Lecture 15–16, October 29, November 3

INTRODUCTION TO TOPOLOGICAL GALOIS THEORY

ON REPRESENTABILITY OF ALGEBRAIC FUNCTIONS BY RADICALS (CONTINUATION)

The field of rational functions of

$$x_1, \ldots, x_N$$

is isomorphic to the field

\mathcal{R}

of germs of rational functions at the point

 $x_0 \in \mathbb{C}^N \setminus \Sigma.$

Consider the field extension

$$\mathcal{R}\langle y_1,\ldots,y_n\rangle$$

of \mathcal{R} by the germs $y_1, \ldots y_n$ at x_0 satisfying the equation (1) from previous lecture:

$$P_n y^n + P_{n-1} y^{n-1} + \dots + P_0 = 0, \qquad (1)$$

Lemma 1. Every permutation S_{γ} from the monodromy group can be uniquely extended to an automorphism of the field

$$\mathcal{R}\{y_1,\ldots,y_n\}$$

over the field \mathcal{R} .

Proof. Every element

$$f \in \mathcal{R}\langle y_1, \ldots, y_n \rangle$$

is a rational function of

 x, y_1, \ldots, y_n .

It can be continued meromorphically along the curve

$$\gamma \in \pi_1(\mathbb{C}^m \setminus \Sigma, x_0)$$

together with

 $y_1,\ldots,y_n.$

This continuation gives the required automorphism, because the continuation preserves the arithmetical operations and every rational function returns back to its original values (since it is a single-valued valued function).

The automorphism is unique because the extension is generated by

 $y_1,\ldots,y_n.$

By definition the *Galois group* of the equation (1) is the group of all automorphisms of the field

$$\mathcal{R}\{y_1,\ldots,y_n\}$$

over the field \mathcal{R} .

According to Lemma 1 the monodromy group of the equation (1) can be considered as a subgroup of its Galois group.

Recall that by definition a multivalued function y(x) is *algebraic* if all its meramorphic germs satisfy the same algebraic equation over the field of rational functions.

Theorem 2. A germ

$$f \in \mathcal{R}\langle y_1, \ldots, y_n \rangle$$

is fixed under the monodromy action if and only if $f \in \mathcal{R}$.

Proof. A germ

$$f \in \mathcal{R}\langle y_1, \ldots, y_n \rangle$$

is fixed under the monodromy action if and only if f is a germ of a single valued function. The field $\mathcal{R}\langle y_1, \ldots, y_n \rangle$ contains only germs of algebraic functions. Any single valued algebraic function is a rational function.

According to the Galois theory Theorem 2 can be formulated in the following way.

Theorem 3. The monodromy group of the equation (1) is isomorphic to the Galois group of the equation (1) over the field \mathcal{R} .

Below we will not rely on Galois theory. Instead we will use Theorem 3 directly.

Lemma 4. The monodromy group acts on the set

 Y_{x_0}

transitively if and only if the equation (1) is irreducible over the field of rational functions.

Proof. Assume that there is a proper subset

$$\{y_1, y_2, \dots y_k\}$$

of Y_{x_0} invariant under the monodromy action. Then the elementary symmetric functions

$$r_1 = y_1 + \dots + y_k, \quad r_2 = \sum_{i < j} y_i y_j, \dots,$$

$$r_k = y_1 \cdots y_k$$

belong to the field \mathcal{R} .

Thus

 $y_1, y_2, \ldots y_k$

are solutions of the degree k < n equation

$$y^k - r_1 y^{k-1} t + \dots (-1)^k r_k = 0.$$

So equation (1) is reducible.

On the other hand if the equation (1) can be represented as a product of two equations over \mathcal{R} then their roots belong to two complementary subsets of Y_{x_0} which are invariant under the monodromy action. \Box

Corollary 5. An irreducible equation (1) defines a multivalued algebraic function y(x) whose set of germs at $x_0 \in \mathbb{C}^N \setminus \Sigma$ is the set Y_{x_0} and whose monodromy group coincides with the monodromy group of the equation (1).

