An Indefinite Analog of Sarason's Generalized Interpolation Theorem

James Rovnyak

Analytic Function Spaces and their Applications
Fields Institute, October 8, 2021

Spaces $\mathcal{H}(C)$

If C analytic and bounded by one on \mathbb{D}, let $\mathcal{H}(C)$ be the Hilbert space with reproducing kernel

$$
K_{C}(w, z)=\frac{1-C(z) \overline{C(w)}}{1-z \bar{w}}, \quad w, z \in \mathbb{D} .
$$

Equivalently, $\mathcal{H}(C)$ is the space of all $f(z)$ in H^{2} such that

$$
\|f(z)\|_{C}^{2}=\sup \left[\|f(z)+C(z) g(z)\|^{2}-\|g(z)\|^{2}\right]<\infty
$$

Besides kernel functions, $\mathcal{H}(C)$ contains all difference quotients

$$
\frac{f(z)-f(w)}{z-w} \text { and } \frac{C(z)-C(w)}{z-w}
$$

whenever $f(z)$ is in the space and $w \in \mathbb{D}$.

Operators on $\mathcal{H}(C)$
Define contraction operators T and T^{*} on $\mathcal{H}(C)$ by

$$
T^{*}: f(z) \rightarrow \frac{f(z)-f(0)}{z}
$$

and

$$
T: f(z) \rightarrow z f(z)-C(z)\left\langle f(z), \frac{C(z)-C(0)}{z}\right\rangle_{c}
$$

Special case: C an inner function

$$
\begin{aligned}
& \mathcal{H}(C)=H^{2} \ominus C H^{2} \text { (isometrically) } \\
& T=\text { compression of "multiplication by } z \text { " to } \mathcal{H}(C)
\end{aligned}
$$

Functions of T :
For any H^{∞} function $f(z)=\sum_{0}^{\infty} f_{j} z^{j}$, the Sz.-Nagy and Foias functional calculus defines

$$
f(T)=s-\lim _{r \uparrow 1} \sum_{j=0}^{\infty} f_{j} r^{j} T^{j}, \quad\|f(T)\| \leq\|f\|_{\infty}
$$

The same formula can be used for any completely nonunitary operator on a Hilbert space.

If S is multiplication by z on $H^{2}, f(S)$ is multiplication by $f(z)$.
When C is an inner function, then $T=P_{C} S \mid \mathcal{H}(C)$ and

$$
f(T)=P_{C} f(S) \mid \mathcal{H}(C) .
$$

This is the form used by Sarason.

Theorem (Sarason 1967)

Let C be an inner function. If R is a bounded operator on $\mathcal{H}(C)$ that commutes with T, then there is an $f \in H^{\infty}$ such that

$$
R=f(T)
$$

Moreover f can be chosen such that $\|f\|_{\infty}=\|R\|$.

When R is a contraction, we can choose $f \in \mathbf{S}_{0}$:
Schur class S_{0} : analytic functions f on \mathbb{D} such that $|f(z)| \leq 1$.
Generalized Schur class \mathbf{S}_{κ} : quotients f / B, where f is a Schur function, B is a Blaschke product of degree κ, and f and B have no common zeros.

Such pairs f, B play a prominent role in this talk.

Outline of talk
Replace " R a contraction" by " $1-R R^{*}$ has κ negative squares", or $s q_{-}\left(1-R R^{*}\right)=\kappa$.

Meaning: the negative spectrum of $1-R R^{*}$ consists of eigenvalues of total multiplicity κ.

Nudel'man's problem
Such an R satisfies $B(T) R=f(T)$, where B is a Blaschke product of degree κ and f is a Schur function.

Preliminaries on spaces $\mathcal{H}(C)$
Difference-quotient identity and root subspaces for T and T^{*}.
Applications to $B(T) R=f(T)$
Goal: R is determined on a subspace of codimension at most κ and given by an explicit formula depending on f, B.

