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Lecture 13, October 22

UNSOLVABILITY OF THE GENERAL EQUATION OF
THE DEGREE k + 1 > 4 EQUATION BY k-RADICALS

A generic algebraic equation of degree k with coefficients in the field
K is an equation

xk + a1x
k−1 + · · · + ak = 0, (9)

whose coefficients are generic elements of the field K.

Closely related to generic equations is the general equation (9), in
which the coefficients ai are formal variables.

Do there exist formulas containing radicals (k-radicals), the variables
a1, . . . , ak and constants from the field K that give solutions of an
equation xk + a0

1x
k−1 + · · ·+ a0

0 = 0 as one substitutes the particular

elements a0
1, . . . , a0

k of the field K for the variables?



2

This question can be formalized in the following way. The general
algebraic equation can be viewed as an equation over the field

K{a1, . . . , ak}
of rational functions in k independent variables a0

1, . . . , a0
k with coef-

ficients in the field K (in this interpretation, the coefficients of general
equation are the elements a0

1, . . . , a0
k of the field K{a1, . . . , ak}).

We can now ask the question of whether general equation og degree n
is solvable over the field K{a1, . . . , ak} by radicals (or by k-radicals).
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Let us compute the Galois group of equation (7) over the fieldK{a1, . . . , ak}.

Consider yet another copy K{x1, . . . , xk} of the field of rational func-
tions in k variables equipped with the group S(k) of automorphisms
acting by permutations of the variables x1, . . . , xk.

The invariant subfield KS{x1, . . . , xk} consists of symmetric rational
functions. By the Fundamental Theorem of Symmetric Functions, this
field is isomorphic to the field of rational functions of σ1 = x1 + · · · +
xk, . . . , σn = x1 . . . xk.

Therefore, the map

F (a1) = −σ1, . . . , F (an) = (−1)nσn

extends to an isomorphism

F : K{a1, . . . , ak} → KS{x1, . . . , xk}.
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Let us identify the fields

K{a1, . . . , ak} and KS{x1, . . . , xk}
by the isomorphism F

From the comparison of Vieta formulas with the formulas defining
the map F , it becomes clear that under this identification,

the variables become the roots of equation (7),
the fieldK{x1, . . . , xk} becomes the extension of the fieldK{a1, . . . , ak}

by adjoining all roots of equation (7),
the automorphism group S(k) becomes the Galois group of equa-

tion (7).
Thus we have proved the following statement:

Proposition 1. The Galois group of equation (7) over the field
K{a1, . . . , ak} is isomorphic to the permutation group S(k).
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Theorem 1.The general equation of degree k+1 > 4 is not solvable
by taking radicals and by solving auxiliary algebraic equations of
degree k or less.

Proof. The group S(k+1) has the following normal tower of subgroups:

{e} ⊂ A(k + 1) ⊂ S(k + 1),

where A(k + 1) is the alternating group.

For k + 1 > 4, the group A(k + 1) is simple.

The group A(k + 1) is not a subgroup of the group S(k) since the
group A(k + 1) has more elements than the group S(k).

Thus, for k + 1 > 4, the group S(k + 1) is not k-solvable.

As a corollary, we obtain the following theorem.
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Theorem 2 (Abel).The general algebraic equation of degree 5 and
higher is not solvable by radicals.

Remark. Abel had proved this theorem by a different method even
before Galois theory appeared. His approach has been later developed
by Liouville. Liouville’s method allows, for example, to prove that many
elementary functions their integrals cannot be computed by elementary
functions.
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UNSOLVABILITY OF COMPLICATED EQUATIONS
BY SOLVING SIMPLIER EQUATIONS

Is it possible to solve a given complicated algebraic equation using
the solutions of other, simpler, algebraic equations as admissible oper-
ations?

We have considered two well-posed questions of this kind:

the question of solvability of equations by radicals (in which the sim-
pler equations are those of the form xn − a = 0) and

the question of solvability of equations by k-radicals (in which the
simpler equations are those of the form xn − a = 0 and all algebraic
equations of degree k or less).
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Now we discuss the general question of solvability of complicated
equation by solving simpler equations.

First we set up the problem of B-solvability of equations and discuss
a necessary condition of the solvability.

Than we discuss classes of groups related to the problem ofB-solvability
of equations.
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A NECESSARY CONDITION OF OF SOLVABILITY

Let B be a collection of algebraic equations.

