Lecture 17, November 5

Lemma 1. An algebraic function y is an R-function if and only if its monodromy group is solvable.
Proof. Assume that y is defined by (1) from previous lecture:

$$
\begin{equation*}
P_{n} y^{n}+P_{n-1} y^{n-1}+\cdots+P_{0}=0, \tag{1}
\end{equation*}
$$

Let D be the hypersurface

$$
P_{n} J=0
$$

where P_{n} is the leading coefficient and J is the discriminant of (1).
Let M be the monodromy group of y. Consider the natural homomorphism

$$
p: F\left(D, x_{0}\right) \rightarrow M
$$

If M is solvable then for some natural number m the m-th commutator of M is the identity element e.
The function y becomes single-valued on the covering $H(D, m)$ since

$$
F^{m}\left(D, x_{0}\right) \subset p^{-1}\left(M^{m}\right)=p^{-1}(e) .
$$

Conversely, if y is a single-valued function on some covering $H(D, m)$ then

$$
p\left(F^{m}\left(D, x_{0}\right)\right)=e
$$

But

$$
p\left(F^{m}\left(D, x_{0}\right)\right)=M^{m} .
$$

Thus the monodrogy group M is solvable.
Theorem 2. If an algebraic function has unsolvable monodromy group then it cannot be represented by compositions of rational functions and radicals

Proof. Lemma 11 from previous lecture and Lemma 1 show that the class of R-functions is closed under arithmetic operations and compositions with radicals. Lemma 1 shows that the monodromy group of any R-function is solvable.

COMPOSITIONS OF ANALYTIC FUNCTIONS AND RADICALS

Below we describe a class of multivalued functions in a domain $U \subset$ \mathbb{C}^{N} representable by composition of single-valued analytic functions and radicals.

Definition 1. A multivalued function y in U is called an algebroidal function in U if it satisfies an irreducible equation

$$
\begin{equation*}
y^{n}+f_{n-1} y^{n-1}+\cdots+f_{0}=0 \tag{2}
\end{equation*}
$$

whose coefficients f_{n-1}, \ldots, f_{0} are analytic functions in U.
An algebroidal function could be considered as a continuous multivalued function in U which has finitely many values.

Theorem 3. A multivalued function y in the domain U can be represented by composition of radicals and single valued analytic functions if and only if y is an algebroidal function in U with solvable monodromy group.

To prove the "only if" part one can repeat the proof of Theorem 2 replacing coverings over domains

$$
\mathbb{C}^{N} \backslash D
$$

by coverings over domains
where \tilde{D} is an analytic hypersurface in U.
To prove Theorem 3 in the opposite direction one can use Theorem 7 from previous lecture in the same way as it was used in the proof of Theorem 8 from previous lecture.

LOCAL REPRESENTABILITY

Let us describe a a local version of Theorem 3.
Let y be an algebroidal function in U defined by (2).
One can localize the equation (2) at any point $p \in U$, i.e. one can replaced the coefficients f_{i} of the equation (2) by their germs at p.
After such a localization the equation (2) can became reducible, i.e. it can became representable as a product of irreducible equations.

Thus an algebroidal functions y in arbitrary small neighborhood of a point p defines several algebroidal functions, which we will call ramified germs of y at p.

For a ramified germ of y at p the monodromy group is defined (as the monodromy group of an algebroidal function in an arbitrary small neighborhood of the point p).

A ramified germ of an algebroidal function y of one variable x in a neighborhood of a point $p \in \mathbb{C}^{1}$ has a simple structure:
its monodromy group is a cyclic group

$$
\mathbb{Z} / m \mathbb{Z}
$$

and it can be represented as a composition of a radical and an analytic single-valued function:

$$
\left.y(x)=f\left((x-p)^{1 / m}\right)\right)
$$

where m is the ramification order of y. The following corollary follows from Theorem 16.

Corollary 4. 1) If a multivalued function y in the domain U can be represented by composition of an algebroidal functions of one variable and single valued analytic functions
then the monodromy group of any ramified germ of y is solvable.
2) If the monodromy group of a ramification germ of y at p is solvable
then in a small neighborhood of p it can be represented by composition of radicals and single valued analytic functions.

The local monodromy group of an algebroidal function y at a point $p \in U$ is the monodromy group of the equation (2) in an arbitrary small neighborhood of the point p.

The ramified germs of y at the point p correspond to the orbits of the local monodromy group actions.

This statement can be proven in the same way as Lemma 4 from previous lecture was proved.

APPLICATION TO THE 13-TH HILBERT PROBLEM

In 1957 A.N. Kolmogorov and V.I. Arnold proved the following totally unexpected theorem which gave a negative solution to the 13-th Hilbert problem.

Theorem 5. (Kolmogorov-Arnold) Any continuous function of n variables can be represented as the composition of functions of a single variable with the help of addition.

The 13-th Hilbert problem has the following algebraic version which still remains open:

Is it possible to represent any algebraic function of $n>1$ variables by algebraic functions of a smaller number of variables with the help of composition and arithmetic operations?

An entire algebraic function y in \mathbb{C}^{N} is an algebraic function defined in $U=\mathbb{C}^{N}$ by an equation (2) whose coefficient f_{i} are polynomials. An entire algebraic function could be considered as a continuous algebraic function.

It turns out that in Kolmogorov-Arnold Theorem one cannot replace continuous functions by entire algebraic functions.

Theorem 6. If an entire algebraic function can be represented as a composition of polynomials and entire algebraic functions of one variable, then its local monodromy group at each point is solvable.

Proof. Theorem 6 follows from from Corollary 4.

Corollary 7. A function $y(a, b)$, defined by equation

$$
y^{5}+a y+b=0
$$

cannot be expressed in terms of entire algebraic functions of a single variable by means of composition, addition and multiplication.

Proof. Indeed, it is easy to check that the local monodromy group of y at the origin is the unsolvable permutation group S_{5}.

Division is not a continuous operation and it destroys the locality.
One cannot add division to the operations used in Theorem 6.
It is easy to see that the function $y(a, b)$ from Corollary 4 can be expressed
in terms of entire algebraic functions of a single variable by means of composition and arithmetic operations:

$$
y(a, b)=g\left(b / \sqrt[4]{a^{5}}\right) \sqrt[4]{a}
$$

where $g(u)$ is defined by equation

$$
g^{5}+g+u=0 .
$$

The following particular case of the algebraic version of the 13 -th Hilbert problem still remains open.

OPEN PROBLEM Show that there is an algebraic function of
two variables which cannot be expressed in terms of algebraic functions of a single variable by means of composition and arithmetic operations.

