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Lecture 11, October 15

A CRITERIUM OF SOLVABILITY OF EQUATIONS
BY RADICALS

An algebraic equation over a field K is said to be solvable by radicals
if there exists a chain of extensions

K = K0 ⊂ K1 · · · ⊂ Kn,

in which every field Kj+1 is obtained from the field Kj, j = 0, . . . ,
n− 1, by adjoining some radical, and the field Kn contains all roots of
this algebraic equation.

Is a given algebraic equation solvable by radicals?

Galois theory was created to answer this question.

First we consider the multiplicative group of all n-th roots of unity
that lie in a given field K.
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Then we consider the Galois group of the equation xn = a.

After that finally we give a criterion of solvability of an algebraic
equation by radicals (in terms of the Galois group of this equation).

ROOTS OF UNITY

Let K be a field. Let
K∗E

denote the multiplicative group of all roots of unity lying in the field
i.e. a ∈ K∗E if and only if a ∈ K, and, for some positive integer n, we
have

an = 1.



3

Proposition 1. If there is a subgroup of the group K∗E consisting

of l elements, then the equation xl = 1 has exactly l solutions in
the field K, and the subgroup under consideration is formed by all
these solutions.

Proof. Every element in a group of order l satisfies the equation

xl = 1.

The field contains no more than l roots of this equation, and the sub-
group has exactly l elements by our assumption.

From Proposition it follows, in particular, that the group K∗E has at
most one subgroup of any given finite order.
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Problem 1. A finite Abelian group that has at most one cyclic
subgroup of any given finite order is cyclic. In particular, every
finite subgroup in the group K∗E is cyclic.

HINT: Every finite cyclic group is isomorphic to the group

G = (Z/pk1
1 Z)× · · · × (Z/pknn Z).

Show that if such group satisfies the assumptions of the Problem then
it is cyclic by the Chinese Remainder Theorem.

Remark 1. Therefore the groups of roots of unity with the given
number m of elements are isomorphic to each other. In the field
of complex numbers any multiplicative group of order m consisting
of roots of unity and is obviously cyclic.

A cyclic group with m elements identifies with the group of residues
modulo m.
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Proposition 2. The full automorphism group of the group

Z/mZ

is isomorphic to the multiplicative group of all invertible elements
in the ring of residues modulo m.

In particular, this automorphism group is commutative.

Proof. An automorphism F of the group

Z/mZ

is uniquely determined by the element F (1), which must obviously
be invertible in the multiplicative group of the ring of residues. This
automorphism coincides with the multiplication by F (1).
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Proposition 3. Suppose that a Galois extension P of a field K is
obtained from the field K by adjoining some roots of unity. Then
the Galois group of the field P over the field K is commutative.

Proof. All roots of unity that lie in the field P form a cyclic group with
respect to multiplication.

A transformation from the Galois group defines an automorphism
of this group and is uniquely determined by this automorphism, i.e.
the Galois group embeds into the full automorphism group of a cyclic
group.

Thus the needed statement follows from the previous Proposition.
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GALOIS GROUP OF THE EQUATION xn = a

Proposition 4. Suppose that a field K contains all roots of unity
of degree n and n is not divisible by the characteristic is of the
field.

Then the Galois group of the equation

xn − a = 0

over the field K is a subgroup of the cyclic group with n elements
(provided that a ∈ K).

Proof. The group of all roots of unity of degree n is cyclic.

Let ξ be any generator of this group. Fix any root x0 of the equation

xn − a = 0.
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Then we can label all roots of the equation xn− a = 0 with residues
i modulo n by setting

xi = ξix0.

Suppose that a transformation g in the Galois group takes the root x0
to the root xi. Then

g(xk) = g(ξkx0) = ξkq(x0) = ξk+ix0 − xk+i

(recall that, by our assumption, ξ ∈ K, hence g(ξ) = ξ),
i.e. every transformation in the Galois group defines a cyclic permu-

tation of the roots.

Therefore, the Galois group embeds into the cyclic group with n ele-
ments.
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Lemma 1. The Galois group G of the equation

xn − a = 0

over the field K has a commutative normal subgroup

G1

such that the corresponding quotient

G/G1

is commutative.

In particular, the group G is solvable.

Proof. Let P be an extension of the field K obtained by adjoining all
roots of the equation

xn = a

to this field.
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The ratio of any two roots of the equation xn = a is a root of unity
of degree n.

This implies that the field P contains all n-th roots of unity. Let

K1 ⊃ K

denote the extension of the field K obtained by adjoining all roots of
unity of degree n.

We have the inclusions

K ⊂ K1 ⊂ P.

Let G1 denote the Galois group of the equation xn = a over the field
K1.

By As we already proved the group G1 is commutative.

The group G1 is a normal subgroup of the group G, since the field
K1 is a Galois extension of the field K.
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The quotient group G/G1 is commutative since, by Lemma 8.4, the
Galois group of the field K1 over the field K is commutative.

SOLVABILITY BY RADICALS

The following criterion of solvability of algebraic equations by radicals
holds:

Theorem 2 (A criterion of solvability of equations by radicals). An
polynomial equation over some field K is solvable by radicals if and
only if its Galois group is solvable.

We assume that the equation has no multiple root and the degree
of the equation is not divisible by the characteristic of the field K.



12

Proof. Suppose that an equation can be solved by radicals.

Solvability of the equation by radicals over a field K means the exis-
tence of a chain of extensions

K = K0 ⊂ K1 · · · ⊂ Kn,

in which every fieldKj+1 is obtained from the fieldKj, j = 0, 1, . . . , n−
1, by adjoining a radical, and the fieldKn contains all roots of the initial
equation.

Let Gj denote the Galois group of our equation over the field Kj.

Let us see what happens with the Galois group when we pass from
the field Kj to the field Kj+1.

According to Theorem we proved above the group Gj+1 is a normal
subgroup of the group Gj,
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moreover, the quotient Gj/Gj+1 is simultaneously a quotient of the
Galois group of the field Kj+1 over the field Kj.

Since the field Kj+1 is obtained from the field Kj by adjoining a
radical, we conclude by that the Galois group of the field Kj+1 over
the field Kj is solvable.

(In the case, where the field K contains all roots of unity, the Galois
group of the field Kj+1 over the field Kj is commutative).

Since all roots of the algebraic equation lie in the field Kn by our
assumption, the Galois group Gn of the algebraic equation over the
field Kn is trivial.

Thus, if the equation can be solved by radicals, then its Galois group
admits a chain of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn,
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in which every group Gj+1 is a normal subgroup of the group Gj with
a solvable quotient Gj/Gj+1, and the group Gn is trivial.

(If the field K contains all roots of unity, then the quotients Gj/Gj+1
are commutative.)

Thus, if the equation is solvable by radicals, then its Galois group is
solvable.
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Suppose now that the Galois group G of an algebraic equation over
the field K is solvable.

Let K̃ denote the field obtained from the field K by adjoining all
roots of unity. The Galois group G̃ of the algebraic equation over the
bigger field K̃ is a subgroup of the Galois group G.

Hence the Galois group G̃ is solvable. Let P̃ denote the field obtained
from the field K̃ by adjoining all roots of the algebraic equation.

The solvable group G̃ acts by automorphisms of the field P̃ with
the invariant subfield K̃. By Theorem 1.2, every element of the field
P̃ is expressible by radicals through the elements of the field K̃. By
definition of the field K̃, every element of this field is expressible through
the roots of unity and the elements of the field K. The theorem is
proved.


