Lectures 2, September 15

LAGRANGE INTERPOLATION POLYNOMIALS
AND LINEAR ALGEBRA

Let T' be a monic polynomial of degree n over an arbitrary field K.
Suppose that the polynomial T has exactly n different roots

)\1, c e ey )\fn
With every root \;, we associate the polynomial
T'(t)

1l = TN = Ag)
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Lemma 1. The polynomial T; is the unique polynomial of degree
at most n — 1 that is equal to one at the root \; and to zero at all
other roots of the polynomaal T'.

Proof. Since A; is a root of I the polynomial 1" is divisible by ¢ — A;,
and the value of the ratio at the point \; by definition is equal to T"()\;).
The ratio obviously vanishes at any other root A;

If there is two polynomials of degree < n which coincide in n points
then they are identically equal. Indeed their difference is a polynomial
of degree < m which has n roots, thus it is identically equal to zero. [



Let ¢y, ..., ¢ be any collection of elements of the field K.

Definition 1. The polynomial L(t) of degree < n is called the La-
grange interpolating polynomial with the interpolation points A,

..., Ap_and the interpolation data c1, ..., ¢y if the following iden-
titres hold:

LA =cp,...,L(An) = cp.
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Lemma 2. The Lagrange interpolating polynomia with the inter-
polation points Ay, ..., A\p and the interpolation data cy{, ..., ¢y 1S
given by the following formula:

L(t) — Z CZ'Ti<t).

Proof. By Lemma 1 the above polynomial satisfies the needed identities.
Such polynomial is unique since any polynomial of degree < n which
has at least n roots is identically equal to zero.

This is the unique polynomial of degree at most n that takes the value
c; at every point A\;, 1 =1,....n. ]






Consider a vector space V' (possibly, infinite dimensional) over the
field K and a linear operator

AV =V
Suppose that the operator A satisfies a polynomial equation
T(A) = A" + a1 A" 1 4 4 a, 1A+ anE =0,
where a; € K, and E is the identity operator.
Assume that the polynomial
Tt)=t"+at" "+ +an

has n different roots

)\1, .o .7)\n
in the field K.



Definition 2. The operator L; = T;(A), where

_ T

TNt N)

will be called the generalized Lagrange resolvent of the operator A
corresponding to the root \;.

T;(t)

Definition 3. For every vector x € V', the vector x; = L;x will be

called the generalized Lagrange resolvent (corresponding to the root
A; ) of the polynomial T'.
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Proposition 1. The following statements hold.

1. Generalized Lagrange resolvents L; of the operator A satisfy the
following relations:

Li+-+Ly=F,
LiLj =0 fori##j,
L; = L,
AL; = N, L.
2. Every vector x € V' is representable as the sum of its generalized
Lagrange resolvents, 1.e. x =x1+ -+ xp,.

Moreover, the nonzero resolvents x; of the vector x are linearly

independent and are equal to eigenvectors of the operator A with
the corresponding eigenvalues A;.



Proof. 1. Let
A ={Ai}

be the set of all roots of the polynomial 7". By definition, the polynomial
T’ 1s equal to one at the point \; and is equal to zero at all other points

of this set.
It is obvious that the following polynomials vanish on the set A:
I+ 41— 1,
1T for i # 7,

T? —T;

[/

t; — N



10

Therefore, each of the polynomials indicated above is divisible by the
polynomial 7', which has simple roots at the points of the set A.

Since the polynomial T annihilates the operator A, i.e. T(A) = 0,
this implies the relations

Li+---+L,=E,
LiLj=0fori# j,
L= L;
AL; = N L.
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2. The second part of the statement is a formal consequence of the
first.

Indeed, since £ = L1+ --- + Ly, every vector x satisfies
r=Ilix+---+Lpxr=x14+" -+ 29.

Assume that the vector x is nonzero, and that some linear combina-

tion
D i
of the vectors x1, ...z, vanishes. Then
0=L; Z piljx = Z LiLjpjo = piz;,

i.e. every nonzero vector x; enters this linear combination with coefhi-
cient zero: u; = 0.

The identity AL; = \;L; implies that AL,z = \;L;x, i.e. either
the vector x; = L;x is an eigenvector of L; with the eigenvalue A;, or
x; = 0. L L
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CASE OF SEVERAL COMMUTING OPERATORS

Let us discuss the case of two commuting operators in more detail.