Theorem 3, Corollary 5 and the Galois theory immediately imply the following result.

Theorem 6. An algebraic function whose monodromy group is solvable can be represent by rational functions using the arithmetic operations and radicals.

As we know from previous lectures A stronger version of Theorem 6 can be proven using linear algebra. Let us recall the needed result (in its statement we replaced a commutative algebra V containing all roots of unity by a commutative \mathbb{C} -algebra).

Theorem 7. Let G be a finite solvable group of order n acting by automorphisms on a \mathbb{C} -algebra V. Then every element x of the algebra V can be obtained from the elements of the invariant subalgebra V_0 by takings n-th roots and summing.

Theorem 8. An algebraic function whose monodromy is solvable can be represented by rational functions by root extractions and summations.

Proof. One can prove Theorem 8 by applying Theorem 7 to the monodromy action by automorphisms on the extension

$$\mathcal{R}\langle y_1,\ldots,y_n\rangle$$

with the field of invariants \mathcal{R} .

PROPERTIES OF SOLVABLE GROUPS

Problem 1. We say that G_0 is a characteristic subgroup of a group G if for any automorphism

 $\sigma:G\to G$

the image $\sigma(G_0)$ of the subgroup G_0 is equal to G_0 .

1) Show that any characteristic subgroup of G is a normal subgroup of G.

2) Assume that $G_1 \subset G_0 \subset G$ is a chain of subgroups such that G_1 is a characteristic subgroup of G_0 , and G_0 is a characteristic subgroup of G then G_1 is a characteristic subgroup of G.

3) Assume that $G_1 \subset G_0 \subset G$ is a chain of subgroups such that G_1 is a characteristic subgroup of G_0 , and G_0 is a normal subgroup of G then G_1 is a normal subgroup of G.

Definition 1. The (first) commutator $G^{(1)}$ of a group G is a subgroup of G generated by all elements of the form

$$xyx^{-1}y^{-1}$$

where x, y are any elements of G.

The k-th commutator $G^{(k)}$ of a group g is a commutator of the k_1 -th commutator of G.

Problem 2. Show that the commutator of a group g is a characteristic subgroup of G. Consider the decreasing chain of commutators

$$G \supset G^{(1)} \supset \cdots \supset G^{(k)}$$

Show that for any $1 \le i \le k$ the group $G^{(i)}$ is a normal subgroup of G.

Definition 2. A group G is solvable in k-steps if there is a normal chain

$$G = G_0 \supset G_1 \supset \cdots \supset G_k = e$$

if for any $0 \leq i < k$ the factor group G_i/G_{i+1} is commutative and e is the trivial group.

Problem 3. 1) Show that the commutator is the smallest normal divisor in G such that the corresponding factor group is commutative, i.e. G'h is commutative if and only if H is a normal divisor of G and $H \supset G^{(1)}$.

2) A group G is solvable in k-steps if and only if $G^{(k)} = e$.

Problem 4. 1) Let $\tau : G \to F$ be a onto homomorphism. Show that for any $k \ge 1$ the image $\tau(G^{(k)})$ is equal to $F^{(k)}$.

2) Let $\tau: G \to F$ be a homomorphism. Show that for any $k \geq 1$ the inclusion $\tau^{-1}F^{(k)} \subset G^{(k)}$ holds.

TOPOLOGICAL OBSTRUCTION TO REPRESENTABILITY BY RADICALS

Let us introduce some notation.

By G^m we denote the *m*-th commutator subgroup of the group G. For any $m \ge$ the group G^m is a normal subgroup in G.

By $F(D, x_0)$ we denote the fundamental group of the domain $U = \mathbb{C}^N \setminus D$ with the base point $x_0 \in U$, where D is an algebraic hypersurface in \mathbb{C}^N .

