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Lecture 4, September 22

CONTINUATION OF PREVIOUS LECTURE

Equations of the third degree. Suppose that the field K con-
tains all three cubic roots of unity. On the polynomial ringK[x1, x2, x3] =
V , there is an action of the permutation group S(3) of three elements.
The alternating group A(3), which is a cyclic group of order 3, is a

normal subgroup of the group S(3).

The group A(3) is generated by the operator B defining the permu-
tation x2, x3, x1 of the variables x1, x2, x3.

The quotient group S(3)/A(3) is a cyclic group of order 2.

Let V1 denote the invariant subalgebra of the group A(3) (consisting
of all polynomials that remain unchanged under all even permutations
of the variables), and V2 the algebra of symmetric polynomials.
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The element x1 has three Lagrange resolvents with respect to the
generator B of the group A(3):

R1 =
1

3
(x1 + x2 + x3),

Rξ1
=

1

3
(x1 + ξ2x2 + ξ2

2x3),

Rξ2
=

1

3
(x1 + ξ1x2 + ξ2

1x3),

where ξ1, ξ2 = −1±
√
−3

2 are the cubic roots of unity different from one.
We have

x1 = R1 + Rξ1
+ Rξ2

,

and R3
1, R3

ξ1
, R3

ξ2
lie in the algebra V1.
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Moreover, the resolvent R1 is a symmetric polynomial, and the poly-
nomials R3

ξ1
and R3

ξ2
are interchanged by the action of the group

Z2 = S(3)/A(3) on the ring V1.

Applying the construction used for solving quadratic equations to the
polynomials R3

ξ1
and R3

ξ2
, we obtain that these polynomials can be

expressed through the symmetric polynomials

R3
ξ1

+ R3
ξ2
, (R3

ξ1
−R3

ξ2
)2.

We finally obtain that the polynomial x1 can be expressed through the
symmetric polynomials

R1 ∈ V2, |R3
ξ1

+ R3
ξ2
∈ V2 (R3

ξ1
−R3

ξ2
)2 ∈ V2.

with the help of square and cubic root extractions and the arithmetic
operations. To write down an explicit formula for the solution, it re-
mains only to express these symmetric polynomials through the ele-
mentary symmetric polynomials.
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Equations of the fourth degree. The reason for equations
of the fourth degree being solvable is that the group S(4)
is solvable.

The group S(4) is solvable because there exists a homomorphism
π : S(4)→ S(3), whose kernel is the commutative groupKl = Z2⊕Z2.

The homomorphism π can be described in the following way. There
exist exactly three ways to split a four-element set into
pairs of elements.

Every permutation of the four elements gives rise to a permutation of
these splittings.

This correspondence defines the homomorphism π. The kernel Kl of
this homomorphism is a normal subgroup of the group S(4) consisting
of four permutations:

the identity permutation and
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the three permutations, each of which is a product of two disjoint
transpositions.

Suppose that the field K contains all three cubic roots of unity. The
group S(4) acts on the polynomial ring K[x1, x2, x3, x4] = V . Let
V1 denote the invariant subalgebra of the normal subgroup Kl of the
group S(4).

Thus the polynomial ring V = K[x1, x2, x3, x4] carries an action of
the commutative group Kl with the invariant subalgebra V1.

On the ring V1, there is an action of the solvable group S(3) =
S(4)/Kl, and the invariant subalgebra with respect to this action is
the ring V2 of symmetric polynomials.

Let A and B be operators corresponding to the permutations x2, x1,
x4, x3 and x3, x4, x1, x2 of the variables x1, x2, x3, x4.

The operators A and B generate the group Kl.
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The following identities hold: A2 = B2 = E.
The roots of the polynomial T (t) = t2− 1 annihilating the operators

A and B are equal to +1, −1.
The groupKl is the sum of two copies of the group with two elements,

the first copy being generated by A, and the second copy by B.

