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Lecture 15–16, October 29, November 3

INTRODUCTION TO TOPOLOGICAL GALOIS
THEORY

ON REPRESENTABILITY OF ALGEBRAIC
FUNCTIONS BY RADICALS (CONTINUATION)

The field of rational functions of

x1, . . . , xN

is isomorphic to the field
R

of germs of rational functions at the point

x0 ∈ CN \ Σ.
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Consider the field extension

R〈y1, . . . , yn〉

of R by the germs y1, . . . yn at x0 satisfying the equation (1) from
previous lecture:

Pny
n + Pn−1y

n−1 + · · · + P0 = 0, (1)

Lemma 1. Every permutation Sγ from the monodromy group can
be uniquely extended to an automorphism of the field

R{y1, . . . , yn}

over the field R.
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Proof. Every element

f ∈ R〈y1, . . . , yn〉
is a rational function of

x, y1, . . . , yn.

It can be continued meromorphically along the curve

γ ∈ π1(Cm \ Σ, x0)

together with
y1, . . . , yn.

This continuation gives the required automorphism, because the con-
tinuation preserves the arithmetical operations and every rational func-
tion returns back to its original values (since it is a single-valued valued
function).

The automorphism is unique because the extension is generated by

y1, . . . , yn.
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By definition the Galois group of the equation (1) is the group of all
automorphisms of the field

R{y1, . . . , yn}
over the field R.

According to Lemma 1 the monodromy group of the equation (1) can
be considered as a subgroup of its Galois group.

Recall that by definition a multivalued function y(x) is algebraic if
all its meramorphic germs satisfy the same algebraic equation over the
field of rational functions.

Theorem 2. A germ

f ∈ R〈y1, . . . , yn〉
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is fixed under the monodromy action if and only if f ∈ R.

Proof. A germ

f ∈ R〈y1, . . . , yn〉
is fixed under the monodromy action if and only if f is a germ of a
single valued function. The field R〈y1, . . . , yn〉 contains only germs of
algebraic functions. Any single valued algebraic function is a rational
function.

According to the Galois theory Theorem 2 can be formulated in the
following way.

Theorem 3. The monodromy group of the equation (1) is isomor-
phic to the Galois group of the equation (1) over the field R.
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Below we will not rely on Galois theory. Instead we will use Theorem 3
directly.

Lemma 4. The monodromy group acts on the set

Yx0

transitively if and only if the equation (1) is irreducible over the
field of rational functions.

Proof. Assume that there is a proper subset

{y1, y2, . . . yk}
of Yx0 invariant under the monodromy action. Then the elementary
symmetric functions

r1 = y1 + · · · + yk, r2 =
∑
i<j

yiyj, . . . ,
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rk = y1 · · · · · · · · · yk
belong to the field R.

Thus

y1, y2, . . . yk

are solutions of the degree k < n equation

yk − r1y
k−1t + . . . (−1)krk = 0.

So equation (1) is reducible.

On the other hand if the equation (1) can be represented as a product
of two equations over R then their roots belong to two complementary
subsets of Yx0 which are invariant under the monodromy action.

Corollary 5. An irreducible equation (1) defines a multivalued al-
gebraic function y(x) whose set of germs at x0 ∈ CN \Σ is the set
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Yx0 and whose monodromy group coincides with the monodromy
group of the equation (1).

Theorem 3, Corollary 5 and the Galois theory immediately imply the
following result.

Theorem 6. An algebraic function whose monodromy group is
solvable can be represent by rational functions using the arithmetic
operations and radicals.

As we know from previous lectures A stronger version of Theorem 6
can be proven using linear algebra. Let us recall the needed result (in
its statement we replaced a commutative algebra V containing all roots
of unity by a commutative C-algebra).

Theorem 7. Let G be a finite solvable group of order n acting
by automorphisms on a C-algebra V . Then every element x of
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the algebra V can be obtained from the elements of the invariant
subalgebra V0 by takings n-th roots and summing.

Theorem 8. An algebraic function whose monodromy is solvable
can be represented by rational functions by root extractions and
summations.

Proof. One can prove Theorem 8 by applying Theorem 7 to the mon-
odromy action by automorphisms on the extension

R〈y1, . . . , yn〉
with the field of invariants R.
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PROPERTIES OF SOLVABLE GROUPS

Problem 1. We say that G0 is a characteristic subgroup of a group
G if for any automorphism

σ : G→ G

the image σ(G0) of the subgroup G0 is equal to G0.

1) Show that any characteristic subgroup of G is a normal sub-
group of G.

2) Assume that G1 ⊂ G0 ⊂ G is a chain of subgroups such that
G1 is a characteristic subgroup of G0, and G0 is a characteristic
subgroup of G then G1 is a characteristic subgroup of G.

