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Problem formulation

A symmetric matrix A ∈ Rn×n is called completely positive if there exists B ∈ Rn×r+ , an
entrywise nonnegative matrix in Rn×r, such that

A = BBT .

Let
CPn ∶= {A ∈ Rn×n ∶ A = BBT where B ∈ Rn×r+ and r ∈ N}

denote the set of n × n completely positive matrices.
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In this talk we will ...

▸ address the nonnegative facrotization of a completely positive matrix by formulating
it as an optimization problem;

▸ propose a first-order optimization algorithm for solving the resulting optimization
problem and investigate its convergence behaviour;

▸ validate and test the theoretical findings in various numerical experiments.
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The value of r

▸ The factorization of a completely positive matrix is never unique (one can “enlarge”
the factor B by adding zero columns).

▸ Dickinson (EJLA, 2010): For the matrix

A ∶=
⎛
⎜
⎝

18 9 9
9 18 9
9 9 18

⎞
⎟
⎠

one has A = BiBTi , i = 1, ...,4, for

B1 ∶=
⎛
⎜
⎝

4 1 1
1 4 1
1 1 4

⎞
⎟
⎠
, B2 ∶=

⎛
⎜
⎝

3 3 0 0
3 0 3 0
3 0 0 3

⎞
⎟
⎠
,

B3 ∶=
⎛
⎜
⎝

3 3 0
3 0 3
0 3 3

⎞
⎟
⎠
, B4 ∶=

⎛
⎜
⎝

−1.2030 2.1337 3.4641
2.4494 0.0250 3.4641
−1.2463 −2.1087 3.4641

⎞
⎟
⎠
.
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cp-rank and cp+-rank
Let A ∈ Rn×n.
▸ The cp-rank of A: cpr (A) ∶= inf {r ∈ N ∶ ∃B ∈ Rn×r+ ,A = BBT }.

▸ The cp+-rank of A: cpr+ (A) ∶= inf {r ∈ N ∶ ∃B ∈ Rn×r++ ,A = BBT }, where Rn×r++

denotes the set of matrices in Rn×r+ with at least one column with positive entries.

▸ We consider on Rn×n the Frobenius inner product and the Frobenius norm defined
for X,Y ∈ Rn×n by

⟨X,Y ⟩ ∶= trace (XTY ) and ∥X∥F ∶=
√

⟨X,X⟩ =
√

trace (XTX), respectively.

The interior of CPn (Dickinson (EJLA, 2010))
▸ int(CPn) = {A ∈ Rn×n ∶ rank(A) = n,A = BBT ,B ∈ Rn×r++ }

Upper bounds for the cp-rank and the cp+-rank (Bomze, Dickinson, Still
(LAA, 2015))

▸ If A ∈ CPn, then cpr (A) ≤ cpn ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n for n ∈ {2,3,4} ,
1
2
n (n + 1) − 4 for n ≥ 5.

▸ If A ∈ int(CPn), then cpr+ (A) ≤ cp+n ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n + 1 for n ∈ {2,3,4} ,
1
2
n (n + 1) − 3 for n ≥ 5.
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The nonnegative factorization of completely positive matrices via projection
onto the orthogonal set Or

▸ In (Groetzner, Dür (LAA, 2020)) the factorization problem has been formulated as a
feasibility problem:
▸ For a given matrix A ∈ Rn×n, let B ∈ Rn×r such that A = BBT .
▸ The aim is

to find a r × r square matrix Q such that Q ∈ P (B) ∩Or,

where
◇ P (B) ∶= {X ∈ Rr×r ∶BX ∈ Rn×r+ } is the polyhedral cone associated to B;
◇ Or ∶= {X ∈ Rr×r ∶XXT = XTX = Ir} is the set of r × r orthogonal matrices.

▸ Notice that, for B1,B2 ∈ Rn×r it holds B1BT1 = B2BT2 if and only if there exists
Q ∈ Or such that B1Q = B2.

The Method of Alternating Projections (Groetzner, Dür (LAA, 2020))
Let A ∈ CPn and r be a positive integer value.
Input: a given B ∈ Rn×r such that A = BBT and a starting point Q0 ∈ Or.

Main iterate:
(∀k ≥ 0)

⎧⎪⎪⎨⎪⎪⎩

Pk ∶= PrP(B) (Qk) ,
Qk+1 ∈ PrOr (Pk) .

(MAP)

Output: Qk+1 ∈ Or such that A = (BQk+1) (BQk+1)T .
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The Modified Method of Alternating Projections - avoids the calculation
of the projection on P (B) (Groetzner, Dür (LAA, 2020))
Let A ∈ CPn and r be a positive integer value.
Input: a given B ∈ Rn×r such that A = BBT and a starting point Q0 ∈ Or.

Main iterate:

(∀k ≥ 0)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Rk ∶= PrRn×r
+

(BQk) ,
P̂k ∶= B+Rk + (Ir −B+B)Qk,
Qk+1 ∈ PrOr (P̂k) .