An algebraic equation defined over a field K is automatically defined
over any bigger field K1, K ⊂ K1. We will assume that the collection
B of algebraic equations contains, together with any equation defined
over a field K, the same equation considered as an equation over any
bigger field K1 ⊃ K.

Definition. An algebraic equation over a field K is said to be solv-
able by solving equations from the collection B, or B-solvable for
short, if there exists a chain of fields

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn

such that all roots of the equation belong to the field Kn, and, for
every i = 0, . . . , n − 1, the field Ki+1 is obtained from the field Ki
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by adjoining all roots of some algebraic equation from the collection B
defined over the field Ki.

Denote by G(B) the set of Galois groups of all equations belonging
to class B.

Proposition 2. The set G(B) contains, together with any finite
group, all subgroups of it.

Proof. Suppose that some equation defined over the field K belongs to
the collection B. Let P be the field obtained from K by adjoining all
roots of this equation, G the Galois group of the field P over the field
K, and G1 ⊂ G any subgroup. Let K1 denote the intermediate field
corresponding to the subgroup G1. The Galois group of our equation
over the field K1 coincides with G1. By our assumption, the collection
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B contains, together with any equation defined over the field K, the
same equation defined over the bigger field K1.

Theorem 3 (A necessary condition of B-solvability). If an algebraic
equation over a field K is B-solvable, then its Galois group G ad-
mits a normal tower

G = G0 ⊃ G1 · · · ⊃ G1 = {e}
of subgroups, in which every quotient Gi/Gi+1 is a quotient of some
group from G(B).
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Proof. Indeed, the B-solvability of an equation over the field K means
the existence of a chain of extensions

K = K0 ⊂ K1 · · · ⊂ Kn,

in which the field Ki+1 is obtained from the field Ki by adjoining all
roots of some equation from B, and the last field Kn contains all roots
of the initial algebraic equation.

Let
G = G0 ⊃ · · · ⊃ Gn = {e}

be the chain of Galois groups of this equation over this chain of subfields.

We will show that the chain of subgroups thus obtained satisfies the
property stated in the theorem.

Indeed, the group Gi+1 is a normal subgroup of the group Gi;

moreover, the quotient group Gi/Gi+1 is simultaneously a quotient
of the
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Galois group of the field Ki+1 over the field Ki. Since the field Ki+1
is obtained from the field Ki by adjoining all roots of some equation
from B, the Galois group of the field Ki+1 over the field Ki belongs to
the set G(B).
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CLASSES OF FINITE GROUPS

Let M be a set of finite groups.

Definition. Define the completion K(M) of the set M as the mini-
mal class of finite groups containing all groups from M and satisfying
the following properties:

1. together with any group, the classK(M) contains all subgroups of it;

2. together with any group, the class K(M) contains all quotients of it;

3. if a group G has a normal subgroup H such that the groups H and
G/H are in the class K(M), then the group G is in the class K(M).

The theorem proved above suggests the following problem:

for a given set M of finite groups, describe its completion K(M).
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Recall the Jordan–Hölder theorem.

A normal tower

G = G0 ⊃ · · · ⊃ Gn = {e}
of a group G is said to be unrefinable (or maximal) if all quotient
groups Gi/Gi+1 of this tower are simple groups.

The Jordan–Hölder theorem asserts that for every finite group G,
the set of quotient groups associated to any unrefinable normal
tower of the group G does not depend on the choice of an unre-
finable tower (and hence is an invariant of the group).

Proposition 3.A group G belongs to the class K(M) if and only if
every quotient group Gi/Gi+1 with respect to an unrefinable normal
tower of the group G is a subquotient of a group from M .

A subquotient is a quotient of a subgroup.
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Proof. Firstly, by definition of the class K(M), every group G satis-
fying the assumptions of the proposition belongs to the class K(M).
Secondly, it is not hard to verify that groups G satisfying the assump-
tions of the proposition have properties 1–3 listed in the definition of
the completion of M .

Corollary 4. The following statements hold.

1. The completion of the class of all finite Abelian groups is the
class of all finite solvable groups.

2. The completion of the set consisting of all Abelian groups and
the group S(k) is the class of all finite k-solvable groups.

Remark. Necessary conditions of solvability of algebraic equations
by radicals and by k-radicals are particular cases of Theorem 10.2.


