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Lecture 23, December 3

THE MAIN THEOREM

Let us formulate and prove the main theorem of the topological Galois
theory.

Theorem 1. A class of S-functions M̂ consisting of S-functions
whose closed monodromy pairs lie in some complete class M of
pairs, is stable under the differentiation, composition and mero-
morphic operations.

Furthermore, if the class M contains

1. the additive group C of complex numbers, then the class M̂ is
stable under the integration,

2. the permutation group S(k) of k elements, then the class M̂ is
stable under solving algebraic equations of degrees at most k.
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The proof of the main theorem consists of the following lemmas.

Lemma 2 (on derivatives). For every S-function f , the following
inclusion holds

[f ′] ∈M〈[f ]〉.

Proof. Let A be the singular point set of the S-function f , and fa a
germ of the function f at a nonsingular point a.

Let Γ denote the fundamental group π1(S2 \ A, a), let Γ1 and Γ2
denote the stabilizers of the germs fa and f ′a.

The group Γ1 is contained in the group Γ2. Indeed, under continuation
along a path γ ∈ Γ1, the germ fa remains unchanged, and hence its
derivative is also unchanged.

From the definition of a complete class of pairs it follows that

[Γ,Γ2] ∈M〈[Γ,Γ1]〉.
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Using Proposition 5.7 we obtain that [f ′] ∈M〈[f ]〉.

Lemma 3 (on compositions). For every S-functions f and g, the
following inclusion holds [g ◦ f ] ∈M〈[f ], [g]〉.

Proof. Let A and B be the singular point sets of functions f and g.
Let f−1(B) be the full preimage of the set B under the multivalued
function f . Set

Q = A
⋃

f−1(B).

Let fa be any germ of the function f at a point a /∈ Q, and gb any
germ of the function g at the point b = f (a). The set Q is forbidden for
the germ gb◦fa. Let Γ denote the fundamental group Γ = π1(S2\Q, a),
let Γ1 and Γ2 denote the stabilizers of the germs fa and gb ◦ fa.

We will write G for the fundamental group π1(S2 \B, b) and G0 for
the stabilizer of the germ gb.
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We now define a homomorphism τ : Γ1→ G. To each path γ, whose
homotopy class belongs to Γ1 (abusing notation, we will sometimes
write γ ∈ Γ1), we assign the path τ (γ)(t) = fγ(t)(γ(t)), where fγ(t) is
the germ obtained by continuation of the germ fa along the path γ up
to the point t.

The paths τ (γ) are closed, since under continuation along γ, the germ
fa remains unchanged. A homotopy of the path γ in the set S2 \ Q
gives rise to a homotopy of the path τ ◦ γ in the set S2 \ B, since
f−1(B) ⊆ Q.

Therefore, the homomorphism is well defined.

The germ gb ◦ fa is unchanged under continuation along the paths
from the group τ−1(G0) or, in other words, τ−1(G0) ⊆ Γ2. The lemma
now follows.
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Indeed, we obtain the inclusions

Γ ⊇ Γ2 ⊇ τ−1(G ⊆ τ−1(G) = Γ1 ⊆ Γ,

that imply that [Γ,Γ2] ∈M〈[G,G0], [Γ,Γ1]〉.
From Proposition proved above, we obtain that [g ◦f ] ∈M〈[f ], [g]〉.

Lemma 4 (on integrals). For every S-function f , the following in-
clusion holds [

∫
f (x)dx] ∈M〈[f ],C〉, where C is the additive group

of complex numbers.

Proof. Let A be the singular point set of the function f , and Q =
A
⋃
{∞}. Let fa be any germ of the function f at a point a /∈ Q, and

ga a germ of
∫
f (x)dx at this point, g′a = fa. We can take the set Q

as a forbidden set for the germs fa and ga.
Let Γ denote the fundamental group Γ = π1(S2 \ Q, a), let Γ1 and

Γ2 denote the stabilizers of the germs fa and ga.
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We now define a homomorphism τ : Γ1 → C. To each path γ ∈ Γ1,
assign the number

∫
γ fγ(t)(γ(t))dx, where fγ(t) is the germ obtained

by continuation of the germ fa along the path γ up to the point t, and
x = γ(t).

The stabilizer Γ2 of the germ ga coincides with the kernel of the
homomorphism τ , which implies that [Γ,Γ2] ∈ M〈[Γ,Γ1],C〉. From
Proposition proved above, we obtain that [

∫
f (x)dx] ∈ M〈[f ],C〉.

