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Lectures 2, September 15

LAGRANGE INTERPOLATION POLYNOMIALS

AND LINEAR ALGEBRA

Let T be a monic polynomial of degree n over an arbitrary field K.
Suppose that the polynomial T has exactly n different roots

λ1, . . . , λn.

With every root λi, we associate the polynomial

Ti(t) =
T (t)

T ′(λi)(t− λi)
.
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Lemma 1. The polynomial Ti is the unique polynomial of degree
at most n− 1 that is equal to one at the root λi and to zero at all
other roots of the polynomial T .

Proof. Since λi is a root of T the polynomial T is divisible by t − λi,
and the value of the ratio at the point λi by definition is equal to T

′(λi).
The ratio obviously vanishes at any other root λj

If there is two polynomials of degree < n which coincide in n points
then they are identically equal. Indeed their difference is a polynomial
of degree < n which has n roots, thus it is identically equal to zero.
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Let c1, . . . , cn be any collection of elements of the field K.

Definition 1. The polynomial L(t) of degree < n is called the La-
grange interpolating polynomial with the interpolation points λ1,
. . . , λn and the interpolation data c1, . . . , cn if the following iden-
tities hold:

L(λ1 = c1, . . . ,  L(λn) = cn.
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Lemma 2. The Lagrange interpolating polynomia with the inter-
polation points λ1, . . . , λn and the interpolation data c1, . . . , cn is
given by the following formula:

L(t) =
∑

ciTi(t).

Proof. By Lemma 1 the above polynomial satisfies the needed identities.
Such polynomial is unique since any polynomial of degree < n which
has at least n roots is identically equal to zero.

This is the unique polynomial of degree at most n that takes the value
ci at every point λi, i = 1, . . . , n.
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Consider a vector space V (possibly, infinite dimensional) over the
field K and a linear operator

A : V → V.

Suppose that the operator A satisfies a polynomial equation

T (A) = An + a1A
n−1 + · · · + an−1A + anE = 0,

where ai ∈ K, and E is the identity operator.

Assume that the polynomial

T (t) = tn + a1t
n−1 + · · · + an

has n different roots
λ1, . . . , λn

in the field K.
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Definition 2. The operator Li = Ti(A), where

Ti(t) =
T (t)

T ′(λi)(t− λi)
,

will be called the generalized Lagrange resolvent of the operator A
corresponding to the root λi.

Definition 3. For every vector x ∈ V , the vector xi = Lix will be
called the generalized Lagrange resolvent (corresponding to the root
λi) of the polynomial T .
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Proposition 1. The following statements hold.

1. Generalized Lagrange resolvents Li of the operator A satisfy the
following relations:

L1 + · · · + Ln = E,

LiLj = 0 for i ̸= j,

L2
i = Li,

ALi = λiLi.

2. Every vector x ∈ V is representable as the sum of its generalized
Lagrange resolvents, i.e. x = x1 + · · · + xn.

Moreover, the nonzero resolvents xi of the vector x are linearly
independent and are equal to eigenvectors of the operator A with
the corresponding eigenvalues λi.



9

Proof. 1. Let
Λ = {λi}

be the set of all roots of the polynomial T . By definition, the polynomial
Ti is equal to one at the point λi and is equal to zero at all other points
of this set.

It is obvious that the following polynomials vanish on the set Λ:

T1 + · · · + Tn − 1,

TiTj for i ̸= j,

T 2
i − Ti,

tTi − λiTi.
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Therefore, each of the polynomials indicated above is divisible by the
polynomial T , which has simple roots at the points of the set Λ.

Since the polynomial T annihilates the operator A, i.e. T (A) = 0,
this implies the relations

L1 + · · · + Ln = E,

LiLj = 0 for i ̸= j,

L2
i = Li,

ALi = λiLi.
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2. The second part of the statement is a formal consequence of the
first.
Indeed, since E = L1 + · · · + Ln, every vector x satisfies

x = L1x + · · · + Lnx = x1 + · · · + xn.

Assume that the vector x is nonzero, and that some linear combina-
tion ∑

µjxj
of the vectors x1, . . . xn vanishes. Then

0 = Li

∑
µjLjx =

∑
LiLjµjx = µixi,

i.e. every nonzero vector xi enters this linear combination with coeffi-
cient zero: µi = 0.

The identity ALi = λiLi implies that ALix = λiLix, i.e. either
the vector xi = Lix is an eigenvector of Li with the eigenvalue λi, or
xi = 0.
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CASE OF SEVERAL COMMUTING OPERATORS
Let us discuss the case of two commuting operators in more detail.
Suppose that, along with the linear operator A on the space V , we

are given another linear operator B : V → V that commutes with A
and satisfies a polynomial relation of the form

Q(B) = Bk + b1B
k−1 + . . . bkE = 0,

where bi ∈ K.