Introduction

Spaces $\mathcal{H}(C)$
Sarason's theorem
Outline of talk
Nudel' man's problem
Abstract problem
Example
Theorem A

Nudel'man's problem

Preliminaries on spaces $\mathcal{H}(C)$ Difference-quotient identity
Root vectors and subspaces
Proposition 1
Proposition 2
Proposition 3
Proposition 4
Applications to $B(T) R=f(T)$
Problem
Theorem B
Theorem C

Abstract problem
Let \mathcal{V} be a complex vector space, $A: \mathcal{V} \rightarrow \mathcal{V}$ a linear mapping. Define $A^{\prime}: \mathcal{V}^{\prime} \rightarrow \mathcal{V}^{\prime}$ by

$$
\left(A x, x^{\prime}\right)=\left(x, A^{\prime} x^{\prime}\right), \quad x \in \mathcal{V}, x^{\prime} \in \mathcal{V}^{\prime}
$$

Choose a subspace $\mathcal{D} \subseteq \mathcal{V}^{\prime}$ which is invariant under A^{\prime}.

Problem

Let $b, c \in \mathcal{V}$ be given vectors, κ a nonnegative integer. Find a Schur function f and Blaschke product B of degree κ such that

$$
B(A) b=f(A) c
$$

in the sense that

$$
\sum_{j=0}^{\infty} B_{j}\left(A^{j} b, x^{\prime}\right)=\sum_{j=0}^{\infty} f_{j}\left(A^{j} c, x^{\prime}\right), \quad x^{\prime} \in \mathcal{D} .
$$

Assume \mathcal{D} admissible in the sense that for all $x^{\prime} \in \mathcal{D}$,

$$
\sum_{j=0}^{\infty}\left|\left(A^{j} b, x^{\prime}\right)\right|^{2} \leq M \sum_{j=0}^{\infty}\left|\left(A^{j} c, x^{\prime}\right)\right|^{2}<\infty
$$

Theorem (ADR 2020)
The problem admits a solution if the kernel on $\mathcal{D} \times \mathcal{D}$ defined by

$$
\mathbf{K}\left(x^{\prime}, y^{\prime}\right)=\sum_{j=0}^{\infty}\left[\left(A^{j} c, x^{\prime}\right) \overline{\left(A^{j} c, y^{\prime}\right)}-\left(A^{j} b, x^{\prime}\right) \overline{\left(A^{j} b, y^{\prime}\right)}\right]
$$

has κ negative squares.
Conversely, if a solution exists, $\mathbf{K}\left(x^{\prime}, y^{\prime}\right)$ has at most κ negative squares.

A kernel $K(w, z)=\overline{K(z, w)}$ on $\Omega \times \Omega$ has κ negative squares if among all matrices

$$
\left(K\left(w_{j}, w_{i}\right)\right)_{i, j=1}^{n}, \quad w_{1}, \ldots, w_{n} \in \Omega, n \geq 1
$$

the maximum number of negative eigenvalues counting multiplicity is κ.

Proof and history: Alpay, Dijksma, Rovnyak 2020
Arocena, Azizov, Dijksma, Marcantognini 1997
Ball and Helton 1983
The case $\kappa=0$ has a simpler statement and proof:
Rosenblum and Rovnyak 1985

Pick-Nevanlinna interpolation:
Let z_{1}, \ldots, z_{n} be distinct points in $\mathbb{D}, w_{1}, \ldots, w_{n} \in \mathbb{C}$. Set

$$
P=\left(\frac{1-w_{j} \bar{w}_{i}}{1-z_{j} \bar{z}_{i}}\right)_{i, j=1}^{n} .
$$

If sq_ $P=\kappa$, there is a Schur function f and a Blaschke product B of degree κ such that

$$
B\left(z_{j}\right) w_{j}=f\left(z_{j}\right), \quad j=1, \ldots, n
$$

Conversely, if such f and B exist, then $\mathrm{sq}_{-} P \leq \kappa$.
Choose $A=\operatorname{diag}\left\{z_{1}, \ldots, z_{n}\right\}$ on $\mathcal{V}=\mathbb{C}^{n}$,

$$
b=\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right), \quad c=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

Take $\mathcal{D}=\mathbb{C}^{n}$ with the pairing $(x, y)=x_{1} y_{1}+\cdots+x_{n} y_{n}$.