(ModMAP)

Output: Qk+1 ∈ Or such that A = (BQk+1) (BQk+1)T .

A difference-of-convex approach (Chen, Pong, Tan, Zeng (JOGO, 2020))
Let A ∈ CPn and r be a positive integer value.
Input: a given B ∈ Rn×r such that A = BBT , a fixed stepsize LB > λmax(BTB) and
a starting point Q0 ∈ Or.

Main iterate:

(∀k ≥ 0)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Wk ∶= PrRn×r
+

(BQk) ,

Qk+1 ∈ PrOr (Qk −
1
LB

BT (BQk −Wk)) .
(SpFeasDC)

Output: Qk+1 ∈ Or such that A = (BQk+1) (BQk+1)T .
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▸ One can find a matrix B ∈ Rn×r such that A = BBT :
○ by Cholesky decomposition, in this case B is a lower triangular matrix;
○ by spectral decomposition A = V ΣV T , and then by setting B ∶= V Σ

1
2 .

▸ The projection of a matrix P ∈ Rr×r onto the set Or can be computed via
singular value decomposition

P = UΣV T ,

in a subroutine that needs O(r3) steps. Then

UV T ∈ PrOr (P ) .
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The optimization model

Given a nonzero completely positive matrix A ∈ Rn×n, we consider the optimization
problem

min
X∈Rn×r

E (X) ∶= 1
2
∥A −XXT ∥2

F .

s.t. X ∈ D ∶= Rn×r+ ∩ BF (0,
√

trace (A))
(P)

▸ The critical points of the objective function E + δD are those X∗ ∈ Rn×r such that

−∇E (X∗) ∈ ND (X∗) ,

where ND (X∗) denots the normal cone to the convex set D at X∗.

▸ The additional constraint does not restrict the generality of the problem, since,
for A ∈ CPn and X ∈ Rn×r such that A = XXT , it holds

∥X∥F ≤
√

trace (A).

▸ Moreover,

A = X∗X
T
∗ with X∗ ∈ Rn×r+ ⇐⇒ [X∗ solves (P) and min

X∈D
E (X) = 0] .
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A projected gradient algorithm with relaxation and inertial parameters
RIB, D.-K. Nguyen (2021): Factorization of completely positive matrices using
iterative projected gradient steps, Numerical Linear Algebra with Applications,
DOI: 10.1002/nla.2391

Let A ∈ CPn and r be a positive integer value.
Input:

▸ starting points X1 ∶= X0 ∈ D;
▸ a sequence {αk}k≥1 ⊆ [0,1], for which we set α+ ∶= sup

k≥0
αk and

LF(α+) ∶= 2 [(3 + 8α+ + 6α2
+) trace (A) − λmin (A)] > 0;

▸ a relaxation parameter ρ ∈ (0,1] chosen such that

0 <
√
LF(α+) + 2 ∥A∥2√

LF(α+) + 2 ∥A∥2 +
√
LF(α+)

< ρ <
√
LF(α+) + 2 ∥A∥2

(1 + α+)
√
LF(α+) + 2 ∥A∥2 −

√
LF(α+)

.

(RelaxInertial)

Main iterate:

(∀k ≥ 1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Yk ∶= Xk + αk (Xk −Xk−1) ,

Zk+1 ∶= PrD (Yk −
1

LF(α+)
∇E (Yk)) ,

Xk+1 ∶= (1 − ρ)Xk + ρZk+1.

(RIPG)

Output: Xk+1 ∈ D, which provides a factorization A = Xk+1X
T
k+1.

▸ Other works addressing the interplay between relaxation and inertial parameters for
convex optimization and monotone inclusions: RIB, Csetnek (SICON, 2016), Attouch,
Peypouquet (MathProg, 2019), RIB, Sedlmayer, Vuong (ArXiv, 2020)
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Useful facts

▸ For X ∈ Rn×r, it holds (Bauschke, Bui, Wang, (SIOPT, 2018))

PrD (X) ∶=
√

trace (A)
max{∥[X]+∥F ,

√
trace (A)}

[X]+ ,

where [X]+ ∶= max {X,0} and the max operator is understood entrywise.

▸ For X,Y ∈ Rn×r, it holds

− ∥A∥2 ⋅ ∥X − Y ∥2F ≤ E (X) − E (Y ) − ⟨∇E (Y ) , X − Y ⟩ ≤
L (X, Y )

2
∥X − Y ∥2F ,

where
L (X,Y ) ∶= 2 (∥Y ∥2

2 − λmin (A)) + (∥X∥2 + ∥Y ∥2)
2
.

▸ For every k ≥ 1, we have
● Xk+1 ∈ D and ∥Yk∥F ≤ (1 + 2α+)

√
trace (A);

● L (Zk+1, Yk) ≤ LF(α+) = 2 [(3 + 8α+ + 6α2
+) trace (A) − λmin (A)].