Assume that the polynomial

Q(t) = tk + b1t
k−1 + . . . bk

has k distinct roots
µ1, . . . , µk

in the field K.
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With a root µj, we associate the polynomial

Qj(t) = Q(t)/Q′(µj)(t− µj)

and the operator Qj(B), i.e. the generalized Lagrange resolvent of the
operator B corresponding to the root µj.

Definition 4. We call the operator

Li,j = Ti(A)Qj(B)

the generalized Lagrange resolvent of the operators A and B corre-
sponding to the pair of roots λi, µj. The vector

xi,j = Li,jx

will be called the generalized Lagrange resolvent of the vector x ∈ V
(corresponding to the pair of roots λi and µj) with respect to the
operators A and B.
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Proposition 2. The following statements hold.

1. Generalized Lagrange resolvents Li,j of commuting operators A
and B satisfy the following relations:∑

Li,j = E,

Li1,j1Li2,j2 = 0 for (i1, j1) ̸= (i2, j2),

L2
i,j = Li,j,

ALi,j = λiLi,j, BLi,j = µjLi,j.

2. Every vector x ∈ V is representable as the sum of its generalized
Lagrange resolvents, i.e. x =

∑
xi,j.

Moreover, nonzero resolvents xi,j of the vector x are linearly
independent, and are equal to eigenvectors of the operators A
and B with the eigenvalues λi and µj, respectively.
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To prove the first part of the proposition, it suffices to multiply the
corresponding identities for the generalized resolvents of the operators
A and B.

The second part of the proposition is a formal consequence of the first
part.

CLASSICAL LAGRANGE RESOLVENT

Consider an operator A of order n, i.e. such operator that

An = E.

Generalized Lagrange resolvents for such operators are particularly im-
portant for solving equations by radicals. These are the resolvents that
Lagrange has discovered, and we call them the Lagrange resolvents
(omitting the word “generalized”).
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Suppose that the field K contains n roots of unity ξ1, . . . , ξn of
degree n, ξn = 1.

By our assumption, T (A) = 0, where

T (t) = tn − 1.

Let us now compute the Lagrange resolvent corresponding to the root
ξi = ξ. We have

Ti(t) =
tn − ξn

nξn−1(t− ξ)
=

1

nξn−1
(tn−1+· · ·+ξn−1) =

1

n
((ξ−1t)n−1+· · ·+1).

The Lagrange resolvent Ti(A) of the operator A corresponding to a
root ξi = ξ will be denoted by Rξ(A). We obtain

Rξ(A) =
1

n

∑
0≤k<n

ξ−kAk.
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Corollary 3. Consider a vector space V (maybe infinite dimen-
sional) over a field K containing all roots of unity of degree n.
Suppose that an operator A satisfies the relation

An = E.

Then, for every vector x ∈ V , either the Lagrange resolvent Rξ(A)(x)
is zero, or it is equal to an eigenvector of the operator A with the
eigenvalue ξ.

The vector x is the sum of all its Lagrange resolvents.

Problem 1. Verify the previous Corollary directly, without any
reference to preceding results.
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REPRESENTATION OF FINITE ABILIAN GROUPS

Theorem 4 (On representations of finite abilian groups). Let G be a
finite group of linear operators on a vector space V over the field
K. Let n denote the order of the group G. Suppose that the field
K contains all roots of unity of degree n. Then the space V is a
direct sum of subspaces that are eigenspaces simultaneously for all
operators from the group G.

Proof. Every finitely generated abilian group is a direct sum of cyclic
groups. Suppose that the groupG is the direct sum of k cyclic groups of
orders m1, . . . , mk. Suppose that the operators Ai ∈ G, . . . , Ak ∈ G
generate these cyclic subgroups. In particular,

A
m1
1 = · · · = A

mk
k = E.
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For every collection λ = λ1, . . . , λk of roots of unity of degrees m1,
. . . , mk, consider the joint Lagrange resolvent

Lλ = Lλ1(A1) . . . Lλk
(Ak)

of all generators A1, . . . , Ak of the group G.

Corollary 5. Every vector x ∈ V is representable in the form

x =
∑

Lλx.

Each of the vectors Lλx is either zero or a common eigenvector
of the operators A1, . . . , Ak with the respective eigenvalues λ1,
. . . , λk.

Problem 2. The theorem about simultaneous diagonalization of a
linear operator belonging to a of a finite abelian group does not
hold if the characteristic of the ground field divides the order of
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the group. Provide an example of non diaganizable matrix A with
A2 = Eover a field of characteristic two.