In the sequel, it will be convenient to use vector functions.
The definitions of a forbidden set, a S-function, and the monodromy

group carry over automatically to vector functions.

Lemma 5 (on vector functions). For every vector S-function f =
(f1, . . . , fn), the following equality holds:

M〈[f ]〉 =M〈[f1], . . . , [fn]〉.
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Proof. LetAi be the singular point sets of the functions fi. The singular
point set of the vector function f is the set Q =

⋃
Ai.

Let fa = (f1,a, . . . , fn,a) be any germ of the vector function f at a
point a /∈ Q.

Let Γ denote the fundamental group Γ = π1(S2 \ Q, a), let Γi de-
note the stabilizer of the germ fi,a, and Γ0 the stabilizer of the vec-
tor germ fa. The stabilizer Γ0 is exactly

⋂n
i=1 Γi, which implies that

M〈[Γ,Γ0]〉 =M〈[Γ,Γ1], . . . , [Γ,Γn]〉. Thus we obtain that M〈[f ]〉 =
M〈[f1], . . . , [fn]〉.
Lemma 6 (on meromorphic operations).For every vector S-function
f = (f1, . . . , fn) and a meromorphic function F (x1, . . . , xn) such
that the function F ◦ f is defined, the following inclusion holds
[F ◦ f ] ∈M〈[f ]〉.

Proof. Let A be the singular point set of the function f , and B the
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projection of the singular point set of the function F ◦f to the Riemann
sphere.

We can take the set Q = A ∪ B as a forbidden set for the functions
F ◦ f and f .

Let fa be any germ of the function f at a point a, a /∈ Q.

Let Γ denote the fundamental group Γ = π1(S2\Q, a), let Γ1 and Γ2
denote the stabilizers of the germs fa and F ◦ fa.

The group Γ2 is contained in the group Γ1.

Indeed, under continuation along any path γ ∈ Γ1, the vector function
remains unchanged, and therefore the meromorphic function of it is
also unchanged. From the inclusion Γ2 ⊆ Γ1 it follows that [Γ,Γ2] ∈
M〈[Γ,Γ1]〉. Thus we obtain that [F ◦ f ] ∈M〈[f ]〉.

Lemma 7 (on algebraic functions).For every vector S-function f =
(f1, . . . , fn) and an algebraic function y of it defined by the equation
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yk + f1y
k−1 + · · · + fk = 0, (17)

the following inclusion holds: [y] ∈ M〈[f ], S(k)〉, where S(k) is
the permutation group of k elements.

Proof. Let A be the singular point set of the function f , and B the
projection of the set of algebraic ramification points of the function y
to the Riemann sphere.

We can take the set Q = A∪B as a forbidden set for the functions y
and f . Let ya and fa be any germs of the functions y and f at a point
a /∈ Q that are related by the equality

yka + f1,ay
k−1
a + · · · + fk,a = 0.

Let Γ denote the fundamental group Γ = π1(S2 \Q, a), let Γ1 and Γ2
denote the stabilizers of the germs fa and ya.
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Under continuation along any path γ ∈ Γ1, the coefficients of equation
(17) are unchanged, therefore, under continuation along the path γ, the
roots of equation (17) are permuted.

Thus we have a homomorphism τ of the group Γ1 to the group S(k),
τ : Γ1→ S(k).

The group Γ2 is contained in the kernel of the homomorphism τ ,
which implies that [Γ,Γ2] ∈ M〈[Γ,Γ1], S(k)〉. From Proposition 5.7,
we obtain that [y] ∈M〈[f ], S(k)〉.

This concludes the proof of the main theorem.

GROUP-THEORETIC OBSTRUCTIONS TO REPRE-
SENTABILITY BY QUADRATURES

We compute the classes of group pairs that appear in the main the-
orem, and formulate a necessary condition of the representability of
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functions by quadratures, k-quadratures and generalized quadratures.

COMPUTATION OF SOME CLASSES
OF GROUP PAIRS

The main theorem motivates the following problems: describe the
minimal class of group pairs containing the additive group C of com-
plex numbers; describe the minimal classes of group pairs containing,
respectively, the group C and all finite groups, or, the group C and the
group S(k). We give solutions of these problems.