Radu Ioan Boţ Factorization of completely positive matrices using iterative projected gradient steps 12/45



Useful facts

▸ For X ∈ Rn×r, it holds (Bauschke, Bui, Wang, (SIOPT, 2018))

PrD (X) ∶=
√

trace (A)
max{∥[X]+∥F ,

√
trace (A)}

[X]+ ,

where [X]+ ∶= max {X,0} and the max operator is understood entrywise.

▸ For X,Y ∈ Rn×r, it holds

− ∥A∥2 ⋅ ∥X − Y ∥2F ≤ E (X) − E (Y ) − ⟨∇E (Y ) , X − Y ⟩ ≤
L (X, Y )

2
∥X − Y ∥2F ,

where
L (X,Y ) ∶= 2 (∥Y ∥2

2 − λmin (A)) + (∥X∥2 + ∥Y ∥2)
2
.

▸ For every k ≥ 1, we have
● Xk+1 ∈ D and ∥Yk∥F ≤ (1 + 2α+)

√
trace (A);

● L (Zk+1, Yk) ≤ LF(α+) = 2 [(3 + 8α+ + 6α2
+) trace (A) − λmin (A)].

Radu Ioan Boţ Factorization of completely positive matrices using iterative projected gradient steps 12/45



Useful facts

▸ For X ∈ Rn×r, it holds (Bauschke, Bui, Wang, (SIOPT, 2018))

PrD (X) ∶=
√

trace (A)
max{∥[X]+∥F ,

√
trace (A)}

[X]+ ,

where [X]+ ∶= max {X,0} and the max operator is understood entrywise.

▸ For X,Y ∈ Rn×r, it holds

− ∥A∥2 ⋅ ∥X − Y ∥2F ≤ E (X) − E (Y ) − ⟨∇E (Y ) , X − Y ⟩ ≤
L (X, Y )

2
∥X − Y ∥2F ,

where
L (X,Y ) ∶= 2 (∥Y ∥2

2 − λmin (A)) + (∥X∥2 + ∥Y ∥2)
2
.

▸ For every k ≥ 1, we have
● Xk+1 ∈ D and ∥Yk∥F ≤ (1 + 2α+)

√
trace (A);

● L (Zk+1, Yk) ≤ LF(α+) = 2 [(3 + 8α+ + 6α2
+) trace (A) − λmin (A)].

Radu Ioan Boţ Factorization of completely positive matrices using iterative projected gradient steps 12/45



The decreasing property

For every k ≥ 1, it holds

(E + δD) (Zk+1) +
⎛
⎝
LF (α+) − (LF (α+) + 2 ∥A∥2)γ

2
+ τ

2
⎞
⎠
∥Xk+1 −Xk∥2

F

≤ (E + δD) (Zk) +
τ

2
∥Xk −Xk−1∥2

F ,

where

γ ∶= max
⎧⎪⎪⎨⎪⎪⎩
(1
ρ
− 1)

2
,(1 + α+ −

1
ρ
)

2⎫⎪⎪⎬⎪⎪⎭
and τ ∶= (1 − ρ)LF (α+)

ρ
+(LF (α+) + 2 ∥A∥2)γ.

▸ It holds LF (α+) − (LF (α+) + 2 ∥A∥2)γ > 0.
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The energy function

For a given τ ≥ 0, we consider the following energy function

Ψτ ∶Rn×r ×Rn×r → R ∪ {+∞} ,Ψτ (Z,X) ∶= (E + δD) (Z) + ρ
2τ

2
∥Z −X∥2

F .

▸ For every k ≥ 2 it holds

Ψτ (Zk+1,Xk) +
LF (α+) − (LF(α+) + 2 ∥A∥2)γ

2
∥Xk+1 −Xk∥2

F ≤ Ψτ (Zk,Xk−1)

▸ If τ = 0, which corresponds to the case when ρ = 1 and α+ = 0, in which case
RIPG becomes the projected gradient algorithm, then

Ψτ (Z,X) = (E + δD) (Z) ∀(Z,X) ∈ Rn×r ×Rn×r.

Thus
Z∗ ∈ crit (E + δD) and X∗ ∈ Rn×r⇔ (Z∗,X∗) ∈ critΨτ .

▸ If τ > 0, then

X∗ ∈ crit (E + δD) and ⇔ (X∗,X∗) ∈ critΨτ .
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RIPG becomes the projected gradient algorithm, then

Ψτ (Z,X) = (E + δD) (Z) ∀(Z,X) ∈ Rn×r ×Rn×r.

Thus
Z∗ ∈ crit (E + δD) and X∗ ∈ Rn×r⇔ (Z∗,X∗) ∈ critΨτ .