Let H(D, m) be the covering space of the domain $\mathbb{C}^N \setminus D$ corresponding to the subgroup $F^m(D, x_0)$ of the fundamental group $F(D, x_0)$.

We will say that an algebraic function is an *R*-function if it becomes a single-valued function on some covering H(D, m).

Lemma 9. If

$m_1 \ge m_2$ and $D_1 \supset D_2$

then there is a natural projection

 $\rho: H(D_1, m_1) \to H(D_2, m_2).$

Thus if a function y becomes a single-valued function on $H(D_2, m_2)$

then it certainly becomes a single-valued function on $H(D_1, m_1).$

Proof. Let

$$p_*: F(D_1, x_0) \to F(D_2, x_0)$$

be the homomorphism induced by the embedding
 $p: \mathbb{C}^N \setminus D_1 \to \mathbb{C}^N \setminus D_2.$
Lemma 9 follows from the following obvious inclusions:
 $p_*^{-1}[F^{m_2}(D_2, x_0)] \subset F^{m_2}(D_1, x_0)$

$$F^{m_2}(D_1, x_0) \subset F^{m_1}(D_1, x_0).$$

Lemma 10. If y_1 and y_2 are *R*-function then $y_1 + y_2$, $y_1 - y_2$, $y_1 \cdot y_2$, y_1/y_2 also are *R*-functions. *Proof.* Assume that R-functions y_1 and y_2 become single-valued functions on the coverings

 $H(D_1, m_1)$ and $H(D_2, m_2)$.

By Lemma 9 the functions y_1, y_2 become single-valued on the covering

$$H(D,m)$$
 where $D = D_1 \bigcup D_2$ and
 $m = \max(m_1, m_2).$

Thus the functions $y_1 + y_2$, $y_1 - y_2$, $y_1 \cdot y_2$ and y_1/y_2 also become single-valued on on the covering H(D,m). The proof is completed since

$$y_1 + y_2$$
, $y_1 - y_2$, $y_1 \cdot y_2$ and y_1/y_2

are algebraic functions.

Lemma 11. Composition of an *R*-function with the degree q radical is an *R*-function.

Proof. Assume that the function y defined by (1) is R-function which becomes a single-valued function on the covering

 $H(D_1,m).$

Let

$$D_2 \subset \mathbb{C}^N$$

be the hypersurface, defined by the equation

 $P_n P_0 = 0,$

where

$$P_n$$
 and P_0

are the leading coefficient and the constant term of the equation (1).

According to Lemma 9 the function y becomes a single-valued function on the covering

$$H(D,m)$$
 where $D = D_1 \bigcup D_2$.

Let

 $h_0 \in H(D,m)$

be a point whose image under the natural projection

$$\rho: H(D,m) \to \mathbb{C}^N \setminus D$$

is the point x_0 . One can identify the fundamental groups

 $\pi_1(H(D,m),h_0)$ and $F^m(D,x_0)$.

By definition of D_2

the function y never equals to zero or to infinity on H(D, m).

Hence y defines a map

$$y: H(D,m) \to \mathbb{C} \setminus \{0\}.$$

Let

$$y_*: \pi_1(H(D,m),h_0) \to \pi_1(\mathbb{C} \setminus \{0\}, y(h_0))$$

be the induced homomorphism of the fundamental groups. The group

 $\pi_1(H(D,m),h_0)$

is identified with the group $F^m(D, x_0)$ and the group

 $\pi_1(\mathbb{C}\setminus\{0\}, y(h_0))$

is isomorphic to \mathbb{Z} .

So

$$\ker y_* \subset F^{m+1}(D, x_0).$$

Thus all loops from the group

$$y_*(F^{m+1}(D,x_0))$$

do not wind around the origin $0 \in \mathbb{C}$.

Hence any germ of $y^{1/q}$ does not change its value after continuation along a loop from the group

 $F^{m+1}(D, x_0).$

So $y^{1/q}$ is a single-valued function on H(D, m + 1). The proof is completed since $y^{1/q}$ is an algebraic function.