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Lecture 20, November 24

FUNCTIONAL DIFFERENTIAL FIELDS

Let us now turn to functional differential fields. We will be dealing
with this particular type of fields (although some results can be easily
extended to abstract differential fields).

Example 1. Let K be a subfield in the field of all meromorphic
functions on a connected domain U of the Riemann sphere. Sup-
pose that K contains all complex constants and is stable under
differentiation (i.e. if f ∈ K, then f ′ ∈ K). Then K provides an
example of a functional differential field.

Let us now give a general definition.
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Definition 1. Let V, α be a pair consisting of a connected Riemann
surface V and a meromorphic 1-form α on it. Using α one can
define a derivation on the field of meromorphic functions on V by
the following formula:

f ′ = df/α

(the ratio of two meromorphic 1-forms is a well-defined meromor-
phic function).

A functional differential field is any subfield of the field of mero-
morphic functions on v, containing all complex constants and closed
under above differentiation.
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The following construction helps to extend functional differential fields.

Let K be a subfield in the field of meromorphic functions on a con-
nected Riemann surface V equipped with a meromorphic form α, and
suppose that the subfield is invariant under the derivation

f ′ =
df

α
,

(i.e., if f ∈ K, then f ′ ∈ K).

Consider a connected Riemann sufrace w and together with a non-
constant analytic map

π : W → V.

Fix the the following form on W :

β = π∗α.
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The differential field F of all meromorphic functions on W with the
differentiation

ϕ′ =
dϕ

β
contains the differential subfield

π∗K

consisting of functions of the form

π∗f, where f ∈ K.

The differential field π∗K is isomorphic to the differential field K,
and it lies in the differential field F .

For a suitable choice of the surface W , an extension of the field π∗K,
which is isomorphic to K, can be done within the field F .
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Suppose that we need to extend the field K, say, by an integral y of
some function f ∈ K.

This can be done in the following way. Consider the covering of the
Riemann surface V by the Riemann surface W of an indefinite integral

y =

∫
fα

of the form fα.

By the very definition of the Riemann surface W , there exists a nat-
ural projection

π : W → V,

and the function y is a single-valued meromorphic function on the sur-
face W . The differential field F of meromorphic functions on W with
the differentiation

ϕ′ = dϕ/π∗α
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contains the element y as well as the field π∗K isomorphic to K.

That is why the extension π∗K〈y〉 is well defined as a subfield of
the differential field F . We mean this particular construction of the
extension whenever we talk about extensions of functional differential
fields.

The same construction allows to adjoin

a logarithm, an exponential,

an integral or an exponential of integral of any function f from a
functional differential field K to K.
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Similarly, for any functions f1, . . . , fn ∈ K, one can adjoin a solution
y of an algebraic equation

yn + f1y
n−1 + · · · + fn = 0

or all the solutions y1, . . . , yn of this equation to K

(the adjunction of all the solutions y1, . . . , yn can be implemented
on the Riemann surface of the vector-function

y = y1, . . . , yn).

In the same way, for any functions f1, . . . , fn+1 ∈ K, one can adjoin
the n-dimensional C affine space of all solutions of the linear differential
equation

y(n) + f1y
(n−1) + · · · + fny + fn+1 = 0

to K.
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(Recall that a germ of any solution of this linear differential equation
admits an analytic continuation along a path on the surface V not
passing through the poles of the functions f1, . . . , fn+1.)

Thus, all above–mentioned extensions of functional differential
fields can be implemented without leaving the class of functional
differential fields.

When talking about extensions of functional differential fields, we
always mean this particular procedure.

The differential field of all complex constants and the differential field
of all rational functions of one variable can be regarded as differential
fields of functions defined on the Riemann sphere.



9

Let us restate the Theorem about equivalents of two definitions of the
Liouvillian classes of functions using definitions from abstract differen-
tial algebra and the construction of extensions of functional differential
fields.

Theorem 1. A function of one complex variable (possibly multi-
valued) belongs to:

1. the class of elementary functions if and only if it belongs to some
elementary extension of the field of all rational functions of one
variable;

2. the class of generalized elementary functions if and only if it
belongs to some generalized elementary extension of the field of
rational functions;

3. the class of functions representable by quadratures if and only if
it belongs to some Liouville extension of the field of all complex
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constants;

4. the class of functions representable by k-quadratures if and only
if it belongs to some k-Liouville extension of the field of all com-
plex constants;

5. the class of functions representable by generalized quadratures if
and only if it belongs to a generalized Liouville extension of the
field of all complex constants.
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MONODROMY GROUPS OF BASIC FUNCTIONS RE-
LATED TO REPRESENTABILITY BY RADICAL

It is easy to compute the monodromy groups of basic functions ele-
mentary functions.