The element x1 has four Lagrange resolvents with respect to the action
of commuting operators A and B generating the group Kl:

R1,1 =
1

4
(x1 + x2 + x3 + x4),

R−1,1 =
1

4
(x1 − x2 + x3 − x4),

R1,−1 =
1

4
(x1 + x2 − x3 − x4),

R−1,−1 =
1

4
(x1 − x2 − x3 + x4).
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The element x is equal to the sum of these resolvents:

x1 = R1,1 + R−1,1 + R1,−1 + R−1,1,

the squares R2
1,1, R2

−1,1, R2
1,−1, R2

−1,1 of the Lagrange resolvents be-
long to the algebra V1.

Therefore, x1 is expressible through the elements of the algebra V1
with the help of the arithmetic operations and square root extractions.

In turn, the elements of the algebra V1 can be expressed through
symmetric polynomials, since this algebra carries an action of the group
S(3) with the invariant subalgebra V2 (see solution of cubic equations
above).

Let us show that this argument provides an explicit reduction of a
fourth degree equation to a cubic equation. Indeed, the resolventR1,1 =

1
4σ1 is a symmetric polynomial.
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The squares of the resolvents R−1,1, R1,−1 and R−1,1 are permuted
under the action of the group S(4) (see the description of the homo-
morphism π : S(4)→ S(3) above).

Since the elements R2
−1,1, R2

1,−1 and R2
−1,1 are only being permuted,

the elementary symmetric polynomials of them are invariant under the
action of the group S(4) and hence belong to the ring V2. Thus the
polynomials

b1 = R2
−1,1 + R2

1,−1 + R2
−1,1,

b2 = R2
−1,1R

2
1,−1 + R2

1,−1R
2
−1,−1 + R2

−1,−1R
2
−1,1,

b3 = R2
−1,1R

2
1,−1R

2
−1,−1

are symmetric polynomials of x1, x2, x3 and x4.

Therefore, b1, b2 and b3 are expressible explicitly through the coeffi-
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cients of the equation

x4 + a1x
3 + a2x

2 + a3x + a4 = 0, (4)

whose roots are x1, x2, x3, x4.

To solve equation (4), it suffices to solve the equation

r3 − b1r2 + b2r − b3 = 0 (5)

and set x = 1
4(−a1 +

√
r1 +

√
r2 +

√
r3), where r1, r2 and r3 are the

roots of equation (5).
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ANOTHER REDUCTION OF A FOURDEGREE EQUA-
TION TO A THIRD DEGREE EQUATION

Theorem 1.The coordinates of the intersection points of two con-
ics P = 0 and Q = 0, where P and Q are given second degree poly-
nomials of x and y, can be found by solving one cubic and several
quadratic equations

Indeed, every conic of the pencil

P + λQ = 0,

where λ is an arbitrary parameter, passes through the points we are
looking for.

For some value λ0 of the parameter λ the conic P + λQ = 0 splits
into a pair of lines.
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This value satisfies the cubic equation

det(P̃ + λQ̃) = 0,

where P̃ and Q̃ are 3×3-matrices of the quadratic forms corresponding
to the equations of the conics in homogeneous coordinates.

The equation for each of the lines forming the degenerate conic P +
λ0Q = 0 can be found by solving a quadratic equation.

Indeed, the center of a degenerate conic given in affine coordinates
by an equation f (x, y) = 0, i.e. the intersection point of the two lines
forming the degenerate conic, can be found by solving the system

∂f

∂x
=
∂f

∂y
= 0.

.
This is a linear system, thus a solution can be expressed as a rational

function of the coefficients.
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The intersection of a conic with any given line not passing through
the center of the conic can be found by solving a quadratic equation.
The two lines forming the degenerate conic are the lines connecting the
center of the conic with the two intersection points. An equation of
the line passing through two given points can be found with the help
of arithmetic operations.

If the equations of the lines, into which the conic

P + λ0Q = 0

splits, are known, then to find the desired points, it remains only to
solve the quadratic equations on the intersection points of the conic
P = 0 and each of the two lines constituting the degenerate conic.
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Theorem 2. Therefore, the general equation of the fourth degree
reduces to a cubic equation with the help of arithmetic operations
and quadratic root extractions.

Indeed, the roots of an equation

a0x
4 + a1x

3 + a2x
2 + a3x + a4 = 0

are projections to the x-axis of the intersection points of the conics

y = x2 and a0y
2 + a1xy + a2y + a3x + a4 = 0.
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