Nevanlinna theory and algebraic values of meromorphic functions

Taboka P Chalebgwa

Fields Institute/McMaster University

Taboka P Chalebgwa

Definition

Let $X \subset \mathbb{R}^2$ and $t \ge 1$. The **homothetic dilation** of X by t is the set $tX := \{(tx_1, tx_2) : (x_1, x_2) \in X\}.$

The Bombieri-Pila theorem gives an upper bound for the number of lattice points on the dilation of the graph of a transcendental analytic function:

Bombieri-Pila, '89

Let $f : [0,1] \to \mathbb{R}$ be a real analytic transcendental function, denote by X_f the graph of f. For any $\epsilon > 0$, there exists a constant $c(f,\epsilon)$ such that $|tX_f \cap \mathbb{Z}^2| \le c(f,\epsilon)t^{\epsilon}$, for all $t \ge 1$.

NB: for
$$f(x) = x^d$$
, where d is a positive integer,
 $|tX_f \cap \mathbb{Z}^2| = \mathcal{O}(t^{\frac{1}{d}}).$

Pila refined the B-P theorem to count rational points of bounded *height* on graphs of transcendental functions.

Definition

Let $\alpha \in \overline{\mathbb{Q}}$, with deg $(\alpha) = d$. The height of α is defined as $H(\alpha) = \mathcal{M}(\alpha)^{\frac{1}{d}}$, where $\mathcal{M}(\alpha)$ is the Mahler measure of α . For $\alpha = \frac{a}{b} \in \mathbb{Q}$, this reduces to $H(\alpha) = \max\{|a|, |b|\}$.

We will denote by $N(X_f, H, d)$ the number of algebraic points of height $\leq H$ and degree $\leq d$ on the graph of f.

Pila, '91

Let $f: I \to \mathbb{R}$ be a real analytic transcendental function, $\epsilon > 0$. There exists $c(f, \epsilon)$ such that for any positive integer H, we have $N(X_f, H) \leq c(f, \epsilon)H^{\epsilon}$.

Pila and Wilkie obtained a vast generalization of the previous theorem to counting points on subsets of \mathbb{R}^n .

Definition

Let $X \subset \mathbb{R}^n$, the *algebraic part* of X is the union of all the connected, semialgebraic subsets of X of positive dimension, denoted by X^{alg} . The *transcendental part* of X is the set $X^{\text{trans}} := X \setminus X^{\text{alg}}$.

Pila-Wilkie

Let $X \subset \mathbb{R}^n$ be definable in an o-minimal expansion of \mathbb{R} . For any $\epsilon > 0$, there exists $c(X, \epsilon)$ such that $N(X^{\text{trans}}, H) \leq c(X, \epsilon)H^{\epsilon}$.

Question

This bound is optimal in general, but can it be improved for certain special cases/under additional hypotheses?

Wilkie's conjecture

If X is definable in $\mathbb{R}_{exp} = (\mathbb{R}, +, \cdot, 0, 1, <, exp)$, then there exist constants c = c(X) and $\eta = \eta(X)$ such that $N(X^{\text{trans}}, H) \leq c(\log H)^{\eta}$.

Some known cases

- Pila graphs of Pfaffian functions,
- Jones and Thomas surfaces definable in Pfaffian structures,
- Pila, Butler certain "exponential-algebraic" surfaces in \mathbb{R}_{exp} ,
- Binyamini and Novikov sets definable in $\mathbb{R}^{\mathsf{RE}} = \mathbb{R}_{\exp|_{[0,1]}, \sin|_{[0,\pi]}}.$

We now circle back to Pila's theorem, and ask the same question as above, in that setting:

Question

The $c(f, \epsilon)H^{\epsilon}$ bound is optimal for counting rational (or algebraic) points on graphs of transcendental analytic functions, but under what conditions (or for which particular functions) can we do better? (i.e from $\mathcal{O}(H^{\epsilon})$ to $\mathcal{O}((\log H)^{\eta})$).

Some known results

• Masser -
$$f = \zeta|_{(2,3)}$$
, then $N(X_f, H) \leq c \left(\frac{\log H}{\log \log H} \right)^2$,

• Besson -
$$f = \Gamma|_{[n-1,n]}$$
, then $N(X_f, H) \le c \left(\frac{\log H}{\log \log H} \right)^2$

- Boxall-Jones I $f = \zeta|_{(2,\infty)}, \Gamma|_{[1,\infty)}$, then $N(X_f, H) \le c(\log H)^3 (\log \log H)^3$,
- Boxall-Jones II f entire, moderate growth (i.e, $e^{r^{\alpha}} \leq M(r, f) \leq e^{r^{\beta}}$ for some $0 < \alpha \leq \beta < \infty$), restricted to $\overline{B(0, r)}$, then $N(X_f, H, d, r) \leq c(\log H)^{\eta(\alpha, \beta)}$.

(4 伊 ト 4 ヨ ト 4 ヨ ト

Some questions

- Can we remove the restrictions to $\overline{B(0,r)}$? That is, count ALL points of height $\leq H$ on X_f .
- How about functions with extremal growth orders?
- How about meromorphic functions?

