus of the radial limit of F

$$
O_{F}(w)=\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{w+e^{i \theta}}{w-e^{i \theta}} \log \left|F_{\star}\left(e^{i \theta}\right)\right| \mathrm{d} \theta\right)
$$

Hardy Spaces on the Strip

Let $S:=S_{1}$. Consider the bijective conformal mapping $\phi: S \longrightarrow \mathbb{D}$ defined by

$$
\phi(z):=\tanh (\pi z / 4), \quad z \in S
$$

and $W=\pi / \phi^{\prime}$.
The Hardy space on the strip $H_{\tau}^{2}(S)$ can be identified to the natural analogue of the Hardy space on the disc:

$$
H_{\tau}^{2}(S)=\left\{f \in \operatorname{Hol}(S): \sup _{|y|<1} \int_{\mathbb{R}}|f(t+i y)|^{2} \mathrm{~d} t<\infty\right\}
$$

$$
f \in H_{\tau}^{2}(S) \Longleftrightarrow W^{1 / 2} f \circ \phi^{-1} \in H^{2}(\mathbb{D})
$$

Theorem (Paley-Wiener Theorem on the Strip)

Let $f \in L^{2}(\mathbb{R})$. We have $\hat{f} \in L^{2}\left(\mathbb{R}, e^{2|x|} \mathrm{d} x\right)$ if and only iff $\in H_{\tau}^{2}(S)$.

Reduction of the Problem

- We first consider the case $c=1$.
- Then, according to the previous Theorem, f and g extend holomorphically to S and

$$
|f(x)|=|g(x)|, \quad x \in \mathbb{R}
$$

can be written as

$$
f(x) \overline{f(\bar{x})}=g(x) \overline{g(\bar{x})}, \quad x \in \mathbb{R}
$$

and so

$$
f(z) f^{*}(z)=g(z) g^{*}(z), \quad z \in S
$$

where $f^{*}(z)=\overline{f(\bar{z})}$.

Reduction of the Problem

- Multiplying $W^{1 / 2}(z)$ and $\overline{W^{1 / 2}(\bar{z})}$ to both sides of the previous equation, we obtain

$$
\left(W^{1 / 2} f\right)(z) \overline{\left(W^{1 / 2} f\right)(\bar{z})}=\left(W^{1 / 2} g\right)(z) \overline{\left(W^{1 / 2} g\right)(\bar{z})}, \quad z \in S
$$

- Hence, by applying the substitution $z=\phi^{-1}(w)$ and $\bar{z}=\phi^{-1}(\bar{w})$ to the previous equation, we get

$$
F(w) F^{*}(w)=G(w) G^{*}(w), \quad w \in \mathbb{D}
$$

where $F=W^{1 / 2} f \circ \phi^{-1}$ and $G=W^{1 / 2} g \circ \phi^{-1}$ are in $H^{2}(\mathbb{D})$.

Reduction of the Problem

Finally, we are now trying to solve the following problem on the disc:

Reduced Problem on the Disc

Given $F \in H^{2}(\mathbb{D})$, find all $G \in H^{2}(\mathbb{D})$ such that

$$
F(w) F^{*}(w)=G(w) G^{*}(w), \quad w \in \mathbb{D}
$$

i.e., $|F(w)|=|G(w)|$ for $w \in(-1,1)$.

With the previous equation, we have

$$
B_{F} B_{F^{*}}=B_{G} B_{G^{*}}, \quad S_{F} S_{F^{*}}=S_{G} S_{G^{*}}, \quad \text { and } O_{F} O_{F^{*}}=O_{G} O_{G^{*}}
$$

Result on the Disc

Theorem (Jaming, Kellay, \& P. (2020))

