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The Phase Retrieval Problem

The phase retrieval problem refers to the recovery of the phase of a
function f using given data on its magnitude |f | and a priori assumptions on
f .

physical quantity ∶

{
magnitude ⟶ easily obtainable

phase ⟶ di�cult to measure
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Phase Retrieval for Band-limited Signals

Recall that a function f ∈ L2(ℝ) is said to be band-limited if f has a
compactly-supported Fourier transform.

Phase Retrieval Problem for Band-limited Functions
Given a band-limited function f ∈ L2(ℝ), �nd all band-limited functions
g ∈ L2(ℝ) such that

|f (x)| = |g(x)|, x ∈ ℝ.

This problem was independently solved by Akutowicz (1956-1957),
Walther (1963), and Hofstetter (1964).
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Sketch of the Proof

Use the Paley-Wiener Theorem which states that f and g extend into
entire functions of exponential type, i.e. |f (z)|, |g(z)| ≲ ea|z|, z ∈ ℂ. Thus,

|f (x)| = |g(x)|, x ∈ ℝ

is then equivalent to

f (z)f (z̄) = g(z)g(z̄), z ∈ ℂ.

Use the Hadamard Factorization Theorem which states that
holomorphic functions of exponential type are essentially characterized
by their zeros.

f (z) = ce�zzm ∏
k∈ℕ

(1 −
z
zk)

ez/zk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
canonical factors

, z ∈ ℂ
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Zero-�ipping

To reconstruct g, one thus changes arbitrarily many zeroes of f into
their complex conjugates in the Hadamard factorization of g and this is
called zero �ipping.

A

Z (f ) ⧵ A

Z (f ) (zero set of f )

A

(Z (f ) ⧵ A)

Z (g) = A ∪ (Z (f ) ⧵ A)
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Extension

McDonald (2004) extended Walther’s proof to functions that have Fourier
transforms with very fast decrease at in�nity, i.e. exponential decay
condition of the form

|f̂ (� )|, |ĝ(� )| ≲ exp(−c|� |� ), c > 0 and � > 1

but breaks down at � = 1.

What happens to this phase retrieval problem when � = 1?
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When � = 1, the functions f and g only extend holomorphically to a
horizontal strip

c = {z ∈ ℂ ∶ | Im z| < c}.

Hence, Hadamard factorization cannot be used. Functions with this decay
are sometimes called wide band signals.

Phase Retrieval Problem for Wide Band Signals

Given f ∈ L2(ℝ) with Fourier transform in L2(ℝ, e2c|x| dx), determine all
functions g ∈ L2(ℝ) with Fourier transform in L2(ℝ, e2c|x| dx), such that

|f (x)| = |g(x)|, x ∈ ℝ.
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Hardy Spaces on the Disc

Recall that the Hardy space on the disc D denoted by H 2(D) is de�ned as

H 2(D) =
{
F ∈ Hol(D) ∶ sup

0≤r<1

1
2� ∫

�

−�
|F (rei� )|2 d� < ∞

}
.

Every F ∈ H 2(D) admits a radial limit

F∗(ei� ) = lim
r→1

F (rei� )

for almost every ei� ∈ T.
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Inner-Outer Factorization in H 2(D)

Recall also that every function F ∈ H 2(D) can be uniquely decomposed as

F = eiBFSFOF

where ei ∈ T, BF is the Blaschke product formed by the zeros of F , SF is a
singular inner function, and OF is the outer part of F .

The Blaschke product is de�ned as

BF (w) = ∏
�∈Z (F )

b� (w),

where

b� (w) =
⎧⎪⎪
⎨⎪⎪⎩

w if � = 0
�
|� |

� − w
1 − �̄w

if � ≠ 0
.
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Inner-Outer Factorization in H 2(D)

The singular inner part is given by

SF (w) = exp(∫
T

w + ei�

w − ei�
d�F (ei�)) ,

where �F is a �nite positive singular measure (with respect to the
Lebesgue measure).

The outer part is determined by the modulus of the radial limit of F

OF (w) = exp(
1

2� ∫
�

−�

w + ei�

w − ei�
log |F∗(ei� )| d�) .
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Hardy Spaces on the Strip

Let  ∶= 1. Consider the bijective conformal mapping � ∶  ⟶ D
de�ned by

�(z) ∶= tanh (�z/4) , z ∈ 

and W = �/�′.

