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Lecture 14, October 27

INTRODUCTION TO TOPOLOGICAL GALOIS THEORY

ON REPRESENTABILITY OF ALGEBRAIC
FUNCTIONS BY RADICALS

I am going to sketch a simplest version of the topological Galois the-
ory. I will return back to a detailed careful presentation of material
later. Now I will skip many details. My goal is a vosial presentation of
key ideas of the theory
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More precisely I will present a self contained simple proof of the classi-
cal criteria for representability of algebraic functions of several complex
variables by radicals.

The presentation also contains a criteria for representability of alge-
broidal functions by composition of single-valued analytic functions and
radicals, and a result related to the 13-th Hilbert problem.

Consider an algebraic equation

Pny
n + Pn−1y

n−1 + · · · + P0 = 0, (1)

whose coefficients Pn, . . . , P0 are polynomials of N complex variables
x1, . . . , xN .



3

Camille Jordan discovered that the Galois group of the equation (1)
over the field R of rational functions of x1, . . . , xN has a topological
meaning (see theorem 3 below):

It is isomorphic to the monodromy group of the equation (1).

According to the Galois theory, equation (1) is solvable by radicals
over the field R if and only if its Galois group is solvable. If the equation
(1) is irreducible it defines a multivalued algebraic function y(x).

The Galois theory and Theorem 3 imply the following criteria for
representability of an algebraic function by radicals, which consists of
two statements:
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1) If the monodromy group of an algebraic function y(x) is solv-
able, then y(x) is representable by radicals.

2) If the monodromy group of an algebraic function y(x) is not
solvable, then y(x) is not representable by radicals.

As we already know one can easily reduce the first statement to linear
algebra (see Theorem 8 below).
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We prove the second statement topologically
without using Galois theory. Vladimir Igorevich Arnold found the

first topological proof of this statement.

We use another topological approach.

This first result of topological Galois gave a hint for its further devel-
opment.
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MONODROMY GROUP AND GALOIS GROUP

Consider the equation (1). Let

Σ ⊂ CN

be the hypersurface defined by equation

PnJ = 0,

where Pn is the leading coefficient and J is the discriminant of the
equation (1).

The monodromy group of the equation (1) is the group of all per-
mutations of its solutions which are induced by motions around the
singular set Σ of the equation (1).

Below we discuss this definition more precisely.
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At a point
x0 ∈ CN \ Σ

the set
Yx0

of all germs of analytic functions satisfying equation (1) contains exactly
n elements, i.e.

Yx0 = {y1, . . . , yn}.
Indeed, if

Pn(x0) 6= 0

then for
x = x0

equation (1) has n roots counted with multiplicities.

If in addition
J(x0) 6= 0
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then all these roots are simple. By the implicit function theorem each
simple root can be extended to a germ of a regular function satisfying
the equation (1).

Consider a closed curve γ in

CN \ Σ

beginning and ending at the point x0. Given a germ y ∈ Yx0 we can
continue it along the loop γ to obtain another germ yγ ∈ Yx0. Thus
each such loop γ corresponds to a permutation

Sγ : Yx0 → Yx0

of the set Yx0 that maps a germ y ∈ Yx0 to the germ

yγ ∈ Yx0.
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It is easy to see that the map

γ → Sγ

defines a homomorphism from the fundamental group

π1(CN \ Σ, x0)

of the domain
CN \ Σ

with the base point x0 to the group S(Yx0) of permutations. The
monodromy group of the equation (1) is the image of the fundamental
group in the group S(Yx0) under this homomorphism.
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Remark 1. Instead of the point x0 one can choose any other point

x1 ∈ CN \ Σ.

Such a choice will not change the monodromy group up to an iso-
morphism.

To fix this isomorphism one can choose any curve

γ : I → CN \ Σ

where I is the segment 0 ≤ t ≤ 1 and

γ(0) = x0, γ(1) = x1

and identify each germ yx0 of solution of (1) with its continuation
yx1 along γ.
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Instead of the hypersurface

Σ

one can choose any bigger algebraic hypersurface

D, Σ ⊂ D ⊂ CN .

Such a choice will not change the monodromy group:

one can slightly move a curve γ ∈ π1(CN\Σ, x0) without changing
the map Sγ in such a way that γ will not intersect D.