▸ If τ > 0, then

X∗ ∈ crit (E + δD) and ⇔ (X∗,X∗) ∈ critΨτ .
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The limiting subdifferential of a proper and lower semicontinuous function
k ∶ H → R ∪ {+∞}, where H is a real finite-dimensional space

▸ The Fréchet (viscosity) subdifferential of h at x ∈ domk:

∂̂k(x) = {v ∈ H ∶ lim inf
y→x

k(y)−k(x)−⟨v,y−x⟩
∥y−x∥

≥ 0}

▸ The limiting (Mordukhovich) subdifferential of h at x ∈ domk:

∂k(x) ={v ∈ H ∶∃xn → x, k(xn) → k(x) and ∃vn ∈ ∂̂k(xn), vn → v as n→ +∞}

Properties of the limiting subdifferential
▸ if x ∈ H is a local minimizer of k, then x ∈ critk ∶= {z ∈ H ∶ 0 ∈ ∂k(z)};
▸ if k is C1 around x ∈ H, then ∂k(x) = {∇k(x)};
▸ if k is convex, then ∂k(x)={v ∈ H∶k(y) ≥ k(x) + ⟨v, y − x⟩ ∀y ∈ H} ∀x ∈ domk;
▸ closedness criterion: vn ∈ ∂k(xn) ∀n ≥ 0, (xn, vn) → (x, v) and k(xn) → k(x) as
n→ +∞, then v ∈ ∂k(x);
▸ sum formula: if l ∶ H → R is C1, then ∂(k + l)(x) = ∂k(x) + ∇l(x) for all x ∈ H.
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Cluster points are critical points

1. The sequence {Ψτ (Zk,Xk−1)}k≥2 is monotonically decreasing and convergent;

2. It holds ∑
k≥0

∥Xk+1 −Xk∥2
F < +∞, thus Xk+1 −Xk → 0 as k → +∞, and so

Xk+1 − Yk → 0 and Zk+1 − Yk → 0 as k → +∞, hence the sequences {Xk}k≥0,
{Yk}k≥1 and {Zk}k≥2 have the same cluster points.

Let Ω ∶= Ω ({(Zk,Xk−1)}k≥2) be the set of cluster points of the sequence
{(Zk,Xk−1)}k≥2 The following statements are true:
▸ Ω ⊆ critΨτ = {(X∗,X∗) ∈ Rn×r ×Rn×r ∶X∗ ∈ critΨ};
▸ it holds lim

k→+∞
dist [(Zk,Xk−1) ,Ω] = 0;

▸ the set Ω is nonempty, connected and compact;
▸ the function Ψτ takes on Ω the value Ψ∗ ∶= lim

k→+∞
Ψτ (Zk,Xk−1).

Subsequence convergence
Let {Xk}k≥0 be the sequence generated by RIPG. Then every cluster point of
{Xk}k≥0 is a critical point of E + δD.
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The Kurdyka-Łojasiewicz property

Let k ∶ H → R ∪ {+∞} be proper and lower semicontinuous. The function k is said to
have the Kurdyka-Łojasiewicz (KL) property at x ∈ dom∂k = {z ∈ H ∶ ∂k(z) ≠ ∅}
if there exist

▸ η ∈ (0,+∞];
▸ a neighborhood U of x;
▸ a concave and continuous function ϕ ∶ [0, η) → [0,+∞) such that ϕ(0) = 0, ϕ is
C1 on (0, η) and ϕ′(s) > 0 for every s ∈ (0, η)

such that

ϕ′(k(y) − k(x))dist(0, ∂k(y)) = ϕ′(k(y) − k(x)) inf{∥v∥ ∶ v ∈ ∂k(y)} ≥ 1 (KL)

for every
y ∈ U ∩ {z ∈ H ∶ k(x) < k(z) < k(x) + η}.

If k has the KL property at every point in dom∂k, then k is called KL function.

▸ The KL property is satisfied at every noncritical point x ∈ dom∂k of k.
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If k is C1 around x, then (KL) becomes

ϕ′(k(y) − k(x))∥∇k(y)∥ = ∥∇(ϕ ○ (k − k(x)))(y)∥ ≥ 1 (smoothKL)

for every
y ∈ U ∩ {z ∈ H ∶ k(x) < k(z) < k(x) + η}.

Łojasiewicz (1963)
If k ∶ H → R is a real-analytic function and x ∈ H a critical point, then there exist
θ ∈ [1/2,1) and C, ε > 0 such that (Łojasiewicz property)

∣k(y) − k(x)∣θ ≤ C∥∇k(y)∥ for every y ∈ H with ∥y − x∥ < ε.

Thus, (smoothKL) is fulfilled for ϕ(s) = 1
1−θCs

1−θ and every

y ∈ B(x, ε) ∩ {z ∈ H ∶ k(x) < k(z) < +∞}.