The Hardy space on the strip H 2
� () can be identi�ed to the natural analogue

of the Hardy space on the disc:

H 2
� () =

{

f ∈ Hol() ∶ sup
|y|<1

∫
ℝ
|f (t + iy)|2 dt < ∞

}

.

f ∈ H 2
� () ⟺ W 1/2f ◦ �−1 ∈ H 2(D)

Theorem (Paley-Wiener Theorem on the Strip)

Let f ∈ L2(ℝ). We have f̂ ∈ L2(ℝ, e2|x|dx) if and only if f ∈ H 2
� ().
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Reduction of the Problem

We �rst consider the case c = 1.

Then, according to the previous Theorem, f and g extend
holomorphically to  and

|f (x)| = |g(x)|, x ∈ ℝ

can be written as

f (x)f (x̄) = g(x)g(x̄), x ∈ ℝ

and so
f (z)f ∗(z) = g(z)g∗(z), z ∈  ,

where f ∗(z) = f (z̄).

12 / 20



Reduction of the Problem

Multiplying W 1/2(z) and W 1/2(z̄) to both sides of the previous equation,
we obtain

(W 1/2f )(z)(W 1/2f )(z̄) = (W 1/2g)(z)(W 1/2g)(z̄), z ∈  .

Hence, by applying the substitution z = �−1(w) and z̄ = �−1(w̄) to the
previous equation, we get

F (w)F ∗(w) = G(w)G∗(w), w ∈ D

where F = W 1/2f ◦ �−1 and G = W 1/2g ◦ �−1 are in H 2(D).
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Reduction of the Problem

Finally, we are now trying to solve the following problem on the disc:

Reduced Problem on the Disc
Given F ∈ H 2(D), �nd all G ∈ H 2(D) such that

F (w)F ∗(w) = G(w)G∗(w), w ∈ D,

i.e., |F (w)| = |G(w)| for w ∈ (−1, 1).

With the previous equation, we have

BFBF ∗ = BGBG∗ , SFSF ∗ = SGSG∗ , and OFOF ∗ = OGOG∗ .
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Result on the Disc

Theorem (Jaming, Kellay, & P. (2020))

Let F be in H 2(D) and write F = eiBFSFOF with  ∈ ℝ. Then G ∈ H 2(D) such
that |G| = |F | on (−1, 1) if and only if G = BGSGOG (up to the multiplication by
a unimodular constant) where

1 BG is the Blaschke product associated with the set A ∪ (Z (F )⧵A) for some
A ⊂ Z (F ) (zero-�ipping);

2 SG is the singular inner function associated with the positive singular
measure �G = �F + �, where � is an odd real singular measure, i.e.

d�(e−i� ) = d(C∗�)(ei� ) = −d�(ei� ), ei� ∈ T; and

3 OG = UOF where U is an outer function in the Smirnov class and
U = 1/U ∗ on D.
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Back to the Strip

f ∈ H 2
� () ⟺ W 1/2f ◦ �−1 ∈ H 2(D)

For F ∈ H 2(D), we have the unique inner-outer factorization for
f ∈ H 2

� () is given by

f (z) = eiW (z)−1/2BF (�(z))SF (�(z))OF (�(z)), z ∈ 

for some  ∈ ℝ.

Using this inner-outer factorization in H 2
� (), we can translate the main

result to functions on H 2
� ().

Finally, using the Paley-Wiener theorem on the strip, we go back to the
initial setting of the problem.
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Coupled Phase Retrieval Problems; Uniqueness

Coupled Phase Retrieval Problems: For f , g ∈ H 2
� (), consider

|g| = |f |, |Tg| = |Tf |

where T is some transform.

This additional assumption involving T may either lead to uniqueness, i.e.

g = cf , c ∈ T

or at least to the reduction of the set of solutions.
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Jaming, Kellay, & P. (2020): f , g ∈ H 2
� (), |g| = |f | on ℝ + (???)

Additional Constraint E�ect
|g − h| = |f − h| on ℝ, h �xed reference 2 solutions

|ĝ| = |f̂ | on ℝ possible to construct
uncountable solutions

|Dg| = |Df | on ℝ, D derivation operator 2 solutions
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Jaming, Kellay, & P. (2020): f , g ∈ H 2
� (), |g| = |f | on ℝ + (???)

Additional Constraint E�ect
|g| = |f |
on (−ei� + a, ei� + a), a ∈ ℝ, � ∉ �ℚ unique solution


�

i

−i

a
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Jaming, Kellay, & P. (2020): f , g ∈ H 2
� (), |g| = |f | on ℝ + (???)

Additional Constraint E�ect
|g| = |f |
on (−ei� + a, ei� + a), a ∈ ℝ, � ∉ �ℚ unique solution

D
�

i

−i

1−1

To show this, we �rst show a
similar result on H 2(D):

f , g ∈ H 2(D) s.t.
|g| = |f | on (−1, 1) ∪ ei� (−1, 1)

⇓
g = cf , c ∈ T
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