Suppose that, along with the linear operator A on the space V', we
are given another linear operator B : V' — V that commutes with A
and satisfies a polynomial relation of the form

QB) =B+ B+ . b.E =0,
where b; € K.
Assume that the polynomial
Qt) =tF +bitF 1+ . b,

has k distinct roots

/’L17"'7/’Lk
in the field K.
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With a root p;, we associate the polynomial

Q;(t) = Q)/Q (1)t — p;)

and the operator Q;(B), i.e. the generalized Lagrange resolvent of the
operator B corresponding to the root p;.

Definition 4. We call the operator
Li;=Ti(A)Q;(B)
the generalized Lagrange resolvent of the operators A and B corre-
sponding to the pair of roots A;, u;. The vector
Tij = Lijo

will be called the generalized Lagrange resolvent of the vector x € V
(corresponding to the pair of roots \; and 1 ) with respect to the
operators A and B.
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Proposition 2. The following statements hold.

1. Generalized Lagrange resolvents L; j of commuting operators A

and B satisfy the following relations:

> Lij=F,

Liy 1 Liy g = 0 for (i1, 1) # (12, J2),
2 _ 1.

Li ;= Lij,

ALjj = AiLij, BLij = njli .

. Bvery vector x € V' 1s representable as the sum of its generalized

Lagrange resolvents, i.e. © =) T -

Moreover, nonzero resolvents wx; ; of the vector x are linearly
independent, and are equal to eigenvectors of the operators A
and B with the eigenvalues A\; and p;, respectively.
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To prove the first part of the proposition, it suffices to multiply the
corresponding identities for the generalized resolvents of the operators

A and B.

The second part of the proposition is a formal consequence of the first
part.

CLASSICAL LAGRANGE RESOLVENT
Consider an operator A of order n, i.e. such operator that
A" = F.

Generalized Lagrange resolvents for such operators are particularly im-

portant for solving equations by radicals. These are the resolvents that
Lagrange has discovered, and we call them the Lagrange resolvents
(omitting the word “generalized”).
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Suppose that the field K contains n roots of unity &1, ..., &, of
degree n, £" = 1.

By our assumption, T'(A) = 0, where
T(t)=t"—1.
Let us now compute the Lagrange resolvent corresponding to the root
& = & We have
tn L gn
g6 g

The Lagrange resolvent T;(A) of the operator A corresponding to a
root & = & will be denoted by R¢(A). We obtain

Rg(A):% Y ehAn

0<k<n

Tt () = () ),
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Corollary 3. Consider a vector space V' (maybe infinite dimen-
stonal) over a field K containing all roots of unity of degree n.
Suppose that an operator A satisfies the relation

A" =F.
Then, for every vector x € V', either the Lagrange resolvent R¢(A)(x)
is zero, or it is equal to an eigenvector of the operator A with the

ergenvalue .

The vector x s the sum of all its Lagrange resolvents.

Problem 1. Verify the previous Corollary directly, without any
reference to preceding results.
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REPRESENTATION OF FINITE ABILIAN GROUPS

Theorem 4 (On representations of finite abilian groups). Let G be a
finite group of linear operators on a vector space V' over the field
K. Letn denote the order of the group GG. Suppose that the field
K contains all roots of unity of degree n. Then the space V' s a
direct sum of subspaces that are eigenspaces simultaneously for all
operators from the group G.

Proof. Every finitely generated abilian group is a direct sum of cyclic
oroups. Suppose that the group G is the direct sum of £ cyclic groups of
orders myq, ..., mg. Suppose that the operators A; € G, ..., A € G
generate these cyclic subgroups. In particular,

m m
AP =...= Ak =E,
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For every collection A = Ay, ..., Ar of roots of unity of degrees mq,
..., my., consider the joint Lagrange resolvent

Ly=1Ly(A1)...Ly, (Ag)
of all generators Ay, ..., A of the group G. ]

Corollary 5. Every vector x € V' 1s representable in the form

T = ZL)\CC.

Fach of the vectors Lyx is either zero or a common eigenvector

of the operators Ay, ..., Ap with the respective eigenvalues Ai,
cey AL

Problem 2. The theorem about simultaneous diagonalization of a
linear operator belonging to a of a finite abelian group does not
hold if the characteristic of the ground field divides the order of
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the group. Provide an example of non diaganizable matrix A with
A% = Eover a field of characteristic two.

APPENDIX

LAGRANGE POLYNOMIALS AND LINEAR ALBGE-
BRA

Let me recall a classical Cayley—Hamilton theorem.

