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Lecture 17, November 5

Lemma 1. An algebraic function y is an R-function if and only if
its monodromy group is solvable.

Proof. Assume that y is defined by (1) from previous lecture:

Pny
n + Pn−1y

n−1 + · · · + P0 = 0, (1)

Let D be the hypersurface

PnJ = 0

where Pn is the leading coefficient and J is the discriminant of (1).

Let M be the monodromy group of y. Consider the natural homo-
morphism

p : F (D, x0)→M.
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If M is solvable then for some natural number m the m-th commu-
tator of M is the identity element e.

The function y becomes single-valued on the covering H(D,m) since

Fm(D, x0) ⊂ p−1(Mm) = p−1(e).

Conversely, if y is a single-valued function on some covering H(D,m)
then

p(Fm(D, x0)) = e.

But

p(Fm(D, x0)) = Mm.

Thus the monodrogy group M is solvable.

Theorem 2. If an algebraic function has unsolvable monodromy
group then it cannot be represented by compositions of rational
functions and radicals
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Proof. Lemma 11 from previous lecture and Lemma 1 show that the
class of R-functions is closed under arithmetic operations and composi-
tions with radicals. Lemma 1 shows that the monodromy group of any
R-function is solvable.
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COMPOSITIONS OF ANALYTIC FUNCTIONS AND
RADICALS

Below we describe a class of multivalued functions in a domain U ⊂
CN representable by composition of single-valued analytic functions
and radicals.

Definition 1. A multivalued function y in U is called an alge-
broidal function in U if it satisfies an irreducible equation

yn + fn−1y
n−1 + · · · + f0 = 0 (2)

whose coefficients fn−1, . . . , f0 are analytic functions in U .

An algebroidal function could be considered as a continuous multi-
valued function in U which has finitely many values.
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Theorem 3. A multivalued function y in the domain U can be
represented by composition of radicals and single valued analytic
functions if and only if y is an algebroidal function in U with solv-
able monodromy group.

To prove the “only if” part one can repeat the proof of Theorem 2
replacing coverings over domains

CN \D
by coverings over domains

U \ D̃
where D̃ is an analytic hypersurface in U .

To prove Theorem 3 in the opposite direction one can use Theorem 7
from previous lecture in the same way as it was used in the proof of
Theorem 8 from previous lecture.



6

LOCAL REPRESENTABILITY

Let us describe a a local version of Theorem 3.

Let y be an algebroidal function in U defined by (2).

One can localize the equation (2) at any point p ∈ U , i.e. one can
replaced the coefficients fi of the equation (2) by their germs at p.

After such a localization the equation (2) can became reducible, i.e.
it can became representable as a product of irreducible equations.

Thus an algebroidal functions y in arbitrary small neighborhood of a
point p defines several algebroidal functions, which we will call ramified
germs of y at p.
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For a ramified germ of y at p the monodromy group is defined (as
the monodromy group of an algebroidal function in an arbitrary small
neighborhood of the point p).

A ramified germ of an algebroidal function y of one variable x in a
neighborhood of a point p ∈ C1 has a simple structure:

its monodromy group is a cyclic group

Z/mZ

and it can be represented as a composition of a radical and an analytic
single-valued function:

y(x) = f ((x− p)1/m))

where m is the ramification order of y. The following corollary follows
from Theorem 16.
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Corollary 4. 1) If a multivalued function y in the domain U can
be represented by composition of an algebroidal functions of one
variable and single valued analytic functions

then the monodromy group of any ramified germ of y is solvable.

2) If the monodromy group of a ramification germ of y at p is
solvable

then in a small neighborhood of p it can be represented by com-
position of radicals and single valued analytic functions.
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The local monodromy group of an algebroidal function y at a point
p ∈ U is the monodromy group of the equation (2) in an arbitrary
small neighborhood of the point p.

The ramified germs of y at the point p correspond to the orbits of the
local monodromy group actions.

This statement can be proven in the same way as Lemma 4 from
previous lecture was proved.



10

APPLICATION TO THE 13-TH HILBERT PROBLEM

In 1957 A.N. Kolmogorov and V.I. Arnold proved the following totally
unexpected theorem which gave a negative solution to the 13-th Hilbert
problem.

Theorem 5. (Kolmogorov–Arnold) Any continuous function of n
variables can be represented as the composition of functions of a
single variable with the help of addition.

The 13-th Hilbert problem has the following algebraic version which
still remains open:
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Is it possible to represent any algebraic function of n > 1 variables
by algebraic functions of a smaller number of variables with the help of
composition and arithmetic operations?

An entire algebraic function y in CN is an algebraic function defined
in U = CN by an equation (2) whose coefficient fi are polynomials. An
entire algebraic function could be considered as a continuous algebraic
function.

It turns out that in Kolmogorov–Arnold Theorem one cannot replace
continuous functions by entire algebraic functions.
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Theorem 6. If an entire algebraic function can be represented as
a composition of polynomials and entire algebraic functions of one
variable, then its local monodromy group at each point is solvable.

Proof. Theorem 6 follows from from Corollary 4.

Corollary 7. A function y(a, b), defined by equation

y5 + ay + b = 0,

cannot be expressed in terms of entire algebraic functions of a single
variable by means of composition, addition and multiplication.

Proof. Indeed, it is easy to check that the local monodromy group of y
at the origin is the unsolvable permutation group S5.
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Division is not a continuous operation and it destroys the locality.
One cannot add division to the operations used in Theorem 6.

It is easy to see that the function y(a, b) from Corollary 4 can be
expressed

in terms of entire algebraic functions of a single variable by means of
composition and arithmetic operations:

y(a, b) = g(b/
4
√

a5) 4
√
a,

where g(u) is defined by equation

g5 + g + u = 0.

The following particular case of the algebraic version of the 13-th
Hilbert problem still remains open.

OPEN PROBLEM Show that there is an algebraic function of
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two variables which cannot be expressed in terms of algebraic functions
of a single variable by means of composition and arithmetic operations.