The monodromy groups of constants, of the independent variable and
of the exponential functions are trivial (i.e. contain the identity element
only), since these functions are single valued.

Proposition 1. The monodromy group of the logarithm

y = lnx

is isomorphic to the additive group of integral numbers Z.

Proof. Indeed, the multivalued function y = lnx for x 6= 0 is defined
by the following formulas:

Re lnx = ln |x|, =lnx = α,
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where α is the argument of x which is defined up to addition 2πk.
Thus lnx has no singular points in the domain

C∗ = C \ {0,∞},
whose fundamental group is isomorphic to Z.

A generator of the group π1(C∗, 1) is represented by the loop

γ(t) = exp(2πit), 0 ≤ t ≤ 1.

The function y = lnx has germs lnx + 2πk where lnx is the Taylor
series of the real function y = lnx at the point 1 and k ∈ Z.

The analytic continuation of the germ yk = ln x + 2pik along the
curve γ takes the germ yk to the germ yk+1.

Thus the monodromy group of lnx is isomorphic to the additive group
of integral numbers.
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Elementary functions can be constructed via one valued functions and
the function lnx having commutative monodromy group.

We know that the functions representable by one valued rational func-
tions on the functions y = x1/k having commutative monogromny
groups have solvable monodromy groups.

By analogy one can state the following natural conjecture.

Conjecture 1. For any elementary function the monodromy groups
is well defined and it is solvable.

It turn out that the conjecture is true. Nevertheless a way how the
Riemann surface of an elementary function covers the complex line
could be much more complicated than one can expected.
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ONE DIMENSIONAL TOPOLOGICAL GALOIS THE-
ORY

Not only algebraic functions have monodromy groups. It is also de-
fined for basic elementary functions and many more functions, for which
the Galois group does not make sense

For such functions, it is natural to use the monodromy group instead
of the Galois group for proving that a function does not belong to a
certain Liouville class.

This approach is implemented in the topological version of Galois
theory.

Let us give an example that shows some difficulties that we need to
overcome on this way.
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PROGRAM:

I. Find a wide class of functions which is closed under classical oper-
ations, such that for all functions from the class the monodromy group
is well defined.

II. Use the monodromy group within this class instead of the Galois
group.
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Consider the elementary function f defined by the following formula:

f (z) = ln

 n∑
j=1

λj ln(z − aj)

 ,

where
aj, j = 1, . . . , n

are different points in the complex line, and

λj, j = 1, . . . , n

are complex constants.
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Let Λ denote the additive subgroup of complex numbers generated
by the constants

λ1, . . . , λn.

It is clear that if n > 2, then for almost every collection of constants
λ1, . . . , λn, the group Λ is everywhere dense in the complex line.

Proposition 2. If the group Λ is dense in the complex line, then
the elementary function f has a dense set of logarithmic ramifica-
tion points.
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Proof. Let ga be one of the germs of the function g defined by the
formula

g(z) =

n∑
j=1

λj ln(z − aj)

at a point
a, a 6= aj, j = 1, . . . , n.

A loop around the points

a1, . . . , an

adds the number
2πiλ

to the germ ga, where λ is an element of the group Λ.
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Conversely, every germ

ga + 2πiλ, where λ ∈ Λ,

can be obtained from the germ ga by the analytic continuation along
some loop.

Let U be a small neighborhood of the point a, and

G : U → C

an analytic function, whose germ at the point a is ga.

The image V of the domain U under the map G : U → C is open.
Therefore, in the domain V , there is a point of the form 2πiλ, where
λ ∈ Λ.

The function

G− 2πiλ
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is one of the branches of the function g over the domain U , and the
zero set of this branch in the domain U is nonempty.

Hence, one of the branches of the function

f = ln g

has a logarithmic ramification point in U .

It is not hard to verify that, under the assumptions of the proposi-
tion, the monodromy group of the function f has the cardinality of the
continuum (this is not surprising: the fundamental group

π1(S \ A)

has obviously the cardinality of the continuum provided that A is a
countable dense set in the Riemann sphere).
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One can also prove that the image of the fundamental group π1(S2 \
{A ∪ b}) of the complement of the set

A ∪ b,
where b 6∈ A, in the permutation group of branches of the function f
is a proper subgroup of the monodromy group of f .

The fact that the removal of one extra point can change the mon-
odromy group, makes all proofs more complicated.

Thus even simplest elementary functions can have dense singular sets
and monodromy groups of cardinality of the continuum.

Nevertheless, the set of singular points of an elementary function is
at most countable, and its monodromy group is solvable.

If a function does not satisfy these restrictions, then it cannot be
elementary. There exist similar topological obstructions to the mem-
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bership of a function of one complex variable in other Liouvillian classes
of functions.

