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Lectures 3, September 17
REPRESENTABILITY BY RADICALS

We will discuss a procedure which allows to represent an element by
radicals. Usually representability by radicals is considered for elements
belonging to some field. The fact that we deal with fields is barely used
in the construction of representation by radicals.

To emphasize this, we describe this construction where a field is re-
placed with an algebra V , which may even be non-commutative.

In fact, we do not even need to multiply different elements of the
algebra. We will only use the operation of taking an integer power k of
an element, and the fact that this operation is homogeneous of degree
k under multiplications by elements of the base field:

(λa)k = λkak

for all a ∈ V , λ ∈ K).
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Let V be an algebra over the field K containing all roots of unity.
Let G be a group of order acting by automorphisms of the algebra V .

Definition 1. The subalgebra V0 consisting of all fixed elements x
fixed under the G action, i.e. of such x that for any g ∈ G the
identity g(x) = x holds, is called the invariant subalgebra of V .

Proposition 1. Let G be a finite commutative group of order n
acting by automorphisms of the algebra V over a field K. Suppose
that K contains all roots of unity of degree n.

Then every element of the algebra V is representable as a sum
of k ≤ n elements xi ∈ V , i = 1, . . . , k, such that xni lies in the
invariant subalgebra V0.
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Proof. Consider a finite dimensional vector subspace L in the algebra
V spanned by the G-orbit of an element x.

The space L splits into a direct sum L = L1⊕· · ·⊕Lk of eigenspaces
for all operators from G.

Therefore, the vector x can be represented in the form

x = x1 + · · · + xk,

where x1, . . . , xk are eigenvectors for all the operators from the group.

The corresponding eigenvalues are n-th roots of unity. Therefore, the
elements xn1 , . . . , xnk belong to the invariant subalgebra V0.

Definition. We say that an element x of the algebra V is an n-th
root of an element a, if xn = a.
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We can now restate Proposition 1 as follows:

Every element x of the algebra V is representable as a
sum of n-th roots of some elements of the invariant sub-
algebra.

Definition 2. A group G is solvable if it has a chain of nested
subgroups

G = G0 ⊃ · · · ⊃ Gm = e,

in which:

1) the group Gm consists of the identity element e only;

2) every group Gi is a normal subgroup in the group Gi−1;

3) the quotient group Gi−1/Gi is commutative.
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Theorem 1. Let G be a finite solvable group of automorphisms of
the algebra V of order n. Suppose that the field K contains all
roots of unity of degree n.

Then every element x of the algebra V can be obtained from the
elements of the invariant subalgebra V0 by root extractions and
summations.

We first prove the following simple statement about an action of a
group on a set.

Suppose that a group G acts on a set X , that H is a normal subgroup
of G, and that X0 is a subset of X consisting of all points fixed under
the action of G.
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Proposition 2. The subset XH of the set X consisting of the fixed
points under the action of the normal subgroup H is invariant un-
der the action of G.

There is a natural action of the quotient group G/H on the set
XH with the fixed point set X0.

Proof. Suppose that g ∈ G, h ∈ H . Then the element

g−1hg

belongs to the normal subgroup H .

Let x ∈ XH . Then

g−1hg(x) = x, or h(g(x)) = g(x),

which means that the element g(x) ∈ X is fixed under the action of
the normal subgroup H .
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Thus the set XH is invariant under the action of the group G. Under
the action of G on XH , all elements of H correspond to the identity
transformation.

Hence the action of G on XH reduces to an action of the quotient
group G/H .
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Proof of Theorem 1. Since the group G is solvable, it has a chain of
nested subgroups

G = G0 ⊃ · · · ⊃ Gm = e,

in which the group Gm consists of the identity element e only, and
every group Gi is a normal subgroup in the group Gi−1, moreover, the
quotient group Gi−1/Gi is commutative.

Let
V0 ⊂ · · · ⊂ Vm = V

denote the chain of invariant subalgebras of the algebra V with respect
to the action of the groups

G0, . . . , Gm.

