Lecture 12, October 20

A CRITERION OF SOLVABILITY BY *k*-RADICALS

We say that an algebraic equation over a field K is *solvable by* k-*radicals* if there exists a chain of extensions

$$K = K_0 \subset K_1 \cdots \subset K_n,$$

in which, for every $j, 0 \leq j < n$, either

the field K_{j+1} is obtained from the field K_j by adjoining a radical, or the field K_{j+1} is obtained from the field K_j by adjoining a root of some equation over the field K_j of degree at most k, and the field K_j contains all roots of the initial equation

and the field K_n contains all roots of the initial equation.

Is a given algebraic equation solvable by k-radicals?

we answer this question below. First we discuss the properties of k-solvable groups. and than we prove a criterion of solvability by k-radicals.

Let us start with the following simple statement.

Proposition 1. The Galois group of an equation of degree $m \leq k$ is isomorphic to a subgroup of the group S(k).

Proof. Every element of the Galois group permutes the roots of the equation, and is uniquely determined by the permutation of roots thus obtained. Hence the Galois group of a degree m equation is isomorphic to a subgroup of the group S(m). For $m \leq k$, the group S(m) is a subgroup of the group S(k).

PROPERTIES OF of *k***-SOLVABLE GROUPS**

Properties of k-solvable groups are similar to some properties of solvable groups. s

We start with Lemma which characterizes subgroups of the group S(k).

Lemma 1. A group is isomorphic to a subgroup of the group S(k) if and only if it has a collection of m subgroups, $m \leq k$, such that

1. the intersection of these subgroups contains no nontrivial normal subgroups of the entire group;

2. the sum of indices of these subgroups does not exceed k.

Proof. Suppose that G is a subgroup of the group S(k).

Consider a representation of the group G as a subgroup of permutations of a set M with k elements.

Suppose that, under the action of the group G, the set M splits into m orbits. Choose a single point x_i in every orbit.

The collection of stabilizers of points x_i satisfies the conditions of the lemma.

Indeed, the index of the stabilizer H_i of x_i equals the cardinality of the orbit of x_i , hence the sum of these indices is k.

Let H be the intersection of all stabilizers H_i . Suppose that H contains a non-trivial normal subgroup F. Every element x of M has the form $x = gx_i$ for some $g \in G$ and i. It follows that x is a fixed point for all elements of gFg^{-1} , since x_i is a fixed point for all elements of F.

We conclude that F acts trivially on M, a contradiction.

Conversely, let a group G have a collection of subgroups G_1, \ldots, G_n satisfying the conditions of the lemma.

Let P denote the union of the sets P_i , where $P_i = G/G_i$ consists of all right cosets with respect to the subgroup G_i , $1 \le i \le n$. The group G acts naturally on the set P. The representation of the group G in the group S(P) of all permutations of P is faithful, since the kernel of this representation lies in the intersection of the groups G_i .

The group S(P) embeds into the group S(k) since the number of elements in the set P is the sum of the indices of the subgroups G_i . \Box

Corollary 2. Any quotient group group of any subgroup of the symmetric group S(k) is isomorphic to a subgroup of S(k).

Proof. Suppose that a group G is isomorphic to a subgroup of the group S(k), and G_i are subgroups in G satisfying the conditions of the lemma. Let π be an arbitrary homomorphism of the group G (onto some other group). Then the collection of the subgroups $\pi(G_i)$ in the group $\pi(G)$ also satisfies the conditions of the lemma. \Box

We say that a normal subgroup H of a group G is of *depth at most* k if the group G has a subgroup G_0 of index at most k such that H is the intersection of all subgroups conjugate to G_0 . We say that a group is of depth at most k if its identity subgroup is of depth at most k.

A normal tower of a group G is a nested chain of subgroups

$$G = G_0 \supset \cdots \supset G_n = \{e\},\$$

in which every next group is a normal subgroup of the preceding group.

Corollary 3. If a group G is a subgroup of the group S(k), then the group G has a nested chain of subgroups

$$G = \Gamma_0 \supset \cdots \supset \Gamma_m = \{e\},\$$

in which the group Γ_m is trivial, and for every i = 0, 1, ..., m-1, the group Γ_{i+1} is a normal subgroup of the group Γ_i of depth at most k.

Proof. Let G_i be a collection of subgroups of the group G satisfying the conditions of the lemma.

Let F_i denote the normal subgroup of the group G obtained as the intersection of all subgroups conjugate to the subgroup G_i .

The chain of subgroups $\Gamma_1 = F_1, \ \Gamma_2 = F_1 \cap F_2, \ \dots, \ \Gamma_m = F_1 \cap F_2 \cap \dots \cap F_m$ satisfies the conditions of the corollary. \Box

Lemma 4. A group G is k-solvable if and only if it admits a normal tower of subgroups

$$G = G_0 \supset \cdots \supset G_n = \{e\},\$$

in which, for every $i, 0 < i \leq n$,

either the normal subgroup G_i has depth at most k in the group G_{i-1} ,

or the quotient G_{i-1}/G_i is commutative.