APPENDIX

LAGRANGE POLYNOMIALS AND LINEAR ALBGE-
BRA

Let me recall a classical Cayley–Hamilton theorem.

Theorem 6 (Cayley–Hamilton Theorem).Let A be a (k×k)-matrix
with entries belonging to a field K. Let P (t) = det(A− tE) be the
characteristic polynomial of A (whose degree equals to k). Then

P (A) = 0.
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Example 1. Let A be a (2× 2)-matrix

A =
a b
c d

.

Then A satisfies the following relation

A2 − (a + d)A + (ad− bc)E = 0.

This Theorem allows to evaluate a wide class of function of a n× n-
matrix A.

Theorem 7.Assume that A satisfies a polynomial equation T (A) =
0 where T is a degree n polynomial. Let Q be any polynomial
(maybe of a very big degree). Let us divide Q by T with a remain-
der R, i.e. let

Q = Q1T +R
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where Q1, R are polynomials and degR < n. Then

Q(A) = R(A).

Proof. Indeed Q(A) = Q1(A)T (A) +R(A) = R(A).

Definition 5. Let y : K → K be a function on a field k whose
values belong to k. The Lagrange interpolation polynomial of y
with the interpolations points x1, . . . , xn is the unique polynomial
T whose degree is smaller than n which coincides with y at the
points X1, . . . , xn, i.e. the following identities hold:

P (x1) = y(x1), . . . , P (xn) = y(xn).
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Example 2. The interpolation polynomial of a function y(x) with
two interpolation points x1, x2 is the following function T (x):

T (x) =
y(x2)− y(x1)

x2 − x1
x + y(x1)−

y(x2)− y(x1)

x2 − x1
x1.

Theorem 8. Assume that a degree n polynomial t has n different
roots x1, . . . , xn ∈ K, Then for any polynomial Q its remainder R
of its division by T is equal to the interpolation polynomial of Q
with the interpolation points x1, . . . , xn.

Proof. Indeed R is a degree < n polynomial which coincides with Q at
each root xi of T since

Q(xi) = Q1(xi)T (xi) +R(xi) = R(xi).
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Theorem 9. Let A be a (n× n)-matrix with entries in the field k
having n different eigenvalues x1, . . . , xn and let Q be any polyno-
mial over K. Then

Q(A) = R(A),

where R is the Lagrange interpolation polynomial of q with the
interpolation points x1, . . . , xn.

Proof. Theorem is an automatic corollary from the previous results.

Problem 3. Let A be a (n × n)-matrix with entries in the field k
having n different eigenvalues x1, . . . , xn and let Q be any polyno-
mial over K. Using explicit formula for the Lagrange interpola-
tion polynomial ang using values of Q at the interpolation points
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x1, . . . , xn represent Q(A) as an explicit degree (n− 1) polynomial
in Q.

Let f (z) be an entire analytic function of complex variable z. Such
function can be represented by converging power series

f (z) = a0 + a1z + · · · + anz
n + · · · >

In any bounded domain U ⊂ C the function can be approximate by
Taylor polynomials of f centered at the origin:

Qk = a0 + a1z + · · · + akz
k.

For any (n× n)-matrix A over C one can defined f (A) as the limit of
polynomials

fk(A) = a0E + a1A + · · · + akA
k

when k → ∞.
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Corollary 10. Let A be a (n × n)-matrix with complex entries
having n different eigenvalues x1, . . . , xn. Let f be any complex
entire function. Then

f (A) = R(A),

where R is the Lagrange interpolation polynomial of f with the
interpolation points x1, . . . , xn.

Example 3. For a complex (n × n)–matric A its exponent expA
is defined as

expA = E + A + · · · + 1

n!
An + . . . .

Problem 4. Let A be a complex (n× n)-matrix having n different
eigenvalues x1, . . . , xn. Using explicit formula for the Lagrange
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interpolation polynomial and using the numbers expx1, . . . , expxn
represent exp(A) as an explicit degree (n− 1) polynomial in A.

Problem 5. Consider a system of linear differential equations

y′ = Ay

with initial data y(x0) = y0, where y is unknown function of com-
plex variable x, A is a constant (n× n complex matrix and y0 is a
given complex vector.

1) Check that the vector

y(x) = exp(x− x0)Ay0.

satisfies the system and the initial data. 2) Assume that A has n

different eigenvalues x1, . . . , xn. Using explicit formula for the La-
grange interpolation polynomial represent the above solution as an
explicit degree (n−1) polynomial in A whose coefficients are explicit
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linear combinations of the functions: exp(x − x0)x1, . . . , exp(x −
x0)xn.