▸ the Kurdyka-Łojasiewicz property: Kurdyka (Ann. I. Fourier, 1998); Bolte,
Daniilidis, Lewis (SIOPT, 2006); Bolte, Daniilidis, Lewis, Shiota (SIOPT, 2007);
Bolte, Daniilidis, Ley, Mazet (TAMS, 2010)
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Kurdyka-Łojasiewicz (KL) property
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Examples of KL functions
▸ semi-algebraic functions, i.e., functions having as graph semi-algebraic sets,
namely, sets of the form

p
∪
j=1

q
∩
i=1

{u ∈ Rm ∶ gij(u) = 0 and hij(u) < 0},

where gij , hij ∶ Rm → R are polynomial functions;
▸ real polynomial functions;
▸ indicator functions of semi-algebraic sets;
▸ finite sums and product of semi-algebraic functions;
▸ compositions of semi-algebraic functions;
▸ ∥ ⋅ ∥p for p ∈ Q (including the case p = 0);
▸ convex functions fulfilling a certain growth condition;
▸ uniformly convex functions.
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Convergence of the iterates

Global convergence
Let {Xk}k≥0 be the sequence generated by RIPG. The sequence {Xk}k≥0 converges
to a critical point of E + δD.

▸ Since Ψτ is semi-algebraic, it fulfills the Kurdyka - Łojasiewicz property. This can
be used to show that

∑
k≥0

∥Xk+1 −Xk∥2
F < +∞.

implies
∑
k≥0

∥Xk+1 −Xk∥F < +∞.

In other words, {Xk}k≥0 is a Cauchy sequence, hence it is convergent.
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Rates of convergence
Let {Xk}k≥0 be the sequence generated by RIPG. Let X∗ ∈ intD be the critical point
of E + δD to which the sequence {Xk}k≥0 converges as k → +∞. Then there exists
k1 ≥ 2 such that the following statements are true:
▸ if θ = 0, then {E (Zk) −Ψ∗}k≥2 and {Xk}k≥0 converge in finitely many steps;
▸ if θ ∈ (0,1/2], then there exist C′

1,C
′
2 > 0 and Q1,Q2 ∈ [0,1) such that

0 ≤ E (Zk) −Ψ∗ ≤ C′
1Q

k
1 and ∥Xk −X∗∥F ≤ C′

2Q
k
2 ;

▸ if θ ∈ (1/2,1), then there exist C′
3,C

′
4 > 0 such that

0 ≤ E (Zk) −Ψ∗ ≤ C′
3 (k − 1)−

1
2θ−1 and ∥Xk −X∗∥F ≤ C′

4 (k − 1)−
1−θ

2θ−1 .
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Some particular cases of RIPG

Relaxed projected gradient algorithm
Choosing αk = 0 for all k ≥ 1, RIPG reduces to the relaxed projected gradient algorithm

(∀k ≥ 1)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zk+1 ∶= PrD (Xk −
1

LF(0)
∇E (Xk)) ,

Xk+1 ∶= (1 − ρ)Xk + ρZk+1.

In this case, α+ = 0 and condition (RelaxInertial) becomes
√
LF (0) + 2 ∥A∥2√

LF (0) + 2 ∥A∥2 +
√
LF (0)

< ρ ≤ 1 <
√
LF (0) + 2 ∥A∥2√

LF (0) + 2 ∥A∥2 −
√
LF (0)

.

Notice that the choice ρ = 1 is allowed, which leads to the classical projected gradient
algorithm (PG).
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Inertial projected gradient algorithm
For ρ = 1, RIPG reduces to the inertial projected gradient algorithm (IPG)

(∀k ≥ 1)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Yk ∶= Xk + αk (Xk −Xk−1) ,

Xk+1 ∶= PrD (Yk −
1

LF(α+)
∇E (Yk)) .

In this setting, condition (RelaxInertial) is equivalent to

0 ≤ α+ <
¿
ÁÁÀ LF (α+)

LF (α+) + 2 ∥A∥2
. (Inertial)

▸ Condition (Inertial) is nothing else than

α2
+ (∥A∥2 + (3 + 8α+ + 6α2

+) trace (A) − λmin (A)) ≤ (3 + 8α+ + 6α2
+) trace (A)−λmin (A)

and it is fulfilled for every 0 < α+ ≤ 0.967.
▸ In our numerical experiments we used 0.0967 as the starting point for a bisection
procedure aimed to find larger α+ which fulfill (Inertial).
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Variable inertial parameters for IPG
▸

αk ∶= κ ⋅
tk − 1
tk+1

, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t1 ∶= 1

tk+1 ∶=
1 +

√
1 + 4t2

k

2

∀k ≥ 1. (κNes)

▸ (László (MathProg, 2020))

αk ∶=
κk

k + 3
∀k ≥ 1, where κ ∈ (0,1) . (κModNes)

▸ In both cases α+ = supk≥1 αk = κ, thus, according to (Inertial), κ must be chosen
such that

0 ≤ κ <
¿
ÁÁÀ LF (κ)

LF (κ) + 2 ∥A∥2
.
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Choosing α+ even closer to 1
As far as α+ satisfies (Inertial), we can choose ρ = 1. For α+ close to 1 such that
(Inertial) is not satisfied, in other words, if

¿
ÁÁÀ LF (α+)

LF (α+) + 2 ∥A∥2
≤ α+,

then we have to choose

0 <
√
LF (α+) + 2 ∥A∥2√

LF (α+) + 2 ∥A∥2 +
√
LF (α+)

< ρ <
√
LF (α+) + 2 ∥A∥2

(1 + α+)
√
LF (α+) + 2 ∥A∥2 −

√
LF (α+)

< 1.

