Free Semigroup Algebras A survey

Kenneth R. Davidson

Department of Pure Mathematics University of Waterloo

Fields Institute, November, 2021

1/23

 \mathcal{H} — separable Hilbert space.

 $S_1, \ldots, S_n - n$ isometries with pairwise orthogonal ranges.

$$S_i^* S_j = \delta_{ij} I$$
 or $\sum_{i=1}^n S_i S_i^* \leq I$

Free semigroup algebra:

the unital algebra \mathfrak{S} generated by S_1, \ldots, S_n closed in the weak operator topology (WOT).

n = 1 is different, and we are mostly interested in $n \ge 2$.

 $\begin{array}{l} \underline{n=1}, \quad S \text{ isometry.} \\ U_+ \text{ unilateral shift., } U \text{ unitary, spectral measure} \approx \mu. \\ \text{Wold decomposition: } S \simeq U_+^{(\alpha)} \oplus U \end{array}$

$$\mathfrak{S}(S) \simeq \begin{cases} L^{\infty}(\mu) & \text{if } \alpha = 0 \text{ and } m \not\ll \mu \\ H^{\infty} \oplus L^{\infty}(\mu_s) & \text{if } \alpha \ge 1 \text{ or } m \ll \mu. \end{cases}$$

The norm closed algebras generated by S are also of interest:

$$\mathcal{A}(S) \simeq \begin{cases} \mathcal{C}(\sigma(U)) & \text{if } \alpha = 0 \text{ and } \sigma(U) \neq \mathbb{T} \\ \mathcal{A}(\mathbb{D}) & \text{if } \alpha \ge 1 \text{ or } \sigma(U) = \mathbb{T}. \end{cases}$$
$$\mathcal{C}^*(S) \simeq \begin{cases} \mathcal{C}(\sigma(U)) & \text{if } \alpha = 0 \\ \mathcal{C}^*(U_+) & \text{if } \alpha \ge 1. \end{cases}$$
Toeplitz algebra

3 / 23

★ E ► ★ E ►

$$C^*(S_1, \ldots, S_n) = \begin{cases} \mathcal{O}_n & \text{if } \sum_{i=1}^n S_i S_i^* = I & \text{Cuntz algebra} \\ \mathcal{E}_n & \text{if } \sum_{i=1}^n S_i S_i^* < I & \text{Cuntz-Toeplitz algebra.} \end{cases}$$

 \mathcal{E}_n is a non-trivial extension of the compacts by \mathcal{O}_n :

$$0 \to \mathfrak{K}(H) \to \mathcal{E}_n \to \mathcal{O}_n \to 0.$$

Since \mathcal{O}_n is simple and non-type I, it has a very complicated representation theory up to unitary equivalence.

 $\mathfrak{A}_n = Alg(S_1, \ldots, S_n)$ non-commutative disk algebra.

(Popescu) \mathfrak{A}_n is independent of *S*.

The *n*-shift.

Free semigroup on *n* letters: \mathbb{F}_n^+ all words *w* in alphabet $1, 2, \ldots, n$ including \emptyset as unit.

Fock space $\mathbb{F}_n^2 := \ell^2(\mathbb{F}_n^+)$. Orthonormal basis $\{\xi_w : w \in \mathbb{F}_n^+\}$.

Left regular representation: $L_v \xi_w = \xi_{vw}$.

$$L_i^* L_j = \delta_{ij}$$
 and $\sum_{i=1}^n L_i L_i^* = I - \xi_{\varnothing} \xi_{\varnothing}^*$

Non-commutative analytic Toeplitz algebra \mathfrak{L}_n is the WOT-closed algebra generated by L_1, \ldots, L_n . Introduced by Popescu and independently by D-Pitts.

 $\operatorname{Alg}(L_1,\ldots,L_n) = \mathfrak{A}_n$ and $C^*(L_1,\ldots,L_n) = \mathcal{E}_n$.

Kenneth R. Davidson Free Semigroup Algebras

Э

For
$$v \in \mathbb{F}_n^+$$
, $L_v \xi_w = \xi_{vw}$.