Theorem A (ADR 2020)
Assume C inner. Let R be an operator on $\mathcal{H}(C)$ that commutes with T and satisfies

$$
\mathrm{sq}_{-}\left(1-R R^{*}\right)=\kappa .
$$

Then there exist a Schur function f and a Blaschke product B of degree κ such that

$$
B(T) R=f(T)
$$

Conversely, if such f and B exist, then $1-R R^{*}$ has at most κ negative squares.

Special case: $\kappa=0$.
For any $R \neq 0$ that commutes with T, we can apply Theorem A to $R /\|R\|$ and recover Sarason's theorem.

Sketch of proof:
Choose $\mathcal{V}=\mathcal{H}(C)$,

$$
\begin{gathered}
T: \mathcal{H}(C) \rightarrow \mathcal{H}(C) \\
c=K_{C}(0, z) \quad \text { and } \quad b=R K_{C}(0, z)
\end{gathered}
$$

$\mathcal{D}=$ all continuous linear functionals on $\mathcal{H}(C)$
Admissibility requires

$$
\sum_{j=0}^{\infty}\left|\left(A^{j} b, x^{\prime}\right)\right|^{2} \leq M \sum_{j=0}^{\infty}\left|\left(A^{j} c, x^{\prime}\right)\right|^{2}<\infty .
$$

Compute:

$$
\begin{gathered}
\sum_{j=0}^{\infty}\left|\left\langle T^{j} K_{C}(0, \cdot), k\right\rangle_{C}\right|^{2}=\|k\|_{H^{2}}^{2}=\|k\|_{C}^{2}, \\
\sum_{j=0}^{\infty}\left|\left\langle T^{j} R K_{C}(0, \cdot), k\right\rangle_{C}\right|^{2}=\left\|R^{*} k\right\|_{H^{2}}^{2}=\left\|R^{*} k\right\|_{C}^{2} .
\end{gathered}
$$

The admissibility condition is met:

$$
\left\|R^{*} k\right\|_{C}^{2} \leq M\|k\|_{C}^{2}<\infty .
$$

By a similar calculation,

$$
\begin{aligned}
\mathbf{K}\left(x^{\prime}, y^{\prime}\right) & =\sum_{j=0}^{\infty}\left[\left(A^{j} C, x^{\prime}\right) \overline{\left(A^{j} C, y^{\prime}\right)}-\left(A^{j} b, x^{\prime}\right) \overline{\left(A^{j} b, y^{\prime}\right)}\right] \\
& =\left\langle\left(1-R R^{*}\right) k, h\right\rangle_{H^{2}} \\
& =\left\langle\left(1-R R^{*}\right) k, h\right\rangle_{C}
\end{aligned}
$$

has κ negative squares.
Hence there exist a Schur function f and Blaschke product B of degree κ such that

$$
B(T) b=f(T) c, \quad b=R c .
$$

Therefore $B(T) R$ and $f(T)$ agree on $K_{C}(0, z)$.
Since $K_{C}(0, z)$ is cyclic for $T, B(T) R=f(T)$.
Theorem A follows.

What remains to do?

By Theorem A, in Sarason's theorem, if sq_ $\left(1-R R^{*}\right)=\kappa$ then

$$
B(T) R=f(T)
$$

for some such f and B. What does this tell us about R ?

Problem

Let R be a bounded operator on a space $\mathcal{H}(C), C$ not necessarily inner, that commutes with T and satisfies

$$
B(T) R=f(T),
$$

where f is a Schur function and B is a Blaschke product of degree κ. What is the form of R ?

This is the topic of the rest of the talk.