(Relax)
For αk = 1 for every k ≥ 1, and thus α+ = 1, RIPG becomes

(∀k ≥ 1)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Zk+1 ∶= PrD (2Xk −Xk−1 −
1

LF(1)
∇E (2Xk −Xk−1)) ,

Xk+1 ∶= (1 − ρ)Xk + ρZk+1.

▸ The strategy of choosing α+ close to 1 and ρ according to (Relax) yields the best
numerical performances of the algorithm.
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Numerical experiments
▸ Number of runs and starting points: For A ∈ Rn×n with n < 100, we run:

● RIPG 100 times for randomly chosen initial matrices in D;
● ModMAP and SpFeasDC also 100 times for randomly chosen initial matrices in

Or (computed via singular value decomposition) and for matrices B computed
via Cholesky decomposition.

If n ≥ 100, then we do this for each of the algorithms 10 times.

▸ Parameter choice: We choose the constant α+:
● by running a simple bisection routine with upodate rule α+ ∶= (3α+ + 1) /4 which
starts at 0.967 in order to find greater values for α+ that satisfy

0 ≤ α+ <
¿
ÁÁÀ LF (α+)

LF (α+) + 2 ∥A∥2
.

Then we choose α+ ∶= α̂+, which is the last value at which this inequality holds,
and ρ ∶= 1.

● by taking α̂1 ∶= (3α̂+ + 1) /4, α̂2 ∶= (α̂+ + 1) /2, and α̂3 ∶= (α̂+ + 3) /4, which,
when α̂+ is obtained as above, all violate the above inequality. The corresponding
relaxation parameters will be denoted by ρ (α̂1), ρ (α̂2) and ρ (α̂3), respectively,
and chosen to satisfy (Relax).

● by taking α+ ∶= 1 and the relaxation parameter ρ(1) to satisfy (Relax).
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▸ Stopping criteria: For A ∈ Rn×n, we run each of the algorithms at most 10000
iterations, if n < 100, and at most 50000 iterations, otherwise.

● Stopping criterion for ModMAP and SpFeasDC: min{(BQk)i,j} ≥ −Tolfea, with
Tolfea ∶= 10−16, if the matrix A belongs to int (CPn), and Tolfea ∶= 10−7,
otherwise.

● Stopping criterion for RIPG:
∥A −XkXT

k ∥2
F

∥A∥2
F

< Tolval, with Tolval ∶= 10−16, if A

belongs to int (CPn), and Tolval ∶= 10−7, otherwise.

▸ Algorithms:

◇ ModMAP: the Modified Method of Alternating Projections (Groetzner, Dür
(LAA, 2020));

◇ SpFeasDC: the algorithm in (Chen, Pong, Tan, Zeng (JOGO, 2020)) enhanced
with a nonmonotone linesearch procedure;

◇ PG: the classical projected gradient algorithm (ρ = 1 and α+ = 0);
◇ IPG-Nes: ρ = 1 and (αk)k≥1 chosen to satisfy Nesterov’s rule;
◇ IPG-const: ρ = 1 with constant inertial parameters and α+ chosen to satisfy

(Inertial);
◇ IPG-κNes: ρ = 1 and (αk)k≥1 chosen to satisfy (κNes);
◇ IPG-κModNes: ρ = 1 and (αk)k≥1 chosen to satisfy (κModNes);
◇ RIPG-const, RIPG-κNes and RIPG-κModNes: elaxed versions of IPG-const,

IPG-κNes and IPG-κModNes, respectively, for different values of α+ that violate
(Inertial) and corresponding relaxation parameters ρ satisfying (Relax).

Radu Ioan Boţ Factorization of completely positive matrices using iterative projected gradient steps 28/45



▸ Stopping criteria: For A ∈ Rn×n, we run each of the algorithms at most 10000
iterations, if n < 100, and at most 50000 iterations, otherwise.

● Stopping criterion for ModMAP and SpFeasDC: min{(BQk)i,j} ≥ −Tolfea, with
Tolfea ∶= 10−16, if the matrix A belongs to int (CPn), and Tolfea ∶= 10−7,
otherwise.

● Stopping criterion for RIPG:
∥A −XkXT

k ∥2
F

∥A∥2
F

< Tolval, with Tolval ∶= 10−16, if A

belongs to int (CPn), and Tolval ∶= 10−7, otherwise.