Right shift: $R_i \xi_w = \xi_{wi}$ and $R_v \xi_w = \xi_{wv^t}$, v^t reverses letters in v. $\mathfrak{R}_n = \overline{\operatorname{Alg}(R_1, \ldots, R_n)}^{WOT}$ unitarily equiv. to \mathfrak{L}_n via $U\xi_w = \xi_{w^t}$.

If $A \in \mathfrak{L}_n$, then $A\xi_{\varnothing} = \sum a_w \xi_w$.

$$A\xi_{v} = AR_{v^{t}}\xi_{\varnothing} = R_{v^{t}}A\xi_{\varnothing} = \sum a_{w}\xi_{wv}.$$

Toeplitz form!. Fourier series and Cesaro means:

$$A \sim \sum a_w L_w =$$
wot-lim $\sum_{|w| < N} \left(1 - \frac{|w|}{N}\right) a_w L_w.$

THEOREM $\mathfrak{L}'_n = \mathfrak{R}_n$.

3

*) 40

Popescu-Wold Decomposition for S_1, \ldots, S_n .

Let $W = \left(\sum_{i=1}^{n} S_i S_i^*\right)^{\perp} H$. This is a wandering space.

 $S\simeq L^{(d)}\oplus T$

where $d = \dim W$, $S|_{\overline{\mathfrak{G}W}} \simeq L^{(d)}$ and $T = S|_{(\mathfrak{G}W)^{\perp}}$ is Cuntz type.

Frahzo–Bunce–Popescu dilation: $(n = 2, n < \infty, n = \infty \text{ resp.})$ $A = [A_1 \dots A_n]$ row contraction; i.e. $||A|| = ||\sum A_i A_i^*||^{1/2} \le 1$. Dilate A to a row isometry à la Sz.-Nagy to row isometry

$$S = [S_1 \ \dots \ S_n]$$
 where $S_i = \begin{bmatrix} A_i & 0 \\ * & * \end{bmatrix}$ on $H \oplus H'$.

If ||A|| < 1, then S ≃ L^(d). In matrix case, d ≤ k.
(Popescu) L_n-functional calculus: F ∈ L_n, then

$$F(A) = P_H F^{(d)}|_H.$$

In modern language, F is a bounded nc function on

$$\mathfrak{B}_n = \bigcup_{k\geq 1} \{A \in \mathcal{M}_k^{(n)} : \|A\| < 1\}$$

• If A_i are $k \times k$ matrices and $\sum A_i A_i^* = I$, then S is Cuntz. Finitely correlated representations (Bratteli-Jorgensen). Classifed by D-Kribs-Shpigel.

Beurling's Theorem for \mathfrak{L}_n

- $\mathfrak{S}_1 = \mathcal{T}(H^\infty) = \mathcal{T}(H^\infty)'.$
- (Beurling): Lat $\mathcal{T}(H^{\infty}) = \{ \operatorname{Ran} T : T \in \operatorname{Isom}(\mathcal{T}(H^{\infty})) \}.$
- If $R \in \mathfrak{R}_n$, then $\overline{R\mathbb{F}_n^2} \in \operatorname{Lat} \mathfrak{L}_n$.

THEOREM(Arias–Popescu, D-Pitts)

- Every invariant subspace of \mathcal{L}_n is the orthogonal direct sum of cyclic invariant subspaces.
- Cyclic invariant subspaces are $R\mathbb{F}_n^2$ for $R \in \text{Isom}(\mathfrak{R}_n)$.

COROLLARY: \mathfrak{L}_n is reflexive.

Inner-outer factorization.

 $A \in \mathfrak{L}_n, \ M = \overline{A\mathbb{F}_n^2} \in \operatorname{Lat} \mathfrak{R}_n, \ A\xi_{\varnothing} \text{ is cyclic for } M.$ So $\exists S \in \operatorname{Isom}(\mathfrak{L}_n)$ (inner), $S\mathbb{F}_n^2 = M.$ Thus A = SB where $B = S^*A \in \mathfrak{R}'_n = \mathfrak{L}_n.$ $\overline{B\mathbb{F}_n^2} = \mathbb{F}_n^2$ (outer).

