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Lecture 12, October 20

A CRITERION OF SOLVABILITY BY k-RADICALS

We say that an algebraic equation over a field K is solvable by k-
radicals if there exists a chain of extensions

K = K0 ⊂ K1 · · · ⊂ Kn,

in which, for every j, 0 ≤ j < n, either
the field Kj+1 is obtained from the field Kj by adjoining a radical,
or the field Kj+1 is obtained from the field Kj by adjoining a root of

some equation over the field Kj of degree at most k,
and the field Kn contains all roots of the initial equation.
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Is a given algebraic equation solvable by k-radicals?

we answer this question below. First we discuss the properties of
k-solvable groups. and than we prove a criterion of solvability by k-
radicals.

Let us start with the following simple statement.

Proposition 1. The Galois group of an equation of degree m ≤ k
is isomorphic to a subgroup of the group S(k).

Proof. Every element of the Galois group permutes the roots of the
equation, and is uniquely determined by the permutation of roots thus
obtained. Hence the Galois group of a degree m equation is isomorphic
to a subgroup of the group S(m). For m ≤ k, the group S(m) is a
subgroup of the group S(k).
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PROPERTIES OF of k-SOLVABLE GROUPS

Properties of k-solvable groups are similar to some properties of solv-
able groups. s

We start with Lemma which characterizes subgroups of the group
S(k).

Lemma 1. A group is isomorphic to a subgroup of the group S(k)
if and only if it has a collection of m subgroups, m ≤ k, such that

1. the intersection of these subgroups contains no nontrivial normal
subgroups of the entire group;

2. the sum of indices of these subgroups does not exceed k.
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Proof. Suppose that G is a subgroup of the group S(k).

Consider a representation of the group G as a subgroup of permuta-
tions of a set M with k elements.

Suppose that, under the action of the group G, the set M splits into
m orbits. Choose a single point xi in every orbit.

The collection of stabilizers of points xi satisfies the conditions of the
lemma.

Indeed, the index of the stabilizer Hi of xi equals the cardinality of
the orbit of xi, hence the sum of these indices is k.

Let H be the intersection of all stabilizers Hi. Suppose that H con-
tains a non-trivial normal subgroup F . Every element x of M has the
form x = gxi for some g ∈ G and i. It follows that x is a fixed point
for all elements of gFg−1, since xi is a fixed point for all elements of F .
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We conclude that F acts trivially on M , a contradiction.

Conversely, let a group G have a collection of subgroups G1, . . . , Gn
satisfying the conditions of the lemma.

Let P denote the union of the sets Pi, where Pi = G/Gi consists of
all right cosets with respect to the subgroup Gi, 1 ≤ i ≤ n. The group
G acts naturally on the set P . The representation of the group G in
the group S(P ) of all permutations of P is faithful, since the kernel of
this representation lies in the intersection of the groups Gi.

The group S(P ) embeds into the group S(k) since the number of
elements in the set P is the sum of the indices of the subgroups Gi.
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Corollary 2. Any quotient group group of any subgroup of the
symmetric group S(k) is isomorphic to a subgroup of S(k).

Proof. Suppose that a group G is isomorphic to a subgroup of the group
S(k), andGi are subgroups inG satisfying the conditions of the lemma.
Let π be an arbitrary homomorphism of the group G (onto some other
group). Then the collection of the subgroups π(Gi) in the group π(G)
also satisfies the conditions of the lemma.

We say that a normal subgroup H of a group G is of depth at most
k if the group G has a subgroup G0 of index at most k such that H is
the intersection of all subgroups conjugate to G0. We say that a group
is of depth at most k if its identity subgroup is of depth at most k.
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A normal tower of a group G is a nested chain of subgroups

G = G0 ⊃ · · · ⊃ Gn = {e},
in which every next group is a normal subgroup of the preceding group.

Corollary 3. If a group G is a subgroup of the group S(k), then
the group G has a nested chain of subgroups

G = Γ0 ⊃ · · · ⊃ Γm = {e},
in which the group Γm is trivial, and for every i = 0, 1, . . . , m−1,
the group Γi+1 is a normal subgroup of the group Γi of depth at
most k.

Proof. Let Gi be a collection of subgroups of the group G satisfying
the conditions of the lemma.
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Let Fi denote the normal subgroup of the group G obtained as the
intersection of all subgroups conjugate to the subgroup Gi.

The chain of subgroups
Γ1 = F1, Γ2 = F1 ∩ F2, . . . , Γm = F1 ∩ F2 ∩ · · · ∩ Fm
satisfies the conditions of the corollary.

Lemma 4.A group G is k-solvable if and only if it admits a normal
tower of subgroups

G = G0 ⊃ · · · ⊃ Gn = {e},
in which, for every i, 0 < i ≤ n,

either the normal subgroup Gi has depth at most k in the group
Gi−1,

or the quotient Gi−1/Gi is commutative.
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Proof. 1. Suppose that the group G admits a normal tower

G = G0 ⊃ · · · ⊃ Gn = {e}

satisfying the conditions of the lemma.

