Lecture 5, September 24

LAGRANGE INTERPOLATION POLYNOMIALS WITH MULTIPLE INTERPOLATION POINTS

Consider a set $\Lambda \subset K$ containing k points

$$\lambda_1, \ldots, \lambda_k$$

equipped with natural multiplicities

$$m_1 + \cdots + m_k$$

whose sum equals to n.

The monic polynomial

$$T(t) = (t - \lambda_1)^{m_1} \cdot \dots \cdot (t - \lambda_k)^{m_k}$$

is naturally related to the set Λ .

Definition 1. The polynomial

$$L(t) = a_0 + a_1t + \dots + a_{n-1}t^{n-1}$$

of degree < n is called the Lagrange interpolating polynomial with the interpolation points $\lambda_1, \ldots, \lambda_k$ of multiplicities m_1, \ldots, m_k and the interpolation data

$$c_1^{(0)}, \dots c_1^{(m_1-1)}, c_2^{(0)}, \dots, c_2^{(m_2)-1}, c_k^{(0)}, \dots, c_k^{(m_k-1)},$$

if for any i, m where $1 \le i \le k, 0 \le m < m_i$ the following identities hold:

$$L^{(m)}(\lambda_i) = c_i^{(m)}$$

where $L^{(0)}(\lambda_i) = L(\lambda_i)$ and for m > 0 $L^{(m)}(\lambda_i)$ is the value of m-th derivative of L at the point λ_i .

Theorem 1. There exists and unique Lagrange interpolation polynomial for any interpolation points $\lambda_1, \ldots, \lambda_k \in K$ of multiplicities m_1, \ldots, m_k such that $\sum m_i = n$ for any set of interpolation data

$$c_1^{(0)}, \dots c_1^{(m_1-1)}, c_2^{(0)}, \dots, c_2^{(m_2)-1}, c_k^{(0)}, \dots, c_k^{(m_k-1)}.$$

Proof. Consider

$$L(t) = a_0 + a_1t + \dots + a_{n-1}t^{n-1}$$

as a polynomial with undetermined coefficients

$$a_0, \ldots, a_{n-1}.$$

Each identity

$$L^{(m)}(\lambda_i) = c_i^{(m)}$$

provides a linear equation on the coefficients.

Thus we have n linear equations for n unknowns.

The corresponding homogeneous system has only zero solution.

Indeed its solution corresponds to the polynomial L of degree < n having roots

$$\lambda_1,\ldots,\lambda_k$$

with multiplicities

$$m_1,\ldots,m_k$$

whose sum is n. But if a polynomial of degree < n has n roots counting with multiplicities then it identically equal to zero.

Because the homogeneous system has only zero solution, any corresponding non homogeneous system has exactly one solution. \Box

Let $\lambda_i \in \Lambda$ be an interpolation point of multiplicity m_i

Definition 2. A principal Lagrange resolvent \hat{T}_i corresponding to λ_i is the Lagrange interpolation polynomial with the following interpolation data:

- 1) $c_j^{(m)} = 0$ for all pairs (j,m) with $1 \le j \le k, 0 \le mm \le m_i$, except the pair (i,1),
 - 2) $c_i^{(1)} = 1$.

Definition 3. Let (T) be the principal ideal in the polynomial ring K[t] consisting of all polynomials divisible by the polynomial

$$T(t) = (t - \lambda_1)^{m_1} \cdot \dots \cdot ((t - \lambda_k)^{m_k}.$$

We will write

 $Q_1 \equiv Q_2 \mod (T)$ if the polynomial $Q_1(t) - Q_2(t)$ is divisible by the polynomial T(t).

Proposition 1. The following statements hold.

Principal Lagrange resolvents \widehat{T}_i satisfy the following relations: $\widehat{T}_1 + \cdots + \widehat{T}_k - 1 \equiv 0 \mod (T)$. Moreover $\widehat{T}_1 + \cdots + \widehat{T}_k - 1 = 0$. $\widehat{T}_i \widehat{T}_j \equiv 0 \mod (T)$ for $i \neq j$, $\widehat{T}_i^2 \equiv \widehat{T}_i$, $\mod (T)$, $(t - \lambda_i)^{m_i} \widehat{T}_i \equiv 0 \mod (T)$.

Proof. Let us show for example that $\widehat{T}_i^2 \equiv \widehat{T}_i \mod (T)$. Polynomial \widehat{T}_i^2 has the same interpolation data as the polynomial \widehat{T}_i . Indeed since about the point λ_i the polynomial \widehat{T}_i equal to $1 + o(t - \lambda_i)^{m_i}$. About any other point $\lambda_j \neq \lambda_i$ the polynomial \widehat{T}_i equal to $0 + o(t - \lambda_j)^{m_j}$. Thus \widehat{T}_i^2 equal to $1 + o(t - \lambda_i)^{2m_i}$ about λ_i and equal to $0 + (t - \lambda_j)^{2m_j}$ about λ_i . So the difference of these polynomials is divisible by T.

All other identities modulo (T) from Proposition have the similar proof.

