Lectures 2, September 15

LAGRANGE INTERPOLATION POLYNOMIALS

AND LINEAR ALGEBRA

Let T be a monic polynomial of degree n over an arbitrary field K. Suppose that the polynomial T has exactly n different roots

$$
\lambda_{1}, \ldots, \lambda_{n}
$$

With every root λ_{i}, we associate the polynomial

$$
T_{i}(t)=\frac{T(t)}{T^{\prime}\left(\lambda_{i}\right)\left(t-\lambda_{i}\right)}
$$

Lemma 1. The polynomial T_{i} is the unique polynomial of degree at most $n-1$ that is equal to one at the root λ_{i} and to zero at all other roots of the polynomial T.

Proof. Since λ_{i} is a root of T the polynomial T is divisible by $t-\lambda_{i}$, and the value of the ratio at the point λ_{i} by definition is equal to $T^{\prime}\left(\lambda_{i}\right)$. The ratio obviously vanishes at any other root λ_{j}
If there is two polynomials of degree $<n$ which coincide in n points then they are identically equal. Indeed their difference is a polynomial of degree $<n$ which has n roots, thus it is identically equal to zero.

Let c_{1}, \ldots, c_{n} be any collection of elements of the field K.

Definition 1. The polynomial $L(t)$ of degree $<n$ is called the Lagrange interpolating polynomial with the interpolation points λ_{1}, \ldots, λ_{n} and the interpolation data c_{1}, \ldots, c_{n} if the following identities hold:

$$
L\left(\lambda_{1}=c_{1}, \ldots, E\left(\lambda_{n}\right)=c_{n} .\right.
$$

Lemma 2. The Lagrange interpolating polynomia with the interpolation points $\lambda_{1}, \ldots, \lambda_{n}$ and the interpolation data c_{1}, \ldots, c_{n} is given by the following formula:

$$
L(t)=\sum c_{i} T_{i}(t) .
$$

Proof. By Lemma 1 the above polynomial satisfies the needed identities. Such polynomial is unique since any polynomial of degree $<n$ which has at least n roots is identically equal to zero.

This is the unique polynomial of degree at most n that takes the value c_{i} at every point $\lambda_{i}, i=1, \ldots, n$.

Consider a vector space V (possibly, infinite dimensional) over the field K and a linear operator

$$
A: V \rightarrow V
$$

Suppose that the operator A satisfies a polynomial equation

$$
T(A)=A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A+a_{n} E=0,
$$

where $a_{i} \in K$, and E is the identity operator.
Assume that the polynomial

$$
T(t)=t^{n}+a_{1} t^{n-1}+\cdots+a_{n}
$$

has n different roots

$$
\lambda_{1}, \ldots, \lambda_{n}
$$

in the field K.

Definition 2. The operator $L_{i}=T_{i}(A)$, where

$$
T_{i}(t)=\frac{T(t)}{T^{\prime}\left(\lambda_{i}\right)\left(t-\lambda_{i}\right)},
$$

will be called the generalized Lagrange resolvent of the operator A corresponding to the root λ_{i}.

Definition 3. For every vector $x \in V$, the vector $x_{i}=L_{i} x$ will be called the generalized Lagrange resolvent (corresponding to the root λ_{i}) of the polynomial T.

Proposition 1. The following statements hold.

1. Generalized Lagrange resolvents L_{i} of the operator A satisfy the following relations:

$$
L_{1}+\cdots+L_{n}=E,
$$

$$
L_{i} L_{j}=0 \text { for } i \neq j
$$

$$
L_{i}^{2}=L_{i}
$$

$$
A L_{i}=\lambda_{i} L_{i}
$$

2. Every vector $x \in V$ is representable as the sum of its generalized Lagrange resolvents, i.e. $x=x_{1}+\cdots+x_{n}$.
Moreover, the nonzero resolvents x_{i} of the vector x are linearly independent and are equal to eigenvectors of the operator A with the corresponding eigenvalues λ_{i}.

Proof. 1. Let

$$
\Lambda=\left\{\lambda_{i}\right\}
$$

be the set of all roots of the polynomial T. By definition, the polynomial T_{i} is equal to one at the point λ_{i} and is equal to zero at all other points of this set.

It is obvious that the following polynomials vanish on the set Λ :
$T_{1}+\cdots+T_{n}-1$,
$T_{i} T_{j}$ for $i \neq j$,
$T_{i}^{2}-T_{i}$,
$t T_{i}-\lambda_{i} T_{i}$.