By Proposition 2, the commutative group Gi−1/Gi acts naturally on
the invariant subalgebra Vi, leaving the subalgebra Vi−1 pointwise fixed.
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The order mi of the quotient group Gi−1/Gi divides the order of the
group G. Therefore, Proposition 1 is applicable to this action.

We conclude that every element of the algebra Vi can be expressed
with the help of summation and root extraction through the elements
of the algebra Vi−1.

Repeating the same argument, we will be able to express every el-
ement of the algebra V through the elements of the algebra V0 by a
chain of summations and root extractions.
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PERMUTATION GROUPS AND EQUATIONS OF DE-
GREE 2− 4

Theorem 1 explains why equations of low degrees are solvable by
radicals.

Suppose that the algebra V is the polynomial ring in the variables x1,
. . . , xn over the field K. The symmetric group S(n) consisting of all
permutations of n elements acts on this ring, permuting the variables
x1, . . . , xn in polynomials from this ring. The invariant subalgebra of
this action consists of all symmetric polynomials.

Definition 3. The following symmetric polynomials in n variables
are called the elementary symmetric functions σ1, . . . , σn, where
σ1 = x1 + · · · + xn, σ2 =

∑
i<j xixj, . . . , σn = x1 . . . xn.
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The following classical statement plays a key role for creating formulas
solving equations of small degree:

Every symmetric polynomial can be represented explic-
itly as a polynomial of the elementary symmetric func-
tions.

If you forget how to prove this classical Theorem you can prove it
yourself by solving the follwing problem.

Problem 1. 1. Let [P ] be the lexicographically highest order term
of a polynomial P . Then [P ][Q] = [PQ].

2. Let σ1, . . . , σn be elementary symmetric functions in x1, . . . , xn.
Then, for any symmetric polynomial P in x1, . . . , xn, there exist
the numbers m1, . . . ,mn such that

[P ] = [σ
m1
1 . . . σmn

n ].
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3. Show that 1) and 2) implies a constructive proof of the above
theorem.

Theorem 2 (Vieta’s Theorem). Consider the general algebraic equa-
tion

xn + a1x
n−1 + · · · + an = 0

of degree n. The coefficients of this equation are equal up to a
sign to the elementary symmetric functions of its roots x1, . . . ,
xn. Namely,

σ1 = −a1, . . . , σn = (−1)nan.

Problem 2. Check that the Vieta’s Theorem follows from the fol-
lowing identity:

xn + a1x
n−1 + · · · + an = (x− x1) · · · · · (x− xn).

For n = 2, 3, 4, the group S(n) is solvable.
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Suppose that the field K contains all roots of unity of degree 2, 3, 4
respectively. Applying Theorem 1, we obtain that every polynomial of
x1, . . . , xn can be expressed through the elementary symmetric polyno-
mials σ1, . . . , σn using root extraction, summation and multiplication
by rational numbers. Therefore, Theorem 1 for n = 2, 3, 4 proves
the representability of the roots of a degree n algebraic
equation through the coefficients of this equation using
root extractions, summation and multiplication by ratio-
nal numbers. Now we will present these formulas explicitly using
technique of Lagrange interpolation polynomials.
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Equations of the second degree. The polynomial ringK[x1, x2]
carries a linear action of the permutation group S(2) = Z2 of two ele-
ments. This group consists of the identity map and some operator of
order 2. The element x1 has two Lagrange resolvents with respect to
the action of this operator:

R1 =
1

2
(x1 + x2) =

1

2
σ1,

R−1 =
1

2
(x1 − x2).

The square of the Lagrange resolvent R−1 is a symmetric polynomial.

R2
−1 =

1

4
((x1 + x2)2 − 4x1x2) =

1

4
(σ2

1 − 4σ2).

We obtain a representation of the polynomial x1 through the elementary

symmetric polynomials x1 = R1 + R−1 =
σ1±

√
σ2

1−4σ2

2 .
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Equations of the third degree. Suppose that the field K con-
tains all three cubic roots of unity. On the polynomial ringK[x1, x2, x3] =
V , there is an action of the permutation group S(3) of three elements.