The identity

 $\widehat{T}_1 + \dots + \widehat{T}_k - 1 \equiv 0 \mod (T)$ implies the identity

 $\widehat{T}_1 + \dots + \widehat{T}_k - 1 = 0$ since the degree of the polynomial $\widehat{T}_1 + \dots + \widehat{T}_k - 1$ is smaller than the degree of the polynomial T.

Consider a vector space V (possibly, infinite dimensional) over the field K and a linear operator

$$A:V\to V$$
.

Suppose that the operator A satisfies a polynomial equation

$$T(A) = A^{n} + a_1 A^{n-1} + \dots + a_{n-1} A + a_n E = 0,$$

where $a_i \in K$, and E is the identity operator.

Assume that the polynomial

$$T(t) = t^n + a_1 t^{n-1} + \dots + a_n$$

has k different roots

$$\lambda_1,\ldots,\lambda_k$$

in the field K of multiplicities m_1, \ldots, m_k .

Definition 4. The operator

$$\widehat{L}_i = \widehat{T}_i(A),$$

where $\widehat{T}_i(t)$ is the principal Lagrange resolvent corresponding to λ_i will be called the principal Lagrange resolvent of the operator A corresponding to the root λ_i .

Definition 5. For every vector $x \in V$, the vector $\widehat{x}_i = \widehat{L}_i x$ will be called the principal Lagrange resolvent (corresponding to the root λ_i) of the operator.

Problem 1. Prove Proposition stated below.

Proposition 2. The following statements hold.

1. Principal Lagrange resolvents L_i of the operator A satisfy the following relations:

$$L_1 + \dots + L_k = E,$$

$$L_i L_j = 0 \text{ for } i \neq j,$$

$$L_i^2 = L_i,$$

$$(A - \lambda_i E)^{m_i} L_i = 0.$$

2. Every vector $x \in V$ is representable as the sum of its principal Lagrange resolvents, i.e. $x = \widehat{x}_1 + \cdots + \widehat{x}_k$.

Moreover, all nonzero principal Lagrange resolvents widehat x_i of the vector x are linearly independent and are equal to generalized eigenvectors of multiplicity m_i of the operator A with the corresponding eigenvalues λ_i , i.e.

$$A - \lambda_i E)^{m_i} \widehat{x}_i = 0.$$

Let $U \subset K$ be a set in the ground field K containing a set of interpolation points Λ .

Let $y: U \to K$ be any function such that its derivatives $y^{(m)}(\lambda_i)$ of the order $m < m_i$ at any interpolation point λ_i of multiplicity m_i are defined.

This condition is satisfied for any rational function y whose poles do not belong to the set Λ .

If $K = \mathbb{C}$ this condition is also satisfied for a meromorphic function y while poles do not belong to Λ .

Definition 6. An interpolation polynomial of y with the interpolations points

$$x_1,\ldots,x_k$$

of multiplicities

$$m_1,\ldots,m_k$$

 $m_1 + \cdots + m_k = n$ is a polynomial L which is equal to y about the points

$$x_1,\ldots,x_k$$

up to the orders $m_1 - 1, \ldots, m_k - 1$, i.e. the following identities hold:

$$L(x_i) = y(x_i), \dots, L^{(m_i-1)}(x_i) = y^{(m_i-1)}(x_i)$$

for all $1 \leq i \leq k$.

The unique interpolation polynomial whose degree is smaller than

 $n = m_i + \cdots + m_k$ is called the Lagrange interpolation polynomial of y.

Example 1. The interpolation polynomial L of a function y(x) with one interpolation point

 x_1

of multiplicity

m

coincides with the degree m-1 Taylor polynomial of y at the point x_1 t.i. L(x) is the following function:

$$L(x) =$$

$$= y(x_1) + y'(x_1)(x - x_1) + \dots + \frac{1}{(m-1)!}y^{(m-1)}(x_1)(x - x_1)^{m-1}.$$

Problem 2. Prove the Proposition and the Theorem stated below.

Proposition 3. Assume that a degree n polynomial T has k different roots $x_1, \ldots, x_k \in K$ of multiplicities m_1, \ldots, m_k with $\sum m_i = n$.

Then for any polynomial Q a polynomial L is its interpolation polynomial with the interpolation points equal to the roots of T (with the corresponding multiplicities) if and only if

$$Q - L \equiv 0 \mod (T).$$

The Lagrange interpolation polynomial of Q with the above interpolation points is the remainder R of its division of Q by T

Theorem 2. Let A be a $(n \times n)$ -matrix with entries in the field K having k different eigenvalues x_1, \ldots, x_k and let Q be any polynomial over K. Then

$$Q(A) = R(A),$$

where R is the Lagrange interpolation polynomial of Q with the interpolation points x_1, \ldots, x_k .

FACTOR RING K[t]/(T) AND INTERPOLATION

Let $\Lambda = \{\lambda_i\} \subset K$ be set of k points equipped with multiplicities m_1, \ldots, m_k with $\sum m_i = n$ be the set of the root of a degree n polynomial T.

The interpolation of polynomials with the interpolation points Λ is very related to the ring

$$K[t]/(T)$$
.