Therefore, each of the polynomials indicated above is divisible by the polynomial T, which has simple roots at the points of the set Λ.
Since the polynomial T annihilates the operator A, i.e. $T(A)=0$, this implies the relations

$$
\begin{aligned}
& L_{1}+\cdots+L_{n}=E, \\
& L_{i} L_{j}=0 \text { for } i \neq j, \\
& L_{i}^{2}=L_{i}, \\
& A L_{i}=\lambda_{i} L_{i} .
\end{aligned}
$$

2. The second part of the statement is a formal consequence of the first.
Indeed, since $E=L_{1}+\cdots+L_{n}$, every vector x satisfies

$$
x=L_{1} x+\cdots+L_{n} x=x_{1}+\cdots+x_{n} .
$$

Assume that the vector x is nonzero, and that some linear combination

$$
\sum \mu_{j} x_{j}
$$

of the vectors $x_{1}, \ldots x_{n}$ vanishes. Then

$$
0=L_{i} \sum \mu_{j} L_{j} x=\sum L_{i} L_{j} \mu_{j} x=\mu_{i} x_{i},
$$

i.e. every nonzero vector x_{i} enters this linear combination with coefficient zero: $\mu_{i}=0$.
The identity $A L_{i}=\lambda_{i} L_{i}$ implies that $A L_{i} x=\lambda_{i} L_{i} x$, i.e. either the vector $x_{i}=L_{i} x$ is an eigenvector of L_{i} with the eigenvalue λ_{i}, or $x_{i}=0$.

CASE OF SEVERAL COMMUTING OPERATORS

Let us discuss the case of two commuting operators in more detail. Suppose that, along with the linear operator A on the space V, we are given another linear operator $B: V \rightarrow V$ that commutes with A and satisfies a polynomial relation of the form

$$
Q(B)=B^{k}+b_{1} B^{k-1}+\ldots b_{k} E=0
$$

where $b_{i} \in K$.
Assume that the polynomial

$$
Q(t)=t^{k}+b_{1} t^{k-1}+\ldots b_{k}
$$

has k distinct roots

$$
\mu_{1}, \ldots, \mu_{k}
$$

in the field K.

With a root μ_{j}, we associate the polynomial

$$
Q_{j}(t)=Q(t) / Q^{\prime}\left(\mu_{j}\right)\left(t-\mu_{j}\right)
$$

and the operator $Q_{j}(B)$, i.e. the generalized Lagrange resolvent of the operator B corresponding to the root μ_{j}.

Definition 4. We call the operator

$$
L_{i, j}=T_{i}(A) Q_{j}(B)
$$

the generalized Lagrange resolvent of the operators A and B corresponding to the pair of roots λ_{i}, μ_{j}. The vector

$$
x_{i, j}=L_{i, j} x
$$

will be called the generalized Lagrange resolvent of the vector $x \in V$ (corresponding to the pair of roots λ_{i} and μ_{j}) with respect to the operators A and B.

Proposition 2. The following statements hold.

1. Generalized Lagrange resolvents $L_{i, j}$ of commuting operators A and B satisfy the following relations:

$$
\begin{aligned}
& \sum_{i, j} L_{i, j}=E, \\
& L_{i_{1}, j_{1}} L_{i_{2}, j_{2}}=0 \text { for }\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right), \\
& L_{i, j}^{2}=L_{i, j}, \\
& A L_{i, j}=\lambda_{i} L_{i, j}, B L_{i, j}=\mu_{j} L_{i, j} .
\end{aligned}
$$

2. Every vector $x \in V$ is representable as the sum of its generalized Lagrange resolvents, i.e. $x=\sum x_{i, j}$.
Moreover, nonzero resolvents $x_{i, j}$ of the vector x are linearly independent, and are equal to eigenvectors of the operators A and B with the eigenvalues λ_{i} and μ_{j}, respectively.

To prove the first part of the proposition, it suffices to multiply the corresponding identities for the generalized resolvents of the operators A and B.

The second part of the proposition is a formal consequence of the first part.

CLASSICAL LAGRANGE RESOLVENT

Consider an operator A of order n, i.e. such operator that

$$
A^{n}=E .
$$

Generalized Lagrange resolvents for such operators are particularly important for solving equations by radicals. These are the resolvents that Lagrange has discovered, and we call them the Lagrange resolvents (omitting the word "generalized").

Suppose that the field K contains n roots of unity ξ_{1}, \ldots, ξ_{n} of degree $n, \xi^{n}=1$.

