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Lecture 22, December 1

MONODROMY GROUP

Let us discuss different notions related to the monodromy group.

MONODROMY GROUP WITH A FORBIDDEN SET

The monodromy group of a S-function f with a forbidden set A is
the group of all permutations of branches of f that correspond to loops
around the points of A. We now give a precise definition.

Let Fa be the set of all germs of a S-function f at a point a not lying
in some forbidden set A. Take a closed path γ in S2\A that originates
at the point a. The continuation of every germ in the set Fa along the
path γ is another germ in the set Fa.
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Thus, to every path γ, we assign a map of the set Fa to itself; more-
over, homotopic paths in S2 \ A give rise to the same map. The com-
position of paths gives rise to the product of maps. This defines a
homomorphism τ from the fundamental group of the set S2 \A to the
group S(Fa) of invertible transformations of the set Fa. This homo-
morphism will be called the homomorphism of A-monodromy.

Definition 1. The monodromy group of a S-function f with a
forbidden set A or, for short, the group of A-monodromy is, by
definition, the image of the fundamental group π1(S2 \A, a) in the
group S(Fa) under the homomorphism τ .
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Proposition 1. The following properties hold.

1. The A-monodromy group of a S-function is independent of the
choice of the point a.

2. The A-monodromy group of a S-function f acts transitively on
the branches of f .

Both claims can be easily proved with the help of Lemma on removing
of a curve from a countable set. Let us give, say, a proof of the second
claim.
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Proof. Let f1,a and f2,a be any two germs of the function f at the
point a.

Since the germs f1,a and f2,a are equivalent, there exists a path γ such
that, under continuation along this path, the germ f1,a is transformed
into the germ f2,a.

By Lemma there exists an arbitrarily close path γ̂ avoiding the set A.
If the path γ̂ is sufficiently close to the path γ, then the corresponding
permutation of branches takes the germ f1,a to the germ f2,a.

(It is enough to take γ̂ such that

|γ̂(t)− γ(t)| < R0

where R0 is the smallest value of the radius of convergence of power
series obtained from f1,a by analytic continuation along γ.)
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CLOSED MONODROMY GROUP

The dependence of the A-monodromy group on the choice of the set
A suggests to introduce something like

the Tychonoff topology (i.e. the direct product topology) on the
permutation group of the branches.

It turns out that the closure of the A-monodromy group with respect
to this topology is already independent of the set A.

Definition 2 (Topology on the group S(M)). The group S(M) of
invertible transformations of the set M is equipped with the follow-
ing topology. For every finite set L ⊂ M , define a neighborhood
UL of the identity as the collection of transformations p ∈ S(M)
such that p(l) = l for l ∈ L.

The neighborhoods of the form UL, where L runs over all finite
subsets of M , form a basis of neighborhoods of the identity.
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Lemma 1 (on the closure of the monodromy group). The closure
of the monodromy group of a S-function f with a forbidden set
A in the group S(F ) of all permutations of the branches of f is
independent of the choice of a forbidden set A.

Proof. Let A1 and A2 be two forbidden sets of the function f , and Fa
the collection of branches of f at a point a, a /∈ A1 ∪ A2.

Let Γ1, Γ2 ⊆ S(Fa) be the monodromy groups of f with these for-
bidden sets. It suffices to show that, for every permutation µ1 ∈ Γ1
and for every finite set L ⊆ Fa, there exists a permutation µ2 ∈ Γ2
such that µ1|L = µ2|L.

Suppose that a path

γ ∈ π1(S2 \ A1, a)

gives rise to the permutation µ1.
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Since the set L is finite, any path

γ̂ ∈ π1(S2 \ A1, a)

sufficiently close to the path γ gives rise to a permutation µ̂1 that
coincides with µ1 on the set L, µ1|L = µ̂1|L. By the lemma, such a
path γ̂ can be chosen so that it does not intersect the set A2.

In this case, the permutation µ̂1 lies in the group Γ2.

The lemma justifies the following definition:

Definition 3. The closed monodromy group of a S-function f is the
closure in the group S(F ) of the monodromy group of the function
with any forbidden set A.
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TRANSITIVE ACTION OF A GROUP ON A SET AND

THE MONODROMY PAIR OF A S-FUNCTION

The monodromy group of a function f is not only an abstract group,
but also a transitive permutation group of the branches of this function.