Eigenvectors $\lambda \in \mathbb{B}_n = \{\lambda \in \mathbb{C}^n : \|\lambda\|_2 < 1\}.$ Unit vectors:

$$\nu_{\lambda} = (1 - \|\lambda\|^2)^{1/2} (I - \sum_{i=1}^n \overline{\lambda_i} L_i)^{-1} \xi_{\varnothing}.$$

• The joint eigenvectors of L_i , $1 \le i \le n$, are $\{\nu_{\lambda} : \lambda \in \mathbb{B}_n\}$ and

 $L_i^* \nu_\lambda = \overline{\lambda_i} \nu_\lambda$, for $1 \le i \le n$.

- The function Â(λ) = φ_λ(A) := ⟨Aν_λ, ν_λ⟩ is a contractive homomorphism into H[∞](B_n).
- $\{\varphi_{\lambda} : \lambda \in \mathbb{B}_n\}$ are the WOT-continuous characters of \mathfrak{L}_n .
- $\{\nu_{\lambda}\}$ span symmetric Fock space or Drury-Arveson space H_n^2 .
- $\bigcap_{\lambda} \ker \varphi_{\lambda} = \overline{\{AB BA : A, B \in \mathfrak{L}_n\}}^{WOT} =: \mathcal{C}.$

THEOREM (DP) $\mathfrak{L}_n/\mathcal{C} \simeq \operatorname{Mult}(H_n^2).$

Automorphisms

Let $\Theta \in \operatorname{Aut}(\mathfrak{L}_n)$. $\tau_{\Theta}(\lambda) := (\varphi_{\lambda} \Theta^{-1}(L_1), \dots, \varphi_{\lambda} \Theta^{-1}(L_n))$ is holomorphic from \mathbb{B}_n into itself. And

 $\tau_{\Theta_1}\tau_{\Theta_2} = \tau_{\Theta_1\Theta_2}$ and $\tau_{\Theta^{-1}} = \tau_{\Theta}^{-1}$.

Thus $\tau_{\Theta} \in Aut(\mathbb{B}_n)$ is a conformal automorphism of \mathbb{B}_n .

THEOREM(Voiculescu): $\exists u \text{ from } \operatorname{Aut}(\mathbb{B}_n) \text{ to } \mathcal{U}(\mathbb{F}_n^2) \text{ so that} \operatorname{Ad}(u(\theta))(A) = UAU^* \in \operatorname{Aut}(\mathcal{E}_n) \text{ and } \operatorname{Ad}(u(\theta))(\mathfrak{A}_n) = \mathfrak{A}_n.$

- $\Theta_{\theta} = \operatorname{Ad}(u(\theta))(\mathfrak{L}_n) = \mathfrak{L}_n$ onto itself.
- Θ_{θ} is completely isometric and WOT continuous.
- $\tau : \operatorname{Aut}(\mathfrak{L}_n) \to \operatorname{Aut}(\mathbb{B}_n)$ is surjective.

THEOREM (DP)

- $\Theta \in Aut(\mathfrak{L}_n)$ are norm and WOT-continuous.
- $0 \longrightarrow q-\operatorname{Inn}(\mathfrak{L}_n) \longrightarrow \operatorname{Aut}(\mathfrak{L}_n) \xrightarrow{\tau} \operatorname{Aut}(\mathbb{B}_n) \longrightarrow 0$ where $q-\operatorname{Inn} = \ker \tau$ — autos trivial mod \mathcal{C} .
- sequence splits via Voiculescu's map onto unitarily implemented autos.

QUESTION: Is q-lnn(\mathfrak{L}_n) non-trivial?

Structure Theory of Free Semigroup Algebras

Let the generators for \mathcal{E}_n be $\mathfrak{s}_1, \ldots, \mathfrak{s}_n$ and $\sigma \in \operatorname{Rep}(\mathcal{E}_n)$. Define $\mathfrak{S}_{\sigma} = \overline{\operatorname{Alg}\{S_i = \sigma(\mathfrak{s}_i)\}}^{WOT}$ and $\mathfrak{W}_{\sigma} = \operatorname{C}^*(\{S_i\})''$. Left regular repn. is λ ; and $\mathfrak{S}_{\lambda} = \mathfrak{L}_n$.