Proposition 1. The minimal complete class of pairs M〈Lα〉 con-
taining given almost complete classes of pairs Lα, consists of the
group pairs [Γ,Γ0] that admit a chain of subgroups

Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0

such that for any i, 1 ≤ i ≤ m − 1, the group pair [Γi,Γi+1] is
contained in some almost complete class Lα(i).
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To prove this, it suffices to verify that the group pairs [Γ,Γ0] satis-
fying the conditions of the proposition, firstly, belong to the complete
classM〈Lα〉 and, secondly, form a complete class of pairs. Both state-
ments follow immediately from definitions. It is also easy to verify the
following propositions.

Proposition 2.The collection of group pairs [Γ,Γ0] such that Γ0 is
a normal subgroup of the group Γ, and the group Γ/Γ0 is commuta-
tive, is the minimal almost complete class of pairs L〈A〉 containing
the class A of all Abelian groups.

Proposition 3. The collection of group pairs [Γ,Γ0] such that Γ0
is a normal subgroup of the group Γ, and the group Γ/Γ0 is finite,
is the minimal almost complete class of pairs L〈K〉 containing the
class K of all finite groups.
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Proposition 4.The collection of group pairs [Γ,Γ0] such that ind(Γ,Γ0) ≤
k, is an almost complete class of group pairs.

The class of group pairs from Proposition 4 will be denoted byL〈ind ≤
k〉. Proposition 4 is of interest to us in connection with the character-
istic property of subgroups in the group S(k), Lemma 3.13.

A chain of subgroups

Γi, i = 1, . . . ,m,Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0

is called a normal tower of the group pair [Γ,Γ0] if the group Γi+1
is a normal subgroup of the group Γi for every i = 1, . . . ,m − 1.
The collection of quotient groups Γi/Γi+1 is called the collection of
divisors with respect to the normal tower.

Theorem 8 (on the classes of pairs M〈A,K〉, M〈A, S(k)〉 and
M〈A〉).
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1. A group pair [Γ,Γ0] belongs to the minimal complete classM〈A,K〉
containing all finite groups and commutative groups if and only
if it has a normal tower such that each divisor in this tower is
either a finite group or a commutative group.

2. A group pair [Γ,Γ0] belongs to the minimal complete classM〈A, S(k)〉
containing the group S(k) and all commutative groups if and
only if it has a normal tower such that each divisor in this tower
is either a subgroup of the group S(k) or a commutative group.

3. A group pair [Γ,Γ0] belongs to the minimal complete classM〈A〉
containing all commutative groups if and only if the monodromy
group of this pair is solvable.

Proof. The first claim of the theorem follows from the description of
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the classes L〈A〉 and L〈K〉 given in Propositions 7.2 and 7.3, and from
Proposition 7.1.

To prove the second claim, consider the minimal complete class of
group pairs containing the classes L〈A〉 and L〈ind ≤ k〉. This class
consists of group pairs [Γ,Γ0] that admit a chain of subgroups

Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0

such that, for every i, 1 ≤ i ≤ m − 1, either the group Γi/Γi+1 is
commutative, or we have ind(Γi,Γi+1) ≤ k (see Propositions 7.3, 7.4
and Proposition 7.1). The class of group pairs just described contains
the group S(k) (see Lemma 3.13) together with all commutative groups,
and it is obviously the minimal complete class of pairs possessing these
properties. It only remains to reformulate the answer. We can gradually
transform the chain of subgroups

Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0
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into a normal tower for the pair [Γ,Γ0]. Suppose that, for j < i, the
group Γj+1 is a normal subgroup of the group

Γj, and ind(Γi,Γi+1) ≤ k,

Let Γi+1 denote the maximal normal subgroup of the group Γi con-
tained in the group Γi+1. It is clear that the quotient group Γi/Γi+1 is
a subgroup of the group S(k). Instead of the initial chain of subgroups,
consider the chain

Γ = G1 ⊇ · · · ⊇ Gm = Γ0

such that Gj = Γj for j ≤ i and

Gj = Γj
⋂

Γi+1 for j > i.