By our assumption, $T(A)=0$, where

$$
T(t)=t^{n}-1
$$

Let us now compute the Lagrange resolvent corresponding to the root $\xi_{i}=\xi$. We have
$T_{i}(t)=\frac{t^{n}-\xi^{n}}{n \xi^{n-1}(t-\xi)}=\frac{1}{n \xi^{n-1}}\left(t^{n-1}+\cdots+\xi^{n-1}\right)=\frac{1}{n}\left(\left(\xi^{-1} t\right)^{n-1}+\cdots+1\right)$.
The Lagrange resolvent $T_{i}(A)$ of the operator A corresponding to a root $\xi_{i}=\xi$ will be denoted by $R_{\xi}(A)$. We obtain

$$
R_{\xi}(A)=\frac{1}{n} \sum_{0 \leq k<n} \xi^{-k} A^{k}
$$

Corollary 3. Consider a vector space V (maybe infinite dimensional) over a field K containing all roots of unity of degree n. Suppose that an operator A satisfies the relation

$$
A^{n}=E .
$$

Then, for every vector $x \in V$, either the Lagrange resolvent $R_{\xi}(A)(x)$ is zero, or it is equal to an eigenvector of the operator A with the eigenvalue ξ.

The vector x is the sum of all its Lagrange resolvents.
Problem 1. Verify the previous Corollary directly, without any reference to preceding results.

REPRESENTATION OF FINITE ABILIAN GROUPS

Theorem 4 (On representations of finite abilian groups). Let G be a finite group of linear operators on a vector space V over the field K. Let n denote the order of the group G. Suppose that the field K contains all roots of unity of degree n. Then the space V is a direct sum of subspaces that are eigenspaces simultaneously for all operators from the group G.

Proof. Every finitely generated abilian group is a direct sum of cyclic groups. Suppose that the group G is the direct sum of k cyclic groups of orders m_{1}, \ldots, m_{k}. Suppose that the operators $A_{i} \in G, \ldots, A_{k} \in G$ generate these cyclic subgroups. In particular,

$$
A_{1}^{m_{1}}=\cdots=A_{k}^{m_{k}}=E
$$

For every collection $\lambda=\lambda_{1}, \ldots, \lambda_{k}$ of roots of unity of degrees m_{1}, \ldots, m_{k}, consider the joint Lagrange resolvent

$$
L_{\lambda}=L_{\lambda_{1}}\left(A_{1}\right) \ldots L_{\lambda_{k}}\left(A_{k}\right)
$$

of all generators A_{1}, \ldots, A_{k} of the group G.
Corollary 5. Every vector $x \in V$ is representable in the form

$$
x=\sum L_{\lambda} x
$$

Each of the vectors $L_{\lambda} x$ is either zero or a common eigenvector of the operators A_{1}, \ldots, A_{k} with the respective eigenvalues λ_{1}, \ldots, λ_{k}.

Problem 2. The theorem about simultaneous diagonalization of a linear operator belonging to a of a finite abelian group does not hold if the characteristic of the ground field divides the order of
the group. Provide an example of non diaganizable matrix A with $A^{2}=$ Eover a field of characteristic two.

APPENDIX

LAGRANGE POLYNOMIALS AND LINEAR ALBGEBRA

Let me recall a classical Cayley-Hamilton theorem.
Theorem 6 (Cayley-Hamilton Theorem). Let A be a ($k \times k$)-matrix with entries belonging to a field K. Let $P(t)=\operatorname{det}(A-t E)$ be the characteristic polynomial of A (whose degree equals to k). Then

$$
P(A)=0 .
$$

Example 1. Let A be a (2×2)-matrix

$$
A=\begin{array}{ll}
a & b \\
c & d
\end{array} .
$$

Then A satisfies the following relation

$$
A^{2}-(a+d) A+(a d-b c) E=0
$$

This Theorem allows to evaluate a wide class of function of a $n \times n$ matrix A.