- Say that σ is type *L* or analytic if \mathfrak{S}_{σ} is isomorphic to \mathfrak{L}_n .
- Say that σ is von Neumann type if $\mathfrak{S}_{\sigma} = \mathfrak{W}_{\sigma}$.
- Say that σ is dilation type if S_σ is there is a co-invariant, cyclic subspace V such that S|_V is c.n.i.
- $\mathfrak{S}_0 = \langle S_1, \ldots, S_n \rangle$ is the WOT-closed ideal generated by $\{S_i\}$.
 - \mathfrak{S} is a von Neumann algebra $\iff \mathfrak{S}_0 = \mathfrak{S}$.
 - $\mathfrak{J} := \bigcap_{k \ge 1} \mathfrak{S}_0^k$ is a left ideal of \mathfrak{W} . So there is a projection $P \in \mathfrak{S}_\sigma$ so that $\mathfrak{J} = \mathfrak{W}P$.

THEOREM (D-Katsoulis-Pitts) Structure Theorem

- Type L algebras are completely isometrically isomorphic and weak-* homeomorphic to L_n.
- PH is coinvariant and if $P \neq I$, $\mathfrak{S}_{\sigma}|_{P^{\perp}H}$ is type L.

$$\mathfrak{S}_{\sigma} = \begin{bmatrix} P\mathfrak{W}_{\sigma}P & 0\\ P^{\perp}\mathfrak{W}_{\sigma}P & \mathfrak{S}_{\sigma}|_{P^{\perp}\mathcal{H}} \end{bmatrix}$$

THEOREM (Read) $\mathcal{B}(H)$ is a free semigroup algebra.

 $\ensuremath{\mathrm{QUESTION}}$ Which von Neumann algebras are FSG algebras?

• Must be infinite and injective.

Absolute Continuity

 $A(\mathbb{D})^* \simeq H^\infty_* \oplus_1 M_s(\mathbb{T}).$

$$A(\mathbb{B}_n)^* \simeq H^{\infty}(\mathbb{B}_n)_* \oplus_1 \mathsf{TS}(\partial \mathbb{B}_n).$$

DEFINITION

- $\varphi \in \mathfrak{A}_n^*$ is absolutely continuous if $\exists \zeta, \eta \in \mathbb{F}_n^2$ such that $\varphi(A) = \langle \lambda(A)\zeta, \eta \rangle.$
- $\xi \in H_{\sigma}$ is absolutely continuous if $\varphi(A) = \langle \sigma(A)\xi, \xi \rangle$ is a.c.
- \mathfrak{S} is absolutely continuous if every $\xi \in H$ is a.c.
- A vector ξ is wandering if $\{S_w \xi : w \in \mathbb{F}_n^+\}$ is orthonormal.

THEOREM (D-Li-P, D-Yang)

- \mathfrak{S}_{σ} is a.c. $\iff \sigma \oplus \lambda$ is type L $\iff \sigma^{(\infty)}$ is type L.
- \mathfrak{S} type L $\iff \exists k \ \mathfrak{S}_{\sigma^{(k)}}$ is spanned by wandering vectors.
- 𝔅 a.c. and a wandering vector ⇐⇒ analytic and wandering vectors span *H*.

The final big step

THEOREM (Kennedy) Every a.c. FSG has a wandering vector. COROLLARY \mathfrak{S} a.c. implies analytic and spanned by wandering vectors.

Idea: modify dual algebra techniques of Brown, Chevreau, Pearcy, Bercovici, Foiaș, etc.

$$\begin{split} \varphi_0 &: \mathfrak{S} \to \mathfrak{S}/\mathfrak{S}_0 \simeq \mathbb{C} \text{ is weak-* cnts..} \\ \text{Want } \zeta, \eta \in H \text{ so that } \varphi_0(A) = \langle A\zeta, \eta \rangle. \\ \text{Then } \eta \perp \overline{\mathfrak{S}_0 \zeta}. \\ \xi \in \overline{\mathfrak{S}} \zeta \ominus \overline{\mathfrak{S}_0 \zeta} \text{ is wandering.} \end{split}$$

COROLLARY Lebesgue-von Neumann-Wold decomposition S row isometry, then $S \simeq L^{(\alpha)} \oplus S_a \oplus S_{vN} \oplus S_d$, where S_a is a.c., Cuntz, S_{vN} is v.N. type, and S_d is dilation type.