Introduction

Spaces $\mathcal{H}(C)$
Sarason's theorem
Outline of talk
Nudel' man's problem

Preliminaries on spaces $\mathcal{H}(C)$

Preliminaries on spaces $\mathcal{H}(C)$

The difference-quotient identity

Recall that $\mathcal{H}(C)$ is the Hilbert space with reproducing kernel

$$
K_{C}(w, z)=\frac{1-C(z) \overline{C(w)}}{1-z \bar{w}}, \quad w, z \in \mathbb{D} .
$$

The difference-quotient inequality holds in every space $\mathcal{H}(C)$:

$$
\left\|\frac{h(z)-h(0)}{z}\right\|_{C}^{2} \leq\|h(z)\|_{C}^{2}-|h(0)|^{2}
$$

In a large class of spaces, the inequality is always an equality.
Theorem
The difference-quotient identity

$$
\left\|\frac{h(z)-h(0)}{z}\right\|_{c}^{2}=\|h(z)\|_{C}^{2}-|h(0)|^{2}
$$

holds for every $h(z)$ in the space if and only if $C \notin \mathcal{H}(C)$.

Sarason showed that $C \notin \mathcal{H}(C)$ if and only if C is an extreme point of the unit ball in H^{∞}.

Other equivalent conditions and viewpoints:
Ball and Bolotnikov 2015

Operator Theory, Springer, Editor Daniel Alpay

Henceforth we shall assume that $C \notin \mathcal{H}(C)$, that is, we assume the extreme point case.

The difference-quotient identity facilitates calculations involving

$$
T: h(z) \rightarrow z h(z)-C(z)\left\langle h(z), \frac{C(z)-C(0)}{z}\right\rangle_{c}
$$

and inner products of difference quotients
$\left\langle\frac{h(z)-h(w)}{z-w}, \frac{C(z)-C(0)}{z}\right\rangle_{C}$ and $\left\langle\frac{C(z)-C(w)}{z-w}, \frac{C(z)-C(0)}{z}\right\rangle_{C}$

Two useful formulas:
SSPS, Problem 88. If $C \notin \mathcal{H}(C)$, then

$$
\begin{aligned}
\overline{C(\beta)} h(\alpha)=\bar{\beta}\langle & \left.h(z), \frac{C(z)-C(\beta)}{z-\beta}\right\rangle_{C} \\
& -(1-\alpha \bar{\beta})\left\langle\frac{h(z)-h(\alpha)}{z-\alpha}, \frac{C(z)-C(\beta)}{z-\beta}\right\rangle_{C}
\end{aligned}
$$

SSPS, Problem 89. If $C \notin \mathcal{H}(C)$, then

$$
\left\langle\frac{C(z)-C(\alpha)}{z-\alpha}, \frac{C(z)-C(\beta)}{z-\beta}\right\rangle_{C}=\frac{1-\overline{C(\beta)} C(\alpha)}{1-\alpha \bar{\beta}}
$$

Different method:
Alpay, Dijksma, Rovnyak, de Snoo 1997 (Th. 3.2.4, 3.2.5)

Introduction

Special cases, very useful for calculations involving T :
If $C \notin \mathcal{H}(C)$, then

$$
\begin{aligned}
\left\langle\frac{h(z)-h(w)}{z-w}, \frac{C(z)-C(0)}{z}\right\rangle_{c} & =-\overline{C(0)} h(w) \\
\left\langle\frac{C(z)-C(w)}{z-w}, \frac{C(z)-C(0)}{z}\right\rangle_{c} & =1-\overline{C(0)} C(w)
\end{aligned}
$$

Example:

Assume $C \notin \mathcal{H}(C)$. If $C(w) \neq 0$, then

$$
(T-w)^{-1}: h(z) \rightarrow \frac{h(z)-h(w) C(z) / C(w)}{z-w}
$$

Cf. Sarason 1994, p. 42.

Proof. Set

$$
\begin{aligned}
k(z) & =\frac{h(z)-h(w) C(z) / C(w)}{z-w} \\
& =\frac{h(z)-h(w)}{z-w}-\frac{h(w)}{C(w)} \frac{C(z)-C(w)}{z-w} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(T-w) k(z) & =(z-w) k(z)-C(z)\left\langle k(z), \frac{C(z)-C(0)}{z}\right\rangle_{c} \\
& =h(z)
\end{aligned}
$$

Terminology
If α is an eigenvalue of A, its geometric multiplicity is

$$
\operatorname{dim} \operatorname{ker}(A-\alpha)
$$

Any $f \neq 0$ such that $(A-\alpha)^{n} f=0$ is a root vector.
If the subspace of all root vectors plus zero has finite dimension, this dimension is the algebraic multiplicity of A.
[Gohberg and Kreĭn, Introduction to the Theory of ...]