Let F be in $H^{2}(\mathbb{D})$ and write $F=e^{i \gamma} B_{F} S_{F} O_{F}$ with $\gamma \in \mathbb{R}$. Then $G \in H^{2}(\mathbb{D})$ such that $|G|=|F|$ on $(-1,1)$ if and only if $G=B_{G} S_{G} O_{G}$ (up to the multiplication by a unimodular constant) where
(1) B_{G} is the Blaschke product associated with the set $A \cup(\overline{Z(F) \backslash A})$ for some $A \subset Z(F)$ (zero-flipping);
(2) S_{G} is the singular inner function associated with the positive singular measure $v_{G}=v_{F}+\rho$, where ρ is an odd real singular measure, i.e.

$$
\mathrm{d} \rho\left(e^{-i \theta}\right)=\mathrm{d}\left(C_{*} \rho\right)\left(e^{i \theta}\right)=-\mathrm{d} \rho\left(e^{i \theta}\right), \quad e^{i \theta} \in \mathbb{T} ; \text { and }
$$

(3) $O_{G}=U O_{F}$ where U is an outer function in the Smirnov class and $U=1 / U^{*}$ on \mathbb{D}.

Back to the Strip

$$
f \in H_{\tau}^{2}(S) \Longleftrightarrow W^{1 / 2} f \circ \phi^{-1} \in H^{2}(\mathbb{D})
$$

- For $F \in H^{2}(\mathbb{D})$, we have the unique inner-outer factorization for $f \in H_{\tau}^{2}(S)$ is given by

$$
f(z)=e^{i \gamma} W(z)^{-1 / 2} B_{F}(\phi(z)) S_{F}(\phi(z)) O_{F}(\phi(z)), \quad z \in S
$$

for some $\gamma \in \mathbb{R}$.
Using this inner-outer factorization in $H_{\tau}^{2}(S)$, we can translate the main result to functions on $H_{\tau}^{2}(S)$.

- Finally, using the Paley-Wiener theorem on the strip, we go back to the initial setting of the problem.

Coupled Phase Retrieval Problems; Uniqueness

Coupled Phase Retrieval Problems: For $f, g \in H_{\tau}^{2}(S)$, consider

$$
|g|=|f|,|T g|=|T f|
$$

where T is some transform.
This additional assumption involving T may either lead to uniqueness, i.e.

$$
g=c f, \quad c \in \mathbb{T}
$$

or at least to the reduction of the set of solutions.

Jaming, Kellay, \& P. (2020): $f, g \in H_{\tau}^{2}(S),|g|=|f|$ on $\mathbb{R}+(? ? ?)$

Additional Constraint	Effect
$\|g-h\|=\|f-h\|$ on \mathbb{R}, h fixed reference	2 solutions
$\|\hat{g}\|=\|\hat{f}\|$ on \mathbb{R}	possible to construct uncountable solutions
$\|D g\|=\|D f\|$ on \mathbb{R}, D derivation operator	2 solutions

Jaming, Kellay, \& P. (2020): $f, g \in H_{\tau}^{2}(S),|g|=|f|$ on $\mathbb{R}+(? ? ?)$

Additional Constraint	Effect
$\|g\|=\|f\|$ on $\left(-e^{i \alpha}+a, e^{i \alpha}+a\right), a \in \mathbb{R}, \alpha \notin \pi \mathrm{Q}$	unique solution

Jaming, Kellay, \& P. (2020): $f, g \in H_{\tau}^{2}(S),|g|=|f|$ on $\mathbb{R}+(? ? ?)$

Additional Constraint	Effect
$\|g\|=\|f\|$ on $\left(-e^{i \alpha}+a, e^{i \alpha}+a\right), a \in \mathbb{R}, \alpha \notin \pi \mathrm{Q}$	unique solution

To show this, we first show a similar result on $H^{2}(\mathbb{D})$:

$$
\begin{gathered}
f, g \in H^{2}(\mathbb{D}) \text { s.t. } \\
|g|=|f| \text { on }(-1,1) \cup e^{i \alpha}(-1,1) \\
\downarrow \\
g=c f, c \in \mathbb{T}
\end{gathered}
$$

MARAMING sALAMAT!