▸ Algorithms:

◇ ModMAP: the Modified Method of Alternating Projections (Groetzner, Dür
(LAA, 2020));

◇ SpFeasDC: the algorithm in (Chen, Pong, Tan, Zeng (JOGO, 2020)) enhanced
with a nonmonotone linesearch procedure;

◇ PG: the classical projected gradient algorithm (ρ = 1 and α+ = 0);
◇ IPG-Nes: ρ = 1 and (αk)k≥1 chosen to satisfy Nesterov’s rule;
◇ IPG-const: ρ = 1 with constant inertial parameters and α+ chosen to satisfy

(Inertial);
◇ IPG-κNes: ρ = 1 and (αk)k≥1 chosen to satisfy (κNes);
◇ IPG-κModNes: ρ = 1 and (αk)k≥1 chosen to satisfy (κModNes);
◇ RIPG-const, RIPG-κNes and RIPG-κModNes: elaxed versions of IPG-const,

IPG-κNes and IPG-κModNes, respectively, for different values of α+ that violate
(Inertial) and corresponding relaxation parameters ρ satisfying (Relax).
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Numerical experiment 1

▸ In each test we generate a random n × 2n matrix B0 and set

A ∶= ∣B0∣ ∣B0∣T .

▸ We test the algorithms on 50 randomly generated 40 × 40 matrices and 10
randomly generated 500 × 500 matrices.

▸ We use in each test r ∶= 1.5n + 1 and r ∶= 3n + 1.

Findings
▸ SpFeasDC outperforms the other methods with respect to the number of

iterations, possibly due to the fact that it uses a linesearch routine to improve the
step size, while the others have quite conservative step size rules.

▸ Some of the instances of RIPG can compete with SpFeasDC in terms of
computational time, in particular, the more the dimension grows.
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n = 40 and r = 61

Method Rate Time (s) Time (f) Iter.
ModMAP 0.80 2.5137 × 100 7.0416 × 100 3467.08
SpFeasDC 1.00 4.1259 × 10−2 −//− 38.51
PG 0.00 −//− 4.5239 × 10−1 −//−
IPG-const 1.00 1.3017 × 10−1 −//− 2554.45
IPG-κNes 1.00 1.2994 × 10−1 −//− 2561.51
IPG-κModNes 1.00 1.3122 × 10−1 −//− 2562.88
RIPG-const 1.00 2.8331 × 10−1 −//− 5490.14
RIPG-κNes 1.00 8.8411 × 10−2 −//− 1752.14
RIPG-κModNes 1.00 8.9617 × 10−2 −//− 1751.66

The nonnegative factorization of random completely positive matrices for n = 40 and
r = 61.
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n = 40 and r = 61

E (Zk) − Emin
1
2
∥Xk −Xsol∥2

F
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n = 500 and r = 751,1501

Method Rate Time (s) Time (f) Iter.
SpFeasDC 1.00 1.6557 × 102 −//− 929.38
RIPG-κNes 1.00 1.4526 × 102 −//− 7919.40
RIPG-κModNes 1.00 1.4861 × 102 −//− 7921.64

The nonnegative factorization of random completely positive matrices for n = 500 and
r = 751.

Method Rate Time (s) Time (f) Iter.
SpFeasDC 1.00 1.3813 × 103 −//− 914.15
RIPG-κNes 1.00 2.2975 × 102 −//− 7776.30
RIPG-κModNes 1.00 2.3037 × 102 −//− 7779.60

The nonnegative factorization of random completely positive matrices for n = 500 and
r = 1501.
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Numerical experiment 2

We examine the efficiency of the factorization algorithms when the number of columns
r varies:

▸ for matrices of the form

An ∶= ( 0 jTn−1
jn−1 In−1

)
T

( 0 jTn−1
jn−1 In−1

) ∈ Rn×n,

where In and jn denote the n × n identity matrix and the all-ones-vector in Rn,
respectively. We set n ∶= 40, choose r ∈ {40,51,61,71,81,101,121} and consider
100 random initial points.

▸ for a completely positive matrix A ∶= ∣B0∣ ∣B0∣T constructed from a randomly
generated 100 × 200 matrix B0, for r ∈ {151,176,201,251,301}, and random
initial points.

Findings
▸ The rate of success for different variants RIPG increases with higher values for r.
▸ RIPG requires less iterations than ModMAP to provide a nonnegative

factorization.

Radu Ioan Boţ Factorization of completely positive matrices using iterative projected gradient steps 33/45



A40 for r ∈ {40,51,61,71,81,101,121}

The rate of success The number of iterations required

The rate of success and number of iterations required for the factorization of A40 for
different values of r and random initial points. The dash-lines show the average value.
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A ∈ CP100 for r ∈ {151,176,201,251,301}

The rate of success The number of iterations required

The rate of success and number of iterations required for the factorization of a
randomly generated matrix A ∈ CP100 for different values of r and random initial

points. The dash-lines show the average value.
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Numerical experiment 3
We consider the perturbed matrix Aω defined by

Aω ∶= ωA + (1 − ω)P, for ω ∈ [0,1] ,

where

A ∶=

⎛
⎜⎜⎜⎜⎜
⎝

8 5 1 1 5
5 8 5 1 1
1 5 8 5 1
1 1 5 8 5
5 1 1 5 8

⎞
⎟⎟⎟⎟⎟
⎠

and P ∶=

⎛
⎜⎜⎜⎜⎜
⎝

2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

⎞
⎟⎟⎟⎟⎟
⎠

.