Let us recall an algebraic description of transitive group actions.

An action of a group Γ on a set M is a homomorphism τ of the group
Γ to the group S(M).

Two actions τ1 : Γ → S(M1) and τ2 : Γ → S(M2) are said to be
equivalent if there exists a one-to-one correspondence q : M1 → M2
such that q ◦ τ1 = τ2, where q : S(M1) → S(M2) is the isomorphism
induced by the map q.
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The stabilizer Γa of a point a ∈M under the action τ is the subgroup
consisting of all elements µ ∈ Γ such that τµ(a) = a. The action τ
is called transitive if, for any pair of points a, b ∈ M , there exists an
element µ ∈ Γ such that τµ(a) = b.

The following proposition is obvious:

Proposition 2. The following properties hold.

1. An action τ of a group Γ is transitive if and only if the stabilizers
of any two points a, b ∈M are conjugate.

The image of the group Γ under a transitive action τ is isomor-
phic to the quotient group

Γ/
⋂
µ∈Γ

µΓaµ
−1.
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2. There exists a transitive action of the group Γ with a given sta-
bilizer of some point, and this transitive action is unique up to
equivalence.

Thus transitive actions of a group Γ are described by pairs of groups.

The pair of groups
[Γ,Γa],

where Γa is the stabilizer of some point a under a transitive action τ of
the group Γ, is called the monodromy pair of the point a with respect
to the action τ .

The group

τ (Γ) ∼ Γ/
⋂
µ∈Γ

µΓaµ
−1

is called the monodromy group of the pair [Γ,Γa].
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The A-monodromy homomorphism τ gives rise to a transitive action
of the fundamental group π1(S2 \ A) on the set Fa of branches of the
function f over the point a.

The monodromy pair of the germ fa with respect to the action τ is
called the monodromy pair of the germ fa with the forbidden set A.

The monodromy pair of the germ fa with respect to the action of the
closed monodromy group is called the closed monodromy pair of the
germ fa.

Different germs of the S-function f have isomorphic monodromy pairs
with the forbidden set A, hence it makes sense to speak of the mon-
odromy pair with the forbidden set A and the closed monodromy pair
of the S-function f .
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The closed monodromy pair of the S-function f will be denoted by [f ].

ALMOST NORMAL FUNCTIONS

Definition 4. A pair of groups

[Γ,Γ0], quadΓ0 ⊆ Γ

is called an almost normal pair if there exists a finite set P ⊂ Γ
such that ⋂

µ∈Γ

µΓ0µ
−1 =

⋂
µ∈P

µΓ0µ
−1.
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Proposition 3 (on a discrete action). The image τ (Γ) of the group
Γ under a transitive action

τ : Γ→ S(M)

is a discrete subgroup of S(M) if and only if the monodromy pair
[Γ,Γ0] of some element x0 ∈M is almost normal.

Proof. Let the group τ (Γ) be discrete. Let P denote a finite subset of
the set M such that the neighborhood UP of the identity contains no
transformations of the group τ (Γ) different from the identity.

This means that the intersection
⋂
x∈P Γx of the stabilizers of points

x ∈ P acts trivially on the set M , i.e.⋂
x∈P

Γx ⊆
⋂
µ∈Γ

µΓ0µ
−1.
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The groups Γx are conjugate to the group Γ0, hence we can choose a
finite set P ⊂ Γ such that⋂

µ∈P
µΓ0µ

−1 =
⋂
µ∈Γ

µΓ0µ
−1.

The converse statement can be proved similarly.

Definition 5. A S-function f is called almost normal if its mon-
odromy group is discrete. From the lemma, it follows that the func-
tion f is almost normal if and only if its closed monodromy pair
[f ] is almost normal.

A differential rational function of several functions is defined to be
a rational function of these functions and their derivatives.
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Lemma 2 (on finitely generated functions). Suppose that every germ
of a S-function f over the point a is a differential rational function
of finitely many fixed germs of f over a.

Then the function f is almost normal.

Proof. Indeed, if, under continuation along a closed path, the speci-
fied germs of the function are unchanged, then a differential rational
function of them is also unchanged.

From the lemma on finitely generated functions, it follows that any
solution of a linear differential equation with rational coefficients is an
almost normal function. The same is also true for many other functions
appearing naturally in differential algebra.