Proof. 1. Suppose that the group G admits a normal tower

$$G = G_0 \supset \cdots \supset G_n = \{e\}$$

satisfying the conditions of the lemma.

If, for some *i*, the normal subgroup G_i has depth at most *k* in the group G_{i-1} , then the group G_{i-1}/G_i has a chain of subgroups

$$G_{i-1}/G_i = \Gamma_0 \cdots \supset \Gamma_m = \{e\},$$

in which the index of every next group in the preceding group does not exceed k.

For every such number i, we can insert the chain of subgroups

$$G_{i-1} = \Gamma_{0,i} \supset \cdots \supset \Gamma_{m_i,i}$$

between G_{i-1} and G_i , where $\Gamma_{j,i} = \pi^{-1}(\Gamma_j)$, and $\pi : G_{i-1} \to G_{i-1}/G_i$ is the canonical projection to the quotient group.

We thus obtain a chain of subgroups satisfying the definition of a k-solvable group.

2. Suppose that a group G is k-solvable, and

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\}$$

is a chain of subgroups satisfying the assumptions listed in the definition of a k-solvable group.

We will successively replace subgroups in the chain with smaller subgroups. Let *i* be the first number, for which the group G_i is not a normal subgroup in the group G_{i-1} but rather a subgroup of index $\leq k$.

In this case, the group G_{i-1} has a normal subgroup H lying in the group G_i and such that the group G_{i-1}/H is isomorphic to a subgroup of S(k).

Indeed, we can take H to be the intersection of all subgroups in G_{i-1} conjugate to the group G_i . We can now modify the chain

$$G = G_0 \supset G_1 \supset \cdots \supset G_n = \{e\}$$

in the following way:

all subgroups labeled by numbers less than i remain the same.

Every group G_j with $i \leq j$ is replaced with the group $G_j \cap H$. Repeat the same procedure for the chain of subgroups thus obtained, and so on.

Finally, we obtain a normal tower of subgroups satisfying the conditions of the lemma. $\hfill \square$

Theorem 5. The following statements hold.

- 1. Any subgroup and any quotient group of a k-solvable group are k-solvable.
- 2. If a group has a k-solvable normal subgroup such that the corresponding quotient group is k-solvable, then the group is also k-solvable.

Proof. The only non-obvious statement of this theorem is that about a quotient group. It follows easily from Lemma 9.5. \Box \Box

SOLVABILITY BY k-RADICALS

The following criterion of solvability by k-radicals holds:

Theorem 6 (A criterion of solvability of equations by k-radicals). A polynomial equation over a field K is solvable by k-radicals if and only if its Galois group over K is k-solvable.

We assume that the equation over k has simple roots only and the characteristic of K does not divide any order or comutative factor- groups of subgroups in the Galois group. *Proof.* 1. Suppose that the equation can be solved by k-radicals.

We need to prove that the Galois group of the equation is k-solvable. This is proved in exactly the same way as the statement that the Galois group of an equation solvable by radicals is solvable.

Let

$$K = K_0 \subset K_1 \subset \cdots \subset K_n$$

be a chain of fields that arises in the solution of the equation by k-radicals, and

$$G_0 \supset \cdots \supset G_n$$

the chain of Galois groups of the equation over these fields.

By the assumption, the field K_n contains all roots of the equation, therefore, the group G_n is trivial and, in particular, is k-solvable. Suppose that the group G_{i+1} is k-solvable.

We need to prove that the group G_i is also k-solvable.

If the field K_{i+1} is obtained from the field K_i by adjoining a radical, then the Galois group of the field K_{i+1} over the field K_i is solvable, hence

k-solvable. If the field K_{i+1} is obtained from the field K_i by adjoining all roots of an algebraic equation of degree at most k, then the Galois group of the field K_{i+1} over the field K_i is a subgroup of the group S(k), hence is k-solvable.

As we know from the previous lectures, the group G_{i+1} is a normal subgroup of the group G_i ;

moreover, the quotient group G_i/G_{i+1} is simultaneously a quotient group of the Galois group of the field K_{i+1} over the field K_i .

The group G_{i+1} is solvable by the induction hypothesis.

The Galois group of the field K_{i+1} over the field K_i is k-solvable, as we have just proved.

We conclude that the group G_i is k-solvable.

2. Suppose that the Galois group G of an algebraic equation over the field K is k-solvable.

Let \tilde{K} denote the field obtained from the field K by adjoining all roots of unity.

The Galois group \tilde{G} of the same equation over the bigger field \tilde{K} is a subgroup of the group G. Therefore, the Galois group \tilde{G} is k-solvable.

Let \tilde{P} denote the field obtained from the field \tilde{K} by adjoining all roots of the given algebraic equation.

The group \tilde{G} acts by automorphisms on \tilde{P} with the invariant subfield \tilde{K} . By the theorem we proved in the previous lectures.1, every element of the field \tilde{P} can be expressed through the elements of the field \tilde{K} by

taking radicals, performing arithmetic operations and solving algebraic equations of degree at most k.

By definition of the field \tilde{K} , every element of this field is expressible through the elements of the field K and the roots of unity. The theorem is proved.