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Lecture 19, November 19

NEW DEFINITIONS OF LIOUVILLIAN CLASSES OF
FUNCTIONS

Liouville algebraized the problem of solvability by elementary func-
tions, by quadratures and by functions from other Liuovillian classes.

The main obstacle in the algebraization is the absolutely non-algebraic
operation of composition.

Liouville got round this obstacle in the following way: with every
function g from the list of basic functions, he associated the operation
of post-composing with this function; this operation takes a function f
to the function g ◦ f .
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Liouville noted that all basic elementary functions can be reduced to
the logarithm and the exponential.

The compositions

y = exp f and z = ln f

can be regarded as solutions of the equations

y′ = f ′y and z′ = f ′/f.

Thus, within Liouvillian classes of functions, it suffices to consider
operations of solving some simple differential equations.

After that, the solvability problem for Liouvillian classes of functions
becomes differential-algebraic, and carries over to abstract differential
fields. Let us proceed with the realization of this plan.

Let us recall two classical operations important for us.
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6. Operation of exponentiation that takes a function f to the function
exp f .

7. Operation of logarithmation that takes a function f to the function
ln f .

We will now give new definitions for transcendental Liouvillian classes
of functions.

ELEMENTARY FUNCTIONS

LIST OF BASIC FUNCTIONS: all complex constants and an
independent variable x.

LIST OF ADMISSIBLE OPERATIONS: exponentiation,
logarithmation, arithmetic operations, differentiation.
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FUNCTIONS REPRESENTABLE BY QUADRATURES

LIST OF BASIC FUNCTIONS: all complex constants.

LIST OF ADMISSIBLE OPERATIONS: exponentiation, arith-
metic operations, differentiation, integration.

GENERALIZED ELEMENTARY FUNCTIONS, FUNC-
TIONS REPRESENTABLE BYGENERALIZED QUADRA-
TURES AND BY k-QUADRATURES

are defined in the same way as the corresponding non-generalized
classes of functions; we only need to add the operation of solving alge-
braic equations or the operation of solving algebraic equations of degree
6 k to the list of admissible operations.
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Theorem 1. For every transcendental Liouvillian class of func-
tions the new and the old definitions are equivalent.

Proof. In one direction, the theorem is obvious: it is clear that every
function belonging to some Liouvillian class of functions in the sense
of the new definition, belongs to the same class in the sense of the old
definition.

Let us prove the converse. By Lemma 1.1, the basic elementary
functions lie in the class of elementary and in the class of generalized
elementary functions in the sense of the new definition.

It follows from the same lemma that the classes of functions repre-
sentable by quadratures, generalized quadratures and k-quadratures in
the sense of the new definition also contain the basic elementary func-
tions. Indeed, the independent variable x belongs to these classes, since
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it can be obtained as the integral of the constant function 1, as

x′ = 1.

Instead of the logarithmation, which is not among the admissible
operations in these classes, one can use integration, since

(ln f )′ = f ′/f.

It remains to show that the Liouvillian classes of functions in the
sense of the new definition are stable under composition.

The reason is the following: the composition commutes with all other
operations that appear in the new definition of function classes, except
for differentiation and integration.
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Thus, for example, the result of the operation exp applied to the
composition g ◦f coincides with the composition of the functions exp g
and f , i.e.

exp(g ◦ f ) = (exp g) ◦ f.

Similarly,
ln(g ◦ f ) = (ln g) ◦ f,

(g1 ± g2) ◦ f = (g1 ◦ f )± (g2 ◦ f ),

(g1g2) ◦ f = (g1 ◦ f )(g2 ◦ f ), (g1/g2) ◦ f = (g1 ◦ f )/(g2 ◦ f ).

