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Lecture 18, November 17

DEFINING CLASSES OF FUNCTIONS BY THE LISTS
OF BASIC FUNCTIONS AND OF ADMISSIBLE
OPERATIONS

A class of functions can be introduced by specifying a list of basic
functions and a list of admissible operations.

Given the two lists, the class of functions is defined as the set of all
functions that can be obtained from the basic functions by repeated
application of admissible operations.

Later, we define Liouvillian classes of functions in exactly this way.
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Liouvillian classes of functions, which appear in the problems of solv-
ability in finite terms, contain multivalued functions. Thus the basic
terminology should be made clear.

We work with multivalued functions “globally”,
which leads to a more general understanding of classes of functions

defined by lists of basic functions and of admissible operations.

In this global version, a multivalued function is regarded as a single
entity.

Operations on multivalued functions can be defined. The result
of such an operation is a set of multivalued functions; every element
of this set is called a function obtained from the given functions by
the given operation. A class of functions is defined as the set of all
(multivalued) functions that can be obtained from the basic functions
by repeated application of admissible operations.
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Let us define, for example, the sum of two multivalued functions of
one variable.

Definition 1. Take an arbitrary point a in the complex line, any
germ fa of an analytic function f at the point a and any germ ga
of an analytic function g at the same point a.

We say that the multivalued function ϕ generated by the germ

ϕa = fa + ga

is representable as the sum of the functions f and g.
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Example 1. It is easy to see that exactly two functions are repre-
sentable in the form √

x +
√
x,

namely,
f1 = 2

√
x and f2 ≡ 0.

Other operations on multivalued functions are defined in exactly the
same way.

For a class of multivalued functions, being stable under addition
means that, together with any pair of its functions, this class con-
tains all functions representable as their sum.

The same applies to all other operations on multivalued functions
understood in the same sense as above.

In the definition given above, not only the operation of addition plays
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a key role but also the operation of analytic continuation hidden in the
notion of multivalued function.

Indeed, consider the following example.

Example 2. Let f1 be an analytic function defined on an open
subset U of the complex line C1 and admitting no analytic contin-
uation outside of U , and let f2 be an analytic function on U given
by the formula f2 = −f1.

According to our definition, the zero function is representable in
the form

f1 + f2

on the entire complex line.

By the commonly accepted viewpoint, the equality

f1 + f2 = 0
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holds inside the region U but not outside.

Working with multivalued functions globally, we do not insist on the
existence of a common region, where all necessary operations would
be performed on single-valued branches of multivalued functions.

A first operation can be performed in a first region, then a second
operation can be performed in a second, different region on analytic
continuations of functions obtained on the first step.

In essence, this more general understanding of operations is equivalent
to including analytic continuation to the list of admissible operations
on the analytic germs.
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For single variable functions, it is possible to obtain topological ob-
structions even with this more general understanding of operations on
multivalued analytic functions.

In the sequel, when considering topological obstructions to the
membership of an analytic function in a certain class, we will al-
ways mean this global definition of the function class via lists of
basic functions and admissible operations.

For functions of many variables, things do not work in this general
setting, and one is forced to adopt a more restrictive formulation dealing
with the germs of functions. It is no less (and perhaps even more)
natural, however.

In this course we will discuss the theory for functions of single variable
only.
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LIOUVILLIAN CLASSES OF FUNCTIONS

We define Liouvillian classes of single variable functions by lists of
basic functions and admissible operations.

FUNCTIONS OF ONE VARIABLE REPRESENTABLE
BY RADICALS

List of basic functions:
all complex constants, an independent variable x.
List of admissible operations:
arithmetic operations and the operation of taking the n-th root n

√
f ,

n = 2, 3, . . . , of a given function f .
The function

g(x) =
3
√

5x + 2 2
√
x +

7
√
x3 + 3

gives an example of a function representable by radicals.
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The famous problem of solvability of equations by radicals is related
to this class. Consider an algebraic equation

yn + r1y
n−1 + · · · + rn = 0,

in which ri are rational functions of one variable.

As we studied before, a complete answer to the question of solvability
of such equations by radicals is given by Galois theory.

To define other classes, we will need the list of basic elementary
functions. In essence, this list contains functions that are studied in
high-school

(and/or in pre-calculus college courses) and which are frequently used
in pocket calculators.
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LIST OF BASIC ELEMENTARY FUNCTIONS

1. All complex constants and an independent variable x.

2. The exponential, the logarithm and the power xα,

where α is any complex constant.