CLASSES OF GROUP PAIRS

We will describe how the closed monodromy pairs of functions are
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transformed under compositions, integrations, differentiations, etc. To
this end, we will need to introduce some notions concerning pairs of
groups (group pairs).

A group pair always means a pair consisting of a group and its sub-
group.

We will identify a group with the group pair consisting of this group
and its trivial subgroup.

Definition. A collection L of group pairs will be referred to as an
almost complete class of group pairs if

1. for every group pair

[Γ,Γ0] ∈ L, Γ0 ⊆ Γ,

and any homomorphism τ : Γ → G, where G is any group, the
group pair [τΓ, τΓ0] is also contained in L;



17

2. for every group pair

[Γ,Γ0] ∈ L, Γ0 ⊆ Γ,

and any homomorphism τ : G → Γ, where G is any group, the
group pair [τ−1Γ, τ−1Γ0] is also contained in L,

3. for every group pair

[Γ,Γ0] ∈ L, Γ0 ⊆ Γ,

and a groupG equipped with a T2-topology and containing the group
Γ, Γ ⊆ G, the group pair [Γ,Γ0] is also contained in L, where Γ,
Γ0 are the closures of the groups Γ, Γ0 in the group G.

Definition. An almost complete class M of group pairs will be
referred to as a complete class of group pairs, if

1. for every group pair
[Γ,Γ0] ∈M
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and a group
Γ1,Γ0 ⊆ Γ1 ⊆ Γ,

the group pair [Γ,Γ1] is also contained inM,

2. for every two group pairs

[Γ,Γ1], [Γ1, Γ2] ∈M,

the group pair [Γ,Γ2] is also contained inM.

The minimal almost complete and, respectively, complete classes of
group pairs containing a fixed set B of group pairs are denoted by L〈B〉
and, respectively, byM〈B〉.
Lemma 3. The following properties hold.

1. If the monodromy group of the pair [Γ,Γ0] is contained in some
complete classM of pairs, then the pair [Γ,Γ0] is also contained
in M.
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2. If an almost normal pair [Γ,Γ0] is contained in some complete
class M of group pairs, then its monodromy group is also con-
tained in M.

Let us give a proof of the second statement.
Let Γi, i = 1, . . . , n be a finite number of subgroups conjugate to

Γ0 such that
n⋂
i=1

Γi =
⋂
µ∈Γ

µΓ0µ
−1.

The pair [Γ,Γi] is isomorphic to the pair [Γ,Γ0], hence [Γ,Γi] ∈ M.
Let

τ : Γ2→ Γ

be the inclusion homomorphism, then

τ−1(Γ1) = Γ2

⋂
Γ1,
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hence [Γ2,Γ2
⋂

Γ1] ∈M. The classM contains the pairs

[Γ,Γ2] and [Γ2,Γ2

⋂
Γ1],

therefore,

[Γ,Γ1

⋂
Γ2] ∈M.

Continuing this argument, we obtain that the class M contains the
pair [Γ,

⋂n
i=1 Γi] and, together with it, the group

Γ/
⋂
µ∈Γ

µΓ0µ
−1.

Proposition 4. An almost complete class of pairs L contains the
closed monodromy pair

[f ]

of a S-function f if and only if this class contains the monodromy
pair of the function f with a forbidden set A.
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Proof. Let [Γ,Γ0] be the monodromy pair of the function f with a
forbidden set A.

Then [f ] = [Γ,Γ0]. Hence every almost complete class L contain-
ing the pair [Γ,Γ0] also contains the pair [f ]. Conversely, if [Γ,Γ0] is
contained in the class L, then [Γ,Γ0] ∈ L.

Indeed, the topology on the permutation group is such that Γ0 =
Γ
⋂

Γ0. Hence, the pair [Γ,Γ0] is the preimage of the pair [Γ,Γ0] under
the inclusion of the group Γ into its closure.

THE MAIN THEOREM

Let us formulate and prove the main theorem of the topological Galois
theory.

Theorem 4. A class of S-functions M̂ consisting of S-functions
whose closed monodromy pairs lie in some complete class M of
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pairs, is stable under the differentiation, composition and mero-
morphic operations.

Furthermore, if the class M contains

1. the additive group C of complex numbers, then the class M̂ is
stable under the integration,

2. the permutation group S(k) of k elements, then the class M̂ is
stable under solving algebraic equations of degrees at most k.