The proof strategy consists of two parts: I usually refer to them as the "algebraic" part and the analytic part.

- Given f : C → C, holomorphic or meromorphic, one constructs (or uses) an auxiliary polynomial associated with f. This is a polynomial P_f(X, Y) ∈ Z[X, Y] (with certain properties) such that if H(α, f(α)) ≤ H and [Q(α, f(α)) : Q] ≤ d, then P(α, f(α)) = 0.
- Notice that we are now in the realm of analysis. To count the points of interest we now "just" have to count the zeroes of G(z) := P(z, f(z)) in a certain region. You now have the whole repertoire of analysis at your disposal.
- Try not to divide by 0.

A (1) > A (2) > A

A corollary of Jensen's formula

Let G be a non-constant entire function such that $G(0) \neq 0$, and let $0 < r < R < \infty$. Then

$$n(r, \frac{1}{G}) \leq \frac{1}{\log(R/r)} \log\left(\frac{M(R, G)}{|G(0)|}\right)$$

Nevanlinna characteristic

Let $f : \mathbb{C} \to \mathbb{C}$ be a meromorphic function. The Nevanlinna characteristic of f is a functional consisting of two components: T(r, f) := m(r, f) + N(r, f).

- T(r, f) measures the rate of growth of f in a disk of radius r as r → ∞.
- Suppose $f(0) \neq 0, \infty$, then $T(r, f) = T(r, \frac{1}{f}) + \log |f(0)|$. ("FMT")

(Aside:) T(r, f) is a height function.

Question

Given a meromorphic function of "finite order and positive lower order", can we obtain a $c(\log H)^{\eta}$ bound for $N(X_f, H, d, r)$?

(NB: The natural assumption here is that $r^{\alpha} \leq T(r, f) \leq r^{\beta}$ for some $0 < \alpha \leq \beta < \infty$.)

dth Bézout bound and polynomial zero estimates

 Let g be an analytic function and P_g(z) = P(z, g(z)) for some P(X, Y) ∈ C[X, Y]. The dth Bézout bound for g is the quantity

$$\mathcal{Z}_d(r,g) := \sup\{n(r,1/P_g) : \deg P \le d \text{ and } P_g \not\equiv 0\}.$$

• The function g satisfies a polynomial zero estimate if and only if there exists $\alpha > 0$ such that for all $d \in \mathbb{N}$, $\mathcal{Z}_d(r,g) \leq c(r)d^{\alpha}$.

< ロ > < 同 > < 三 > < 三 >

lemma

If g satisfies a polynomial zero estimate, then $N(X_f, H, d, r) \leq c(\log H)^{\alpha}$.

Villemot, 2019.

Let g be a meromorphic function and $\epsilon \in (0, \frac{1}{2}]$. Suppose there exists $\alpha, \beta > 0$ such that

$$r^lpha \leq T(r,g) \leq r^eta$$
 and $\mathit{n}(r,g) \leq cT(r,g)^{rac{1}{2}-\epsilon}.$

Then g satisfies a polynomial zero estimate. In particular, there exists an effective $\delta = \delta(\alpha, \beta) > 0$ such that for all $d \in \mathbb{N}$ and all r > 0,

$$\mathcal{Z}_d(r,g) \leq c \max\{T(r,g),d\}^{\delta}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Recall the corollary of Jensen's formula

Let G be a non-constant entire function such that $G(0) \neq 0$, and let $0 < r < R < \infty$. Then

$$n(r, \frac{1}{G}) \leq \frac{1}{\log(R/r)} \log\left(\frac{M(R, G)}{|G(0)|}\right).$$

Let G be meromorphic in \mathbb{C} , and r > 0. Then

$$n(r,G) \leq \frac{1}{\log 2}T(2r,G)$$

Taboka P Chalebgwa

A representative theorem

Let $L \subset \mathbb{C}$ be a lattice, $\sigma(z)$ and $\zeta(z)$ be the Weierstrass sigma and zeta functions associated to L. For $u_0 \in \mathbb{C}$, with $u_0 \notin L$, we are interested in the function

$$F(z) = \frac{\sigma(z+u_0)}{\sigma(z)\sigma(u_0)}e^{-\zeta(u_0)z}$$
(1)

where $z \in \mathbb{C}$ and $z, z + u_0 \notin L$.

Theorem

Let the function F, the lattice L and u_0 be as above. Let $a \in \mathbb{C}$ and s > 0 be such that F is holomorphic on a neighbourhood of B(a, 6s). Let $d \ge 1$ and $H > e^e$. Then there exists a constant C > 0 such that for all H > e, there are at most $C(\log H)^{12}$ complex numbers z such that $z, z + u_0 \notin L$, $|z - a| \le s$, $[\mathbb{Q}(z, f(z)) : \mathbb{Q}] \le d$ and $H(z, f(z)) \le H$. Thank you.

・ロン ・回 と ・ ヨ と ・

Taboka P Chalebgwa