3. Trigonometric functions: sine, cosine, tangent, cotangent.

4. Inverse trigonometric functions: arcsine, arccosine, arctangent, arc-
cotangent.
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LIST OF CLASSICAL OPERATIONS

1) composition: f, g ∈ L⇒ f ◦ g ∈ L;

2) arithmetic operations: f, g ∈ L⇒ f ± g, f × g, f/g ∈ L;

3) differentiation: f ∈ L⇒ f ′ ∈ L;

4) integration: f ∈ L and y′ = f , i.e. y = C +
x∫
f (t)dt ⇒ y ∈ L;

5) extension by exponent of integral: f ∈ L and y′ = fy, i.e. y =

C exp
x∫
f (t)dt⇒ y ∈ L;
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6) algebraic extension: f1, . . . , fn ∈ L and yn+ f1y
n−1 + · · ·+ fn =

0⇒ y ∈ L;

7) exponent: f ∈ L and y′ = f ′y, i.e. y = C exp f ⇒ y ∈ L;

8) logarithm: f ∈ L and dy = df/f , i.e. y = C + ln f ⇒ y ∈ L;

9) meromorphic operation: if F : Cn→ C is a meromorphic function,
f1 . . . , fn ∈ L, and y = F (f1, . . . , fn) ⇒ y ∈ L.

The operations 2) and 7) are meromorphic operations.
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ELEMENTARY FUNCTIONS

LIST OF BASIC FUNCTIONS:
basic elementary functions.

LIST OF ADMISSIBLE OPERATIONS:

compositions, arithmetic operations, differentiation.

All elementary functions are given by formulas, e.g. the following:

f (x) = arctg(exp(sinx) + cos x).
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FUNCTIONS REPRESENTABLE BY QUADRATURES

LIST OF BASIC FUNCTIONS:

basic elementary functions.
LIST OF ADMISSIBLE OPERATIONS:

compositions, arithmetic operations, differentiation, integration.

For example, the elliptic integral

f (x) =

x∫
x0

dt√
P (t)

,

where P is a polynomial, is representable by quadratures. But f (x) is
not elementary function if degP ≥ 3 and P has no multiple roots.
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GENERALIZED ELEMENTARY FUNCTIONS

This class of functions is defined in the same way as the class of
elementary functions. We only need to add the operation of solving
algebraic equations to the list of admissible operations.

FUNCTIONS REPRESENTABLE BY GENERALIZED
QUADRATURES

This class of functions is defined in the same way as the class of func-
tions representable by quadratures. We only need to add the operation
of solving algebraic equations to the list of admissible operations.

Let us now define two more classes of functions similar to Liouvillian
classes.
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FUNCTIONS REPRESENTABLE BY k-RADICALS

This class of functions is defined in the same way as the class of
functions representable by radicals.

We only need to add the operation of solving algebraic equations of
degree ≤ k to the list of admissible operations.

FUNCTIONS REPRESENTABLE BY
k-QUADRATURES

This class of functions is defined in the same way as the class of
functions representable by quadratures.

We only need to add the operation of solving algebraic equations of
degree at most k to the list of admissible operations.
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Lemma 1. Basic elementary functions can be expressed through
the exponentials and the logarithms with the help of complex con-
stants, arithmetic operations and compositions.

Proof. For a power function xα, the required expression is given by the
equality

xα = exp(α lnx).

For the trigonometric functions, the required expressions follow from
Euler’s formula

ea+bi = ea(cos b + i sin b).

For real values of x, we have

sinx =
1

2i
(eix − e−ix)
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and

cosx =
1

2
(eix + e−ix).

By analyticity, the same formulas remain true for all complex values
of x.

The tangent and the cotangent functions are expressed through the
sine and the cosine.

Let us now show that, for all real x, the equality

arctg x =
1

2i
ln z

holds, where

z =
1 + ix

1− ix
.
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Obviously,

|z| = 1, arg z = 2 arg(1 + ix), tg(arg(1 + ix)) = x,

which proves the desired equality. By analyticity, the same equality
also holds for all complex values of x.

The remaining inverse trigonometric functions can be expressed through
the arctangent. Namely,

arcctgx =
π

2
− arctgx, arcsinx = arctg

x√
1− x2

,

arccos =
π

2
− arcsinx.

The square root that appears in the expression for the function arcsin
can be expressed through the exponential and the logarithm: x1/2 =

exp
(

1
2 lnx

)
. The lemma is proved.