18/23

Hyperreflexivity If \mathfrak{A} is reflexive, $A \in \mathfrak{A}$, $T \in \mathcal{B}(\mathcal{H})$ and $M \in \operatorname{Lat} \mathfrak{A}$, then $\|P_M^{\perp}TP_M\| = \|P_M^{\perp}(T - A)P_M\|.$

therefore

$$eta_{\mathfrak{A}}(T) := \sup_{M \in \mathsf{Lat}(\mathfrak{A})} \|P_M^{\perp}TP_M\| \leq \mathsf{dist}(T,\mathfrak{A}).$$

An operator algebra \mathfrak{A} is hyper-reflexive if

$$dist(T, \mathfrak{A}) \leq C\beta_{\mathfrak{A}}(T)$$
 for all $T \in \mathcal{B}(\mathcal{H})$

THEOREM (D) $\mathcal{T}(H^{\infty})$ is hyper-reflexive with $C \leq 19$.

Theorems

- (DP) \mathfrak{L}_n is hyper-reflexive with $C \leq 51$.
- (Bercovici) \mathfrak{L}_n is hyper-reflexive with $C \leq 3$.
- (D-Li-P) Every analytic FSG alg. with wandering vector is hyper-reflexive with $C \le 59$.
- (Kennedy) Every analytic FSG alg. is hyper-reflexive with $C \leq 3$.
- (Fuller-Kennedy) Every FSG alg. is hyper-reflexive with $C \leq 6$.

Singular Functionals

Say $\varphi \in \mathfrak{A}_n^*$ is singular if $\|\varphi\|_{(\mathfrak{A}_n^0)^k}\| = \|\varphi\|$ for all $k \ge 1$. One can show that \mathfrak{A}_n^{**} is a FSG algebra, and φ is weak-* cnts on it and annihilates the type L part.

PROPOSITION (D-Li-P) $\varphi \in \mathfrak{A}_n^*$ decomposes uniquely: $\varphi = \varphi_a + \varphi_s$, $\varphi_a \in \mathfrak{L}_{n*}$, φ_s singular. $\|\varphi\| \le \|\varphi_a\| + \|\varphi_s\| \le \sqrt{2}\|\varphi\|$. $\mathfrak{A}_n^* = \mathfrak{L}_{n*} \dot{+} (\mathfrak{A}_n^*)_s$.

Kennedy and Yang work in \mathcal{L}_n^* instead, which works the same.

THEOREM (Kennedy-Yang) An F & M Riesz Theorem If $\varphi \in \mathfrak{L}_n^*$ and J is a WOT-closed ideal such that $\varphi \perp J$, then $\varphi_a \perp J$ and $\varphi_s \perp J$.

COROLLARY This decomposition and F&M Riesz result pass to quotients by WOT-closed ideals. In particular, it applies to multipliers of complete NP kernels.

21/23

3 × 4 3 ×

Recent Developments

- Think of \mathbb{F}_n^2 as $H_{nc}^2 = \{f(z) = \sum_{w \in \mathbb{F}_n^+} a_w z^w\}$ in non-commuting variables.
- (Ball-Marx-Vinnikov) H_{nc}^2 is an nc RKHS on the nc ball $\mathfrak{B}_n = \dot{\bigcup}_{k \ge 1} \{ A \in \mathcal{M}_k^{(n)} : \|A\| < 1 \}.$
- (Popescu, Salomon-Shalit-Shamovich) $\mathfrak{L}_n = \operatorname{Mult}(H_{nc}^2)$.
- (Jury-Martin) Fatou's theorem. Alexandrov-Clark theory.
- (Jury-Martin) factorization in $H \odot H$ for CNP spaces.
- (Jury-Martin-Shamovich) Every inner function factors as a Blaschke factor and a singular factor.

The end. Thanks for your attention.

크