Indeed a polynomial L is an interpolation polynomial of a polynomial Q if

$$L \equiv Q \mod T$$

and the Lagrange interpolation polynomial of Q is its interpolation polynomial of the smallest degree.

Let me recall the following Lemma

Lemma 3. A polynomial Q is invertible if K[t]/(T) if and only if q have no common divisors with t, i.e. if the greater common divisor of q an t is 1.

Proof. Indeed if I and Q have a divisor D of positive degree then RQ for any R has divisor D and can not be $\equiv 1 \mod (T)$.

It qcd of Q and t is 1, then one can find L_1 and L_2 such that

$$L_1Q + L_2T \equiv 1 \mod (T).$$

(one can fined L_1 and L_2 constructively using Euclidean algorithm.) The polynomial L-1 is the inverse element to Q1 modulo (T).

Assume that $\Lambda_1 \subset K$ and $\Lambda_2 \subset K$ are not intersecting finite sets of points equipped with multiplicities $m_1, \ldots, m-p$ and l_1, \ldots, l_q with $\sum m_i = n_1$ and $\sum l_i = n_2$. Let T_1, T_2 be monic polynomials of degrees n_1, n_2 whose sets of roots are Λ_1 and Λ_2

The interpolation problem with the interpolation set

$$\Lambda = \Lambda_1 \cup \Lambda_2$$

can be reduced to interpolations with the interpolation sets Λ_1 and λ_2

Since the polynomials T_1 and T_2 have no common roots the polynomial T_1 can be invert in the ring $K[t]/(T_2)$ and the polynomial T_2 can be invert in $K[t]'(T_1)$.

Problem 3. The Lagrange interpolation polynomial L(Q) of a polynomial Q with the interpolation set Λ is equal to

$$[QT_2^{-1}]_1T_2 + [QT_1^{-1}]_2T_1.$$

Where $[QT_2^{-1}]_1$ is the Lagrange interpolation polynomial of the rational function QT_2^{-1} with the interpolation set Λ_1 and

 $[QT_1^{-1}]_2$ is the Lagrange interpolation polynomial of the rational function QT_1^{-1} with the interpolation set Λ_2

could be reduced to the problems o

of interpolation points $\Lambda = \Lambda_1 \cup \Lambda_2$.

Assume that an operator A satisfies a polynomial equation

$$T(A) = 0.$$

Where T is a degree n polynomials over K whose roots Λ belong to K.

Problem 4. 1) Assume that $0 \notin \Lambda$ and L(t) is an interpolation polynomial with the interpolation set Λ of the function

 $\frac{1}{t}$

over the set Λ .

Then the operator A is invertible an

$$A^{-1} = L(A).$$

- 2) Consider a rational function f(t) = P(t)/Q(t) such that Q does not vanish at any point of Λ . Let L be an interpolation polynomial of f with the interpolation set Λ . Then the operator $P(A)[Q(A)]^{-1}$ is defined and it is equal to L(A).
- 3) Assume that F(t) is an entire function of complex variable t, and let its interpolation polynomial with the interpolation set λ . Then F(A) = L(A).
 - 4) Assume that the polynomial T is equal to $(t-\lambda_1)^n$ and Λ is the

set containing one point λ_1 of multiplicity n. Let F(t) be a rational function such that λ_1 is not a pole of f, or assume that F(t) is an entire function of complex variable t. Then $F(A) = T_{\lambda_1}^{(n-1)}(A)$ where $T_{\lambda_1}^{(n-1)}(t)$ is the degree n-1 Taylor polynomial of F at the point (λ_1) . Thus

$$F(A) == T_{\lambda_1}^{(n-1)}(A) =$$

$$= F(\lambda_1)E + F'(\lambda_1)(A - E) + \dots + \frac{1}{(n-1)!}F^{(n-1)}(\lambda_1)(A - E)^{n-1}.$$

Combining the previous problem with last problem one obtains the following result.

Theorem 4. Let $L_i(A)$ be the principal resolvent of an operator A corresponding to a root λ_i of a polynomial T such that T(A) = 0. Let F be a rational function in t whose poles do not contain any of the roots λ_i of T. Then

$$F(A) = \sum_{i} \left(T_{\lambda_i}^{(m_i - 1)} F \right) L_i(A),$$

where $\left(T_{\lambda_i}^{(m_i-1)}F\right)$ is the Taylor polynomial of degree m_i-1 of F at the point λ_i .

Let us present a formula for the principal resolvent \widehat{L}_i .

Problem 5. Let $\Lambda = \{\lambda_i\} \subset K$ be a set containing k point equipped with multiplicities m_i with $\sum \lambda_i = n$ and let T be the monic degree n polynomial whose set of roots is Λ . The the principal resolvent \widehat{L}_i of T corresponding to λ_i is given by the following formula

$$\left(T_{\lambda_i}^{(m_i-1)}F\right)\prod_{j\neq i}(t-\lambda_j),$$

where

$$F = \frac{1}{\prod_{j \neq i} (t - \lambda_j)}.$$

where $\left(T_{\lambda_i}^{(m_i-1)}F\right)$ is the Taylor polynomial of degree m_i-1 of F at the point λ_i .