▸ Both A and Aω , ω ∈ [0,1], belong to CP5.
▸ It is more difficult to factorize A then Aω , for ω < 1. The reason is that
A ∈ CP5 ∖ int (CP5).

▸ All known factorization algorithms can successfully factorize Aω for various values
of ω < 1, but fail to do so for ω = 1 (when Aω = A).

Findings
▸ The inertial methods IPG-const, IPG-κNes and IPG-κModNes also face some
difficulties when factorizing A.

▸ The methods RIPG-κNes and RIPG-κModNes, which combine relaxation and
inertial parameters, always return nonnegative factorizations.
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A0.99

Method Rate Time (s) Time (f) Iter.
ModMAP 0.00 −//− 4.7649 × 10−1 −//−
SpFeasDC 0.02 7.0223 × 10−1 7.5259 × 10−1 9220.50
PG 0.27 1.8571 × 10−2 2.7675 × 10−2 7069.00
IPG-Nes 1.00 2.1624 × 10−3 −//− 728.32
IPG-const 1.00 7.2203 × 10−3 −//− 2385.20
IPG-κNes 1.00 7.9190 × 10−3 −//− 2474.65
IPG-κModNes 1.00 7.7214 × 10−3 −//− 2473.84
RIPG-const 0.94 1.3217 × 10−2 3.2318 × 10−2 4446.59
RIPG-κNes 1.00 2.5225 × 10−3 −//− 742.12
RIPG-κModNes 1.00 2.4953 × 10−3 −//− 744.37

The nonnegative factortization of A0.99 for r = 12.
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A0.99

E (Zk) − Emin
1
2
∥Xk −Xsol∥2

F
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A1 = A

Method Rate Time (s) Time (f) Iter.
ModMAP 0.00 −//− 5.0659 × 10−1 −//−
SpFeasDC 0.00 −//− 9.1030 × 10−1 −//−
PG 0.01 1.7454 × 10−2 2.7524 × 10−2 7531.00
IPG-Nes 1.00 3.1237 × 10−3 −//− 1067.09
IPG-const 0.99 1.1232 × 10−2 2.9201 × 10−2 3785.31
IPG-κNes 0.95 1.2694 × 10−2 3.3234 × 10−2 4052.98
IPG-κModNes 0.95 1.2337 × 10−2 3.0064 × 10−2 4041.04
RIPG-const 0.76 1.7549 × 10−2 2.9381 × 10−2 5908.16
RIPG-κNes 1.00 3.6109 × 10−3 −//− 1083.75
RIPG-κModNes 1.00 3.6073 × 10−3 −//− 1084.20

The nonnegative factortization of A1 = A for r = 11.
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A1 = A

E (Zk) − Emin
1
2
∥Xk −Xsol∥2

F
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Numerical experiment 4

Consider
A2n ∶= (nIn Jn

Jn nIn
) ∈ CP2n ∖ int (CP2n) ,

where In and Jn denote the identity matrix and the all-ones-matrix in Rn×n,
respectively.

Findings
▸ The methods RIPG-κNes and RIPG-κModNes, which combine relaxation and

inertial parameters, provide nonnegative factorizations in reasonable time.
▸ IPG-Nes outperforms all the other methods.
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Method Rate Time (s) Time (f) Iter.
ModMAP 0.00 −//− 3.4746 × 102 −//−
SpFeasDC 0.00 −//− 5.8390 × 102 −//−
IPG-Nes 1.00 9.9557 × 10−1 −//− 6959.95
IPG-κNes 0.00 −//− 1.5584 × 100 −//−
IPG-κModNes 0.00 −//− 1.5747 × 100 −//−
RIPG-κNes 1.00 1.4564 × 100 −//− 7037.52
RIPG-κModNes 1.00 1.4641 × 100 −//− 7036.06

The nonnegative factorization of A30 for r = 30.

Method Rate Time (s) Time (f) Iter.
IPG-Nes 1.00 1.9818 × 102 −//− 22246.50
RIPG-κNes 1.00 2.3330 × 102 −//− 22467.40
RIPG-κModNes 1.00 2.3290 × 102 −//− 22463.90

The nonnegative factorization of A100 for r = 100.
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Further perspectives

◇ Numerical evidence suggests that the convergence rates are linear, which at its
turn suggests that the Łojasiewicz exponent of the energy function is at most 1/2.

◇ Use in RIPG variable step sizes.

◇ Extend the convergence analysis beyond the current setting, in order to cover the
parameter choice of the IPG-Nes method.

◇ Replace the closed ball with radius
√

trace (A) with the sphere of the same
radius.
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Thank you for your attention!
https://www.mat.univie.ac.at/∼rabot/
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