Theorem 6 (Cayley—Hamilton Theorem). Let A be a (k x k)-matriz
with entries belonging to a field K. Let P(t) = det(A — tFE) be the
characteristic polynomial of A (whose degree equals to k). Then

P(A) = 0.
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Example 1. Let A be a (2 X 2)-matriz

a b
cd
Then A satisfies the following relation

A —

A% — (a4 d)A+ (ad — be)E = 0.

This Theorem allows to evaluate a wide class of function of a n X n-
matrix A.

Theorem 7. Assume that A satisfies a polynomial equation T(A) =
0 where T 1s a degree n polynomial. Let () be any polynomaial
(maybe of a very big degree). Let us divide Q) by T with a remain-
der R, 1i.e. let

Q=Q1T+R
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where ()1, R are polynomaials and deg R < n. Then
Q(A) = R(A).

Proof. Indeed Q(A) = Q1(A)T(A)+ R(A) = R(A). (]

Definition 5. Let y : K — K be a function on a field k whose
values belong to k. The Lagrange interpolation polynomaial of y
with the interpolations points x1, ..., Ty 1S the unique polynomial
T whose degree s smaller than n which coincides with y at the
points X1,...,Tn, t.e. the following identities hold:

P(z1) = y(x1),. .., P(zn) = yl(zn).
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Example 2. The interpolation polynomial of a function y(x) with
two interpolation points x1,x9 is the following function T'(x):
T(z) = ylog) —yl@1) y(z) — ylza) —yl)
L2 — X1 L2 — X1

Theorem 8. Assume that a degree n polynomial t has n different
roots x1,...,ryn € K, Then for any polynomial () its remainder R
of its division by 1" is equal to the interpolation polynomaial of ()
with the interpolation points x1, ..., xy.

Proof. Indeed R is a degree < n polynomial which coincides with @) at
cach root x; of 1" since

Q(x;) = Q1(x;))T(x;) + R(z;) = R(x;).
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Theorem 9. Let A be a (n X n)-matriz with entries in the field k

having n different eigenvalues x1,...,xn and let () be any polyno-
mial over K. Then

Q(A) = R(A),
where R 1s the Lagrange interpolation polynomial of q with the
interpolation points x1,...,Tn.

Proof. Theorem is an automatic corollary from the previous results. [

Problem 3. Let A be a (n x n)-matriz with entries in the field k
having n different eigenvalues 1, ..., xn and let () be any polyno-
mial over K. Using explicit formula for the Lagrange interpola-
tion polynomial ang using values of ) at the interpolation points
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Ti,...,xy represent Q(A) as an explicit degree (n — 1) polynomial
in Q).
Let f(z) be an entire analytic function of complex variable z. Such
function can be represented by converging power series

f(z)=ag+arz+---F+apz" +--- >
In any bounded domain U C C the function can be approximate by

Taylor polynomials of f centered at the origin:

Qk:ao+a1z+~-+akzk.

For any (n x n)-matrix A over C one can defined f(A) as the limit of
polynomials

fr(A) =agF +a1A+ -+ akAk
when £ — oo.
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Corollary 10. Let A be a (n X n)-matriz with complex entries

having n different eigenvalues x1,...,xy. Let f be any complex
entire function. Then

f(A) = R(A),

where R s the Lagrange interpolation polynomial of f with the
interpolation points x1, ..., Ty.

Example 3. For a complexr (n x n)-matric A its exponent exp A

s defined as

1
epr:E+A+---+—'A”+....
n!

Problem 4. Let A be a complex (n X n)-matriz having n different
ergenvalues x1,...,xn. Using explicit formula for the Lagrange
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interpolation polynomaial and using the numbers expxy,...,exp Ty
represent exp(A) as an explicit degree (n — 1) polynomial in A.

Problem 5. Consider a system of linear differential equations
y = Ay

with initial data y(xg) = yo, where y is unknown function of com-
plex variable x, A is a constant (n X n complex matriz and ygy is a
given complex vector.

1) Check that the vector

y(z) = exp(z — z0) Ayp.
satisfies the system and the initial data. 2) Assume that A has n
different eigenvalues x1,...,xy. Using explicit formula for the La-

grange wnterpolation polynomaal represent the above solution as an
explicit degree (n—1) polynomial in A whose coefficients are explicit
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linear combinations of the functions: exp(x — xg)xy,...,exp(r —
T0)Tn.