Theorem 7. Assume that A satisfies a polynomial equation $T(A)=$ 0 where T is a degree n polynomial. Let Q be any polynomial (maybe of a very big degree). Let us divide Q by T with a remainder R, i.e. let

$$
Q=Q_{1} T+R
$$

where Q_{1}, R are polynomials and $\operatorname{deg} R<n$. Then

$$
Q(A)=R(A) .
$$

Proof. Indeed $Q(A)=Q_{1}(A) T(A)+R(A)=R(A)$.
Definition 5. Let $y: K \rightarrow K$ be a function on a field k whose values belong to k. The Lagrange interpolation polynomial of y with the interpolations points x_{1}, \ldots, x_{n} is the unique polynomial T whose degree is smaller than n which coincides with y at the points X_{1}, \ldots, x_{n}, i.e. the following identities hold:

$$
P\left(x_{1}\right)=y\left(x_{1}\right), \ldots, P\left(x_{n}\right)=y\left(x_{n}\right) .
$$

Example 2. The interpolation polynomial of a function $y(x)$ with two interpolation points x_{1}, x_{2} is the following function $T(x)$:

$$
T(x)=\frac{y\left(x_{2}\right)-y\left(x_{1}\right)}{x_{2}-x_{1}} x+y\left(x_{1}\right)-\frac{y\left(x_{2}\right)-y\left(x_{1}\right)}{x_{2}-x_{1}} x_{1} .
$$

Theorem 8. Assume that a degree n polynomial t has n different roots $x_{1}, \ldots, x_{n} \in K$, Then for any polynomial Q its remainder R of its division by T is equal to the interpolation polynomial of Q with the interpolation points x_{1}, \ldots, x_{n}.

Proof. Indeed R is a degree $<n$ polynomial which coincides with Q at each root x_{i} of T since

$$
Q\left(x_{i}\right)=Q_{1}\left(x_{i}\right) T\left(x_{i}\right)+R\left(x_{i}\right)=R\left(x_{i}\right) .
$$

Theorem 9. Let A be a $(n \times n)$-matrix with entries in the field k having n different eigenvalues x_{1}, \ldots, x_{n} and let Q be any polynomial over K. Then

$$
Q(A)=R(A),
$$

where R is the Lagrange interpolation polynomial of q with the interpolation points x_{1}, \ldots, x_{n}.

Proof. Theorem is an automatic corollary from the previous results.

Problem 3. Let A be a $(n \times n)$-matrix with entries in the field k having n different eigenvalues x_{1}, \ldots, x_{n} and let Q be any polynomial over K. Using explicit formula for the Lagrange interpolation polynomial ang using values of Q at the interpolation points
x_{1}, \ldots, x_{n} represent $Q(A)$ as an explicit degree $(n-1)$ polynomial in Q.

Let $f(z)$ be an entire analytic function of complex variable z. Such function can be represented by converging power series

$$
f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}+\cdots>
$$

In any bounded domain $U \subset \mathbb{C}$ the function can be approximate by Taylor polynomials of f centered at the origin:

$$
Q_{k}=a_{0}+a_{1} z+\cdots+a_{k} z^{k}
$$

For any $(n \times n)$-matrix A over \mathbb{C} one can defined $f(A)$ as the limit of polynomials

$$
f_{k}(A)=a_{0} E+a_{1} A+\cdots+a_{k} A^{k}
$$

when $k \rightarrow \infty$.

Corollary 10. Let A be a $(n \times n)$-matrix with complex entries having n different eigenvalues x_{1}, \ldots, x_{n}. Let f be any complex entire function. Then

$$
f(A)=R(A),
$$

where R is the Lagrange interpolation polynomial of f with the interpolation points x_{1}, \ldots, x_{n}.

Example 3. For a complex $(n \times n)$-matric A its exponent $\exp A$ is defined as

$$
\exp A=E+A+\cdots+\frac{1}{n!} A^{n}+\ldots
$$

Problem 4. Let A be a complex $(n \times n)$-matrix having n different eigenvalues x_{1}, \ldots, x_{n}. Using explicit formula for the Lagrange
interpolation polynomial and using the numbers $\exp x_{1}, \ldots, \exp x_{n}$ represent $\exp (A)$ as an explicit degree $(n-1)$ polynomial in A.

Problem 5. Consider a system of linear differential equations

$$
y^{\prime}=A y
$$

with initial data $y\left(x_{0}\right)=y_{0}$, where y is unknown function of complex variable x, A is a constant ($n \times n$ complex matrix and y_{0} is a given complex vector.

1) Check that the vector

$$
y(x)=\exp \left(x-x_{0}\right) A y_{0} .
$$

satisfies the system and the initial data. 2) Assume that A has n different eigenvalues x_{1}, \ldots, x_{n}. Using explicit formula for the Lagrange interpolation polynomial represent the above solution as an explicit degree $(n-1)$ polynomial in A whose coefficients are explicit
linear combinations of the functions: $\exp \left(x-x_{0}\right) x_{1}, \ldots, \exp (x-$ $\left.x_{0}\right) x_{n}$.