If a function y satisfies an equation

yn + g1y
n−1 + · · · + gn = 0,

then the function (y ◦ f ) satisfies the equation

(y ◦ f )n + (g1 ◦ f )(y ◦ f )n−1 + · · · + (gn ◦ f ) = 0.
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For differentiation and integration, we have the following simple com-
mutation relations with the operation of composition:

(g)′ ◦ f = (g ◦ f )′(f ′)−1

(if a function f is constant, then the function (g)′ ◦ f is also constant),
and if y is an indefinite integral of a function g, then y◦f is an indefinite
integral of the function (g ◦ f )f ′

(in other words, composing the integral of a function g with a function
f corresponds to the integration of the function g ◦ f multiplied by the
function f ′).
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This implies that the Liouvillian classes in the sense of the new defi-
nition are stable under composition.

Indeed, if a function g is obtained from constants (or from constants
and the independent variable) by operations discussed above,

then the function g ◦ f is obtained by applying the same operations,
or almost the same, as in the case of integration and differentiation, to
the function f .

The theorem is proved.

Remark 1. It is easy to see that the differentiation can also be
excluded from the lists of admissible operations for the Liouvillian
classes of functions. To prove this, it suffices to use the explicit
computation for the derivatives of the exponential and the loga-
rithm and the rules for differentiating formulas containing compo-
sitions and arithmetic operations. However, the exclusion of the
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differentiation does not help in the problem of solvability of equa-
tions in finite terms (sometimes, the exclusion of differentiation
allows to state a result in a more invariant form, see the second
formulation of Liouville’s theorem on Abelian integrals).
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LIOUVILLE EXTENSIONS OF ABSTRACT AND FUNC-
TIONAL DIFFERENTIAL FIELDS

A field K is said to be a differential field if an additive map

a 7→ a′

is defined that satisfies the Leibnitz rule (ab)′ = a′b+ ab′. Such a map
a 7→ a′ is called a derivation. If a particular derivation is fixed, the
element a′ is sometimes called the derivative of a. The operation of
taking derivatives is called differentiation.

An element y of a differential field K is called a constant if y′ = 0.

All constants in a differential field form a subfield, which is called the
field of constants.

In all cases that are of interest to us, the field of constants is the field
of complex numbers.
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We will always assume in the sequel that the differential field has
characteristic zero and an algebraically closed field of constants.

An element y of a differential field is said to be:
an exponential of an element a if

y′ = a′y;

an exponential of integral of an element a if

y′ = ay;

a logarithm of an element a if

y′ = a′/a;

an integral of an element a if

y′ = a.
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In each of these cases, y is defined only up to an additive or a multi-
plicative constant.

Suppose that a differential field K and a set M lie in some differential
field F . The adjunction of the set M to the differential field K is the
minimal differential field K〈M〉 containing both the field K and the
set M

We will refer to the transition from K to K〈M〉 as adjoining the set
M to the field K.
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A differential field F containing a differential field K and having the
same field of constants is said to be an elementary extension of the
field K if there exists a chain of differential fields

K = F1 ⊆ · · · ⊆ Fn = F

such that for every i = 1, . . . , n− 1, the field

Fi+1 = Fi〈xi〉
is obtained by adjoining an element xi to the field Fi, and xi is an
exponential or a logarithm of some element ai from the field Fi.

An element a ∈ F is said to be elementary over K, K ⊂ F , if it is
contained in a certain elementary extension of the field K.
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A generalized elementary extension, a Liouville extension, a gen-
eralized Liouville extension and a k-Liouville extension of a field K
are defined in a similar way.

In the construction of generalized elementary extensions, it is allowed
to adjoin exponentials, logarithms and to take algebraic extensions.

In the construction of Liouville extensions, it is allowed to adjoin
integrals and exponentials of integrals.

In generalized Liouville extensions and k-Liouville extensions, it is also
allowed to take algebraic extensions and to adjoin solutions of algebraic
equations of degrees 6 k, respectively.
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An element a ∈ F is said to be generalized-elementary over K,
K ⊂ F , (representable by quadratures, by generalized quadratures,
by k-quadratures over K) if a

is contained in some generalized elementary extension (Liouville ex-
tension, generalized Liouville extension, k-Liouville extension) of the
field K.

Remark 2. The equation for an exponential of integral is simpler
than the equation for an exponential. That is why in the definition
of Liouville extensions etc. we adjoin exponentials of integrals.
Instead, we could separately adjoin exponentials and integrals.