3) Assume that G1 ⊂ G0 ⊂ G is a chain of subgroups such that
G1 is a characteristic subgroup of G0, and G0 is a normal subgroup
of G then G1 is a normal subgroup of G.
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Definition 1. The (first) commutator G(1) of a group G is a sub-
group of G generated by all elements of the form

xyx−1y−1

where x, y are any elements of G.

The k-th commutator G(k) of a group g is a commutator of the
k1-th commutator of G.

Problem 2. Show that the commutator of a group g is a character-
istic subgroup of G. Consider the decreasing chain of commutators

G ⊃ G(1) ⊃ · · · ⊃ G(k).

Show that for any 1 ≤ i ≤ k the group G(i) is a normal subgroup
of G.
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Definition 2. A group G is solvable in k-steps if there is a normal
chain

G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = e

if for any 0 ≤ i < k the factor group Gi/Gi+1 is commutative and
e is the the trivial group.

Problem 3. 1) Show that the commutator is the smallest normal
divisor in G such that the corresponding factor group is commuta-
tive, i.e. G′h is commutative if and only if H is a normal divisor
of G and H ⊃ G(1).

2) A group G is solvable in k-steps if and only if G(k) = e.

Problem 4. 1) Let τ : G → F be a onto homomorphism. Show

that for any k ≥ 1 the image τ (G(k) is equal to F (k).

2) Let τ : G→ F be a homomorphism. Show that for any k ≥ 1

the inclusion τ−1F (k) ⊂ G(k) holds.
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TOPOLOGICAL OBSTRUCTION TO
REPRESENTABILITY BY RADICALS

Let us introduce some notation.

By Gm we denote the m-th commutator subgroup of the group G.
For any m ≥ the group Gm is a normal subgroup in G.

By F (D, x0) we denote the fundamental group of the domain U =
CN \ D with the base point x0 ∈ U , where D is an algebraic hyper-
surface in CN .

LetH(D,m) be the covering space of the domain CN \D correspond-
ing to the subgroup Fm(D, x0) of the fundamental group F (D, x0).

We will say that an algebraic function is an R-function if it becomes
a single-valued function on some covering H(D,m).
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Lemma 9. If
m1 ≥ m2 and D1 ⊃ D2

then there is a natural projection

ρ : H(D1,m1)→ H(D2,m2).

Thus if a function y becomes a single-valued function on

H(D2,m2)

then it certainly becomes a single-valued function on

H(D1,m1).
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Proof. Let
p∗ : F (D1, x0)→ F (D2, x0)

be the homomorphism induced by the embedding

p : CN \D1→ CN \D2.

Lemma 9 follows from the following obvious inclusions:

p−1
∗ [Fm2(D2, x0)] ⊂ Fm2(D1, x0)

and
Fm2(D1, x0) ⊂ Fm1(D1, x0).

Lemma 10. If y1 and y2 are R-function then

y1 + y2, y1 − y2, y1 · y2, y1/y2

also are R-functions.
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Proof. Assume that R-functions y1 and y2 become single-valued func-
tions on the coverings

H(D1,m1) and H(D2,m2).

By Lemma 9 the functions y1,y2 become single-valued on the covering

H(D,m) where D = D1

⋃
D2 and

m = max(m1,m2).

Thus the functions y1 + y2, y1 − y2, y1 · y2 and y1/y2 also become
single-valued on on the covering H(D,m). The proof is completed
since

y1 + y2, y1 − y2, y1 · y2 and y1/y2

are algebraic functions.
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Lemma 11. Composition of an R-function with the degree q radical
is an R-function.

Proof. Assume that the function y defined by (1) is R-function which
becomes a single-valued function on the covering

H(D1,m).

Let
D2 ⊂ CN

be the hypersurface, defined by the equation

PnP0 = 0,

where
Pn and P0

are the leading coefficient and the constant term of the equation (1).
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According to Lemma 9 the function y becomes a single-valued func-
tion on the covering

H(D,m) where D = D1

⋃
D2.

Let
h0 ∈ H(D,m)

be a point whose image under the natural projection

ρ : H(D,m)→ CN \D
is the point x0. One can identify the fundamental groups

π1(H(D,m), h0) and Fm(D, x0).

By definition of D2
the function y never equals to zero or to infinity on H(D,m).
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Hence y defines a map

y : H(D,m)→ C \ {0}.

Let

y∗ : π1(H(D,m), h0)→ π1(C \ {0}, y(h0))

be the induced homomorphism of the fundamental groups.
The group

π1(H(D,m), h0)

is identified with the group Fm(D, x0)
and the group

π1(C \ {0}, y(h0))

is isomorphic to Z.

So

ker y∗ ⊂ Fm+1(D, x0).
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Thus all loops from the group

y∗(Fm+1(D, x0))

do not wind around the origin 0 ∈ C.
Hence any germ of y1/q does not change its value after continuation

along a loop from the group

Fm+1(D, x0).

So y1/q is a single-valued function on H(D,m + 1). The proof is

completed since y1/q is an algebraic function.