The alternating group A(3), which is a cyclic group of order 3, is a
normal subgroup of the group S(3).

The group A(3) is generated by the operator B defining the permu-
tation x2, x3, x1 of the variables x1, x2, x3.

The quotient group S(3)/A(3) is a cyclic group of order 2.

Let V1 denote the invariant subalgebra of the group A(3) (consisting
of all polynomials that remain unchanged under all even permutations
of the variables), and V2 the algebra of symmetric polynomials.

The element x1 has three Lagrange resolvents with respect to the
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generator B of the group A(3):

R1 =
1

3
(x1 + x2 + x3),

Rξ1
=

1

3
(x1 + ξ2x2 + ξ2

2x3),

Rξ2
=

1

3
(x1 + ξ1x2 + ξ2

1x3),

where ξ1, ξ2 = −1±
√
−3

2 are the cubic roots of unity different from one.
We have

x1 = R1 + Rξ1
+ Rξ2

,

and R3
1, R3

ξ1
, R3

ξ2
lie in the algebra V1.
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Moreover, the resolvent R1 is a symmetric polynomial, and the poly-
nomials R3

ξ1
and R3

ξ2
are interchanged by the action of the group

Z2 = S(3)/A(3) on the ring V1.

Applying the construction used for solving quadratic equations to the
polynomials R3

ξ1
and R3

ξ2
, we obtain that these polynomials can be

expressed through the symmetric polynomials

R3
ξ1

+ R3
ξ2
, (R3

ξ1
−R3

ξ2
)2.

We finally obtain that the polynomial x1 can be expressed through the
symmetric polynomials

R1 ∈ V2, |R3
ξ1

+ R3
ξ2
∈ V2 (R3

ξ1
−R3

ξ2
)2 ∈ V2.

with the help of square and cubic root extractions and the arithmetic
operations. To write down an explicit formula for the solution, it re-
mains only to express these symmetric polynomials through the ele-
mentary symmetric polynomials.
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Equations of the fourth degree. The reason for equations of
the fourth degree being solvable is that the group S(4) is solvable.

The group S(4) is solvable because there exists a homomorphism
π : S(4)→ S(3), whose kernel is the commutative groupKl = Z2⊕Z2.

The homomorphism π can be described in the following way. There
exist exactly three ways to split a four-element set into pairs of elements.

Every permutation of the four elements gives rise to a permutation of
these splittings.

This correspondence defines the homomorphism π. The kernel Kl of
this homomorphism is a normal subgroup of the group S(4) consisting
of four permutations:

the identity permutation and
the three permutations, each of which is a product of two disjoint

transpositions.
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Suppose that the field K contains all three cubic roots of unity. The
group S(4) acts on the polynomial ring K[x1, x2, x3, x4] = V . Let
V1 denote the invariant subalgebra of the normal subgroup Kl of the
group S(4).

Thus the polynomial ring V = K[x1, x2, x3, x4] carries an action of
the commutative group Kl with the invariant subalgebra V1.

On the ring V1, there is an action of the solvable group S(3) =
S(4)/Kl, and the invariant subalgebra with respect to this action is
the ring V2 of symmetric polynomials.

Let A and B be operators corresponding to the permutations x2, x1,
x4, x3 and x3, x4, x1, x2 of the variables x1, x2, x3, x4.

The operators A and B generate the group Kl.

The following identities hold: A2 = B2 = E.

The roots of the polynomial T (t) = t2− 1 annihilating the operators
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A and B are equal to +1, −1.
The groupKl is the sum of two copies of the group with two elements,

the first copy being generated by A, and the second copy by B.

The element x1 has four Lagrange resolvents with respect to the action
of commuting operators A and B generating the group Kl:

R1,1 =
1

4
(x1 + x2 + x3 + x4),

R−1,1 =
1

4
(x1 − x2 + x3 − x4),

R1,−1 =
1

4
(x1 + x2 − x3 − x4),

R−1,−1 =
1

4
(x1 − x2 − x3 + x4).