Continuing this process (for at most m steps), we will pass from the ini-
tial chain of subgroups to a normal tower, thus obtaining a description
of the classM〈A, S(k)〉 in the desired terms.
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We now prove claim 3. According to Propositions 7.2 and 7.3, the
group pair [Γ,Γ0] belongs to the classM〈A〉 if and only if there exists
a chain

Γ = Γ1 ⊇ · · · ⊇ Γm ⊆ Γ0

such that Γi/Γi+1 are commutative groups. Consider a chain of groups

Γ = G1 ⊇ · · · ⊇ Gm

such that the group Gi+1 is the commutator of the group Gi for i =
1, . . . ,m − 1. Every automorphism of the group Γ takes the chain of
groups Gi to itself, hence each group Gi is a normal subgroup of the
group Γ. Induction by i shows that Gi ⊆ Γi and, in particular,

Gm ⊆ Γm ⊆ Γ0.

The groupGm is a normal subgroup of the group Γ and, sinceGm ⊆ Γ0,
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we have
Gm ⊆

⋂
µ∈Γ

µΓ0µ
−1.

By definition of the chain Gi, the group Γ/Gm is solvable. The group

Γ/
⋂
µ∈Γ

µΓ0µ
−1

is solvable as a quotient group of the group Γ/Gm. The converse state-
ment (a pair of groups with a solvable monodromy group lies in the
classM〈A〉) is obvious.

Proposition 5. Every commutative group Γ, whose cardinality is
at most the cardinality of the continuum belongs to the class L〈C〉.
Proof. The set of complex numbers C is a vector space over the rational
numbers, whose dimension is the cardinality of the continuum.
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Let {eα} be a basis of this space. The subgroup C̃ of the group C
spanned by the numbers {eα}, is a free Abelian group with the number
of generators equal to the cardinality of the continuum.

Every commutative group Γ, whose cardinality is at most the car-
dinality of the continuum is a quotient group of the group C̃, and,
therefore, Γ ∈ L〈C〉.

From Proposition 7.6 and from the computation of the classes

M〈A,K〉,M〈S(n)〉 and M〈A〉,
it follows that a pair of groups [Γ,Γ0], for which the cardinality of Γ is
at most the cardinality of the continuum belongs to the classes

M〈C,K〉,M〈C, S(n)〉, and M〈C〉
if and only if it belongs to the classes

M〈A,K〉,M〈A, S(n)〉 and M〈A〉.
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This result suffices for our purposes, since the permutation group of
the branches of a function has at most cardinality of the continuum.

Lemma 9. A free noncommutative group Λ does not belong to the
class M〈A,K〉.

Proof. Suppose that Λ ∈M〈A,K〉, i.e. Λ has a normal tower

Λ = Γ1 ⊇ · · · ⊇ Γm = e

such that each divisor in this tower is a finite group or a commutative
group. Each group Γi is free as a subgroup of a free group. The group
Γm = e is commutative. Let Γi+1 be the commutative group with the
smallest index.

For any elements a, b ∈ Γi, there exists a nontrivial relation: if
Γi/Γi+1 is commutative, then, for example, elements

aba−1b−1 and ab2a−1b−2
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commute; if Γi/Γi+1 is finite, then some powers ap, bp of the elements
a, b commute. Therefore, the group Γi has at most one generator,
and it is therefore commutative. The contradiction proves that Λ /∈
M〈A,K〉.

Lemma 10. For k > 4, the symmetric group S(k) does not belong
to the class M〈C, S(k − 1)〉.

Proof. For k > 4, the alternating group A(k) is simple and noncom-
mutative. For this group, the criterion of being in the class

M〈C, S(k − 1)〉
obviously fails. Therefore, the symmetric group S(k) for k > 4 does
not belong to the class

M〈C, S(k − 1)〉.
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Lemma 11. The only transitive permutation group of k elements
generated by transpositions is the symmetric group S(k).

Proof. Let a group Γ be a transitive permutation group generated by
transpositions of the set M with k elements.

A subset M0 ⊆M is said to be complete if every permutation of the
set M0 extends to some permutation of the set M from the group Γ.
Complete subsets exist.

For example, two elements of the set M that are interchanged by a
basis transposition, form a complete subset. Take a complete subset
M0 of the maximal cardinality. Suppose that M0 6= M .

Then, by the induction hypothesis, the restriction of Γ to M0 coin-
cides with S(M0). Since the group Γ is transitive, there exists a basis
transposition µ interchanging some elements

a /∈M0 and b ∈M0.
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The permutation group generated by the transposition µ and the group
S(M0), is the group

S(M0 ∪ {a}).

The set M0∪{a} is complete and contains the set M0. The obtained
contradiction proves that the group Γ is the group S(M).