We now proceed with a detailed description of this geometric approach
to the problem of solvability.
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FUNCTIONS WITH AT MOST COUNTABLE SINGU-
LAR SETS

We define a broad class of functions of one complex variable needed
in the construction of the topological version of Galois theory.

FORBITEN SETS

We now define the class of functions that will be dealt with. A multi-
valued analytic function of one complex variable is called a S-function,
if the set of its singular points is at most countable.

Let us make this definition more precise.
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Definition 2. Two regular germs fa and gb defined at points a and
b of the Riemann sphere

S2 = C + {∞}
are called equivalent if the germ gb is obtained from the germ fa by
the regular (analytic) continuation along some path.

Each germ gb equivalent to the germ fa is also called a regu-
lar germ of the multivalued analytic function f generated by the
germ fa.

Definition 3. A point b ∈ S2 is said to be singular for the germ fa
if there exists a path

γ : [0, 1]→ S2, γ(0) = a, γ(1) = b

such that the germ has no regular continuation along this path,
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but for any t, 0 ≤ t < 1, it admits a regular continuation along
the truncated path

γ : [0, t]→ S2.

It is easy to see that equivalent germs have the same set of singular
points.

Definition 4. A regular germ is called a S-germ, if the set of its
singular points is at most countable.

A multivalued analytic function is called a S-function if each its
regular germ is a S-germ.

We will need a lemma that allows to release a plane path from a
countable set by a small deformation.
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Lemma 2 (on releasing a path from a countable set). Let A be at
most countable subset of the plane of complex numbers,

γ : [0, 1]→ C

be a continuous path, and ϕ be a continuous positive function on
the interval 0 < t < 1.

Then there exists a path γ̂ : [0, 1]→ C such that for 0 < t < 1 we
have

γ̂(t) /∈ A
and

|γ(t)− γ̂(t)| < ϕ(t).
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A high-technology proof of the lemma is as follows.

In the functional space of paths γ close to the path γ, say, satisfying
the inequality

|γ(t)− γ(t)| ≤ ϕ(t)/2,

the paths avoiding one particular point of A form an open dense set.

The intersection of countably many open dense sets in such functional
spaces is nonempty (it is easy to see that the space is complete).

Let us give an elementary proof of the lemma (almost verbatim, it
carries over to a more general case when the set A is uncountable but
has zero Hausdorff length).

Proof. Let us first construct a continuous broken line γ with infinitely
many edges such that its vertices do not belong to A and

|γ(t)− γ(t)| < 1

2
ϕ(t).
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Such broken line can be constructed since the complement of the set
A is dense.

Let us show how to change each edge [p, q] of the broken line γ to
make it avoid the set A.

Take an interval [p, q]. Let m be the perpendicular bisector of it.
Consider broken lines with 2 edges

[p, b], [b, q], where b ∈ m,

and the point b is sufficiently close to the interval. These broken lines
intersect by the endpoints p, q only, and their cardinality is that of the
continuum. Therefore, there exists a broken line among them that does
not intersect the set A. Changing each edge of the initial broken line
in this way, we obtain the desired curve.

Besides the set of singular points, it is also convenient to consider other
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sets such that the function admits analytic continuation everywhere in
the complement.

Definition 5. An at most countable set A is called a forbidden set
for a regular germ fa if the germ fa admits a regular continuation
along any path

γ(t), γ(0) = a,

never intersecting the set A except possibly at the initial moment.
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Theorem 3 (on a forbidden set). An at most countable set is a
forbidden set of a germ if and only if it contains the set of its
singular points.

In particular, a germ has a forbidden set if and only if it is a
germ of a S-function.

Proof. Suppose that there exists a singular point b of a germ fa that
does not lie in a forbidden set A of this germ.

By definition, there must be a path

γ : [0, 1]→ S2, γ(0) = a, γ(1) = b,

such that there is no regular continuation of the germ fa along it, but
the germ can be continued up to any t < 1.

Without loss of generality, we can assume that the points a, b and
the path γ(t) lie in the finite part of the Riemann sphere, i. e.

γ(t) 6=∞
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for 0 ≤ t ≤ 1.

Let R(t) denote the radius of convergence of the series fγ(t) obtained

by continuation of the germ fa along the path γ : [0, t]→ S2.

The function R(t) is continuous on the half-open interval [0, 1).
By the lemma, there exists a path

γ̂(t), γ̂(0) = a, γ̂(1) = b,

such that

|γ(t)− γ̂(t)| < 1

3
R(t)

and γ̂(t) /∈ A for t > 0.
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By the assumption, the germ fa admits a continuation along the path

γ̂

up to the point 1.

But it follows easily that the germ fa admits a continuation along the
path

γ.

The contradiction proves that the singular set of the germ fa is con-
tained in every forbidden set of this germ.

The converse statement (a countable set containing the singular set
of the germ is forbidden for the germ) is obvious.