The element x is equal to the sum of these resolvents:

x1 = R1,1 + R−1,1 + R1,−1 + R−1,1,
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the squares R2
1,1, R2

−1,1, R2
1,−1, R2

−1,1 of the Lagrange resolvents be-
long to the algebra V1.

Therefore, x1 is expressible through the elements of the algebra V1
with the help of the arithmetic operations and square root extractions.

In turn, the elements of the algebra V1 can be expressed through
symmetric polynomials, since this algebra carries an action of the group
S(3) with the invariant subalgebra V2 (see solution of cubic equations
above).

Let us show that this argument provides an explicit reduction of a
fourth degree equation to a cubic equation. Indeed, the resolventR1,1 =

1
4σ1 is a symmetric polynomial.

The squares of the resolvents R−1,1, R1,−1 and R−1,1 are permuted
under the action of the group S(4) (see the description of the homo-
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morphism π : S(4)→ S(3) above).

Since the elements R2
−1,1, R2

1,−1 and R2
−1,1 are only being permuted,

the elementary symmetric polynomials of them are invariant under the
action of the group S(4) and hence belong to the ring V2. Thus the
polynomials

b1 = R2
−1,1 + R2

1,−1 + R2
−1,1,

b2 = R2
−1,1R

2
1,−1 + R2

1,−1R
2
−1,−1 + R2

−1,−1R
2
−1,1,

b3 = R2
−1,1R

2
1,−1R

2
−1,−1
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are symmetric polynomials of x1, x2, x3 and x4.

Therefore, b1, b2 and b3 are expressible explicitly through the coeffi-
cients of the equation

x4 + a1x
3 + a2x

2 + a3x + a4 = 0, (4)

whose roots are x1, x2, x3, x4.

To solve equation (4), it suffices to solve the equation

r3 − b1r2 + b2r − b3 = 0 (5)

and set x = 1
4(−a1 +

√
r1 +

√
r2 +

√
r3), where r1, r2 and r3 are the

roots of equation (5).
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ANOTHER REDUCTION OF A FOUR DEGREE EQUA-
TION TO A THIRD DEGREE EQUATION

Theorem 3. The coordinates of the intersection points of two con-
ics P = 0 and Q = 0, where P and Q are given second degree poly-
nomials of x and y, can be found by solving one cubic and several
quadratic equations

Indeed, every conic of the pencil

P + λQ = 0,

where λ is an arbitrary parameter, passes through the points we are
looking for.

For some value λ0 of the parameter λ the conic P + λQ = 0 splits
into a pair of lines.
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This value satisfies the cubic equation

det(P̃ + λQ̃) = 0,

where P̃ and Q̃ are 3×3-matrices of the quadratic forms corresponding
to the equations of the conics in homogeneous coordinates.

The equation for each of the lines forming the degenerate conic P +
λ0Q = 0 can be found by solving a quadratic equation.

Indeed, the center of a degenerate conic given in affine coordinates
by an equation f (x, y) = 0, i.e. the intersection point of the two lines
forming the degenerate conic, can be found by solving the system

∂f

∂x
=
∂f

∂y
= 0.

.
This is a linear system, thus a solution can be expressed as a rational

function of the coefficients.
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The intersection of a conic with any given line not passing through
the center of the conic can be found by solving a quadratic equation.
The two lines forming the degenerate conic are the lines connecting the
center of the conic with the two intersection points. An equation of
the line passing through two given points can be found with the help
of arithmetic operations.

If the equations of the lines, into which the conic

P + λ0Q = 0

splits, are known, then to find the desired points, it remains only to
solve the quadratic equations on the intersection points of the conic
P = 0 and each of the two lines constituting the degenerate conic.
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Theorem 4. Therefore, the general equation of the fourth degree
reduces to a cubic equation with the help of arithmetic operations
and quadratic root extractions.

Indeed, the roots of an equation

a0x
4 + a1x

3 + a2x
2 + a3x + a4 = 0

are projections to the x-axis of the intersection points of the conics

y = x2 and a0y
2 + a1xy + a2y + a3x + a4 = 0.