If, for some i, the normal subgroup Gi has depth at most k in the
group Gi−1, then the group Gi−1/Gi has a chain of subgroups

Gi−1/Gi = Γ0 · · · ⊃ Γm = {e},

in which the index of every next group in the preceding group does not
exceed k.

For every such number i, we can insert the chain of subgroups

Gi−1 = Γ0,i ⊃ · · · ⊃ Γmi,i

between Gi−1 and Gi, where Γj,i = π−1(Γj), and π : Gi−1 →
Gi−1/Gi is the canonical projection to the quotient group.
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We thus obtain a chain of subgroups satisfying the definition of a
k-solvable group.

2. Suppose that a group G is k-solvable, and

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e}

is a chain of subgroups satisfying the assumptions listed in the definition
of a k-solvable group.

We will successively replace subgroups in the chain with smaller sub-
groups. Let i be the first number, for which the group Gi is not a
normal subgroup in the group Gi−1 but rather a subgroup of index
≤ k.

In this case, the group Gi−1 has a normal subgroup H lying in the
group Gi and such that the group Gi−1/H is isomorphic to a subgroup
of S(k).
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Indeed, we can take H to be the intersection of all subgroups in Gi−1
conjugate to the group Gi. We can now modify the chain

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e}
in the following way:

all subgroups labeled by numbers less than i remain the same.

Every groupGj with i ≤ j is replaced with the groupGj∩H . Repeat
the same procedure for the chain of subgroups thus obtained, and so on.

Finally, we obtain a normal tower of subgroups satisfying the condi-
tions of the lemma.
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Theorem 5. The following statements hold.

1. Any subgroup and any quotient group of a k-solvable group are
k-solvable.

2. If a group has a k-solvable normal subgroup such that the cor-
responding quotient group is k-solvable, then the group is also
k-solvable.

Proof. The only non-obvious statement of this theorem is that about a
quotient group. It follows easily from Lemma 9.5.
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SOLVABILITY BY k-RADICALS

The following criterion of solvability by k-radicals holds:

Theorem 6 (A criterion of solvability of equations by k-radicals). A
polynomial equation over a field K is solvable by k-radicals if and
only if its Galois group over K is k-solvable.

We assume that the equation over k has simple roots only and
the characteristic of K does not divide any order or comutative
factor- groups of subgroups in the Galois group.
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Proof. 1. Suppose that the equation can be solved by k-radicals.

We need to prove that the Galois group of the equation is k-solvable.
This is proved in exactly the same way as the statement that the Galois
group of an equation solvable by radicals is solvable.

Let
K = K0 ⊂ K1 ⊂ · · · ⊂ Kn

be a chain of fields that arises in the solution of the equation by k-
radicals, and

G0 ⊃ · · · ⊃ Gn
the chain of Galois groups of the equation over these fields.

By the assumption, the field Kn contains all roots of the equation,
therefore, the group Gn is trivial and, in particular, is k-solvable. Sup-
pose that the group Gi+1 is k-solvable.

We need to prove that the group Gi is also k-solvable.
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If the field Ki+1 is obtained from the field Ki by adjoining a radical,
then the Galois group of the field Ki+1 over the field Ki is solvable,
hence

k-solvable. If the field Ki+1 is obtained from the field Ki by adjoining
all roots of an algebraic equation of degree at most k, then the Galois
group of the field Ki+1 over the field Ki is a subgroup of the group
S(k), hence is k-solvable.

As we know from the previous lectures, the group Gi+1 is a normal
subgroup of the group Gi;

moreover, the quotient group Gi/Gi+1 is simultaneously a quotient
group of the Galois group of the field Ki+1 over the field Ki.

The group Gi+1 is solvable by the induction hypothesis.

The Galois group of the field Ki+1 over the field Ki is k-solvable, as
we have just proved.
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We conclude that the group Gi is k-solvable.

2. Suppose that the Galois group G of an algebraic equation over the
field K is k-solvable.

Let K̃ denote the field obtained from the field K by adjoining all
roots of unity.

The Galois group G̃ of the same equation over the bigger field K̃ is a
subgroup of the group G. Therefore, the Galois group G̃ is k-solvable.

Let P̃ denote the field obtained from the field K̃ by adjoining all roots
of the given algebraic equation.

The group G̃ acts by automorphisms on P̃ with the invariant subfield
K̃. By the theorem we proved in the previous lectures.1, every element
of the field P̃ can be expressed through the elements of the field K̃ by
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taking radicals, performing arithmetic operations and solving algebraic
equations of degree at most k.

By definition of the field K̃, every element of this field is expressible
through the elements of the field K and the roots of unity.

The theorem is proved.