Eigenvalues and eigenfunctions
Sarason 1994
Fricain and Mashreghi 2016
Garcia, Mashreghi, and Ross 2016
Root functions
Nikol'skiï, Treatise on the Shift Operator
Assume given $\mathcal{H}(C), C \notin \mathcal{H}(C)$. The spectrum of T in \mathbb{D} consists of isolated eigenvalues at the zeros of C in \mathbb{D}.

If $C(\alpha)=0$, then
(1) α is an eigenvalue of T, and $\operatorname{ker}(T-\alpha)=\left[\frac{C(z)}{z-\alpha}\right]$
(2) $\bar{\alpha}$ is an eigenvalue of T^{*}, and $\operatorname{ker}\left(T^{*}-\bar{\alpha}\right)=\left[\frac{1}{1-\bar{\alpha} z}\right]$.

Proposition 1

Let α be a zero of C of order n.
(1) Let $Q_{j}(z)=\frac{C(z)}{(z-\alpha)^{j}}, j=1, \ldots, n$. Then

$$
\begin{aligned}
(T-\alpha) Q_{1} & =0 \\
(T-\alpha) Q_{j} & =Q_{j-1}, \quad j=2, \ldots, n
\end{aligned}
$$

(2) The subspaces $\mathcal{R}_{k}=\operatorname{ker}(T-\alpha)^{k}$ are given by

$$
\mathcal{R}_{k}=\left\{\begin{array}{lc}
{\left[Q_{1}, \ldots, Q_{k}\right],} & k=1, \ldots, n \\
\mathcal{R}_{n}, & k>n
\end{array}\right.
$$

(3) The geometric multiplicity of α is 1 , the algebraic multiplicity is n. The root subspace is \mathcal{R}_{n}.

Corollary

If $f \in H^{\infty}$ and $f(T) Q_{k}=0$ for some $k=1, \ldots, n$, then f has a zero at α of order at least k.

Proof. Define $g \in H^{\infty}$ by

$$
\begin{aligned}
f(z)=f(\alpha) & +f^{\prime}(\alpha)(z-\alpha)+\cdots+\frac{f^{(k-1)}(\alpha)}{(k-1)!}(z-\alpha)^{k-1} \\
& +(z-\alpha)^{k} g(z)
\end{aligned}
$$

Apply $f(T)$ to Q_{k}. Since $(T-\alpha)^{k} Q_{k}=0$,

$$
0=f(\alpha) Q_{k}+f^{\prime}(\alpha) Q_{k-1}+\cdots+\frac{f^{(k-1)}(\alpha)}{(k-1)!} Q_{1}
$$

Since Q_{1}, \ldots, Q_{k} are linearly independent,

$$
f(\alpha)=f^{\prime}(\alpha)=\cdots=f^{(k-1)}(\alpha)=0
$$

Proposition 2

Let α be a zero of C of order n.
(1) Let $P_{j}(z)=\frac{z^{j-1}}{(1-\bar{\alpha} z)^{j}}, j=1, \ldots, n$. Then

$$
\left(T^{*}-\bar{\alpha}\right) P_{1}=0
$$

$$
\left(T^{*}-\bar{\alpha}\right) P_{j}=P_{j-1}, \quad j=2, \ldots, n
$$

(2) The subspaces $\widetilde{\mathcal{R}}_{k}=\operatorname{ker}\left(T^{*}-\bar{\alpha}\right)^{k}$ are given by

$$
\widetilde{\mathcal{R}}_{k}=\left\{\begin{array}{lc}
{\left[P_{1}, \ldots, P_{k}\right],} & k=1, \ldots, n, \\
\widetilde{\mathcal{R}}_{n}, & k>n .
\end{array}\right.
$$

(3) The geometric multiplicity of $\bar{\alpha}$ is 1 , the algebraic multiplicity is n. The root subspace is $\widetilde{\mathcal{R}}_{n}$.

Proposition 3

Let α be a zero of C of order n. For each $j=1, \ldots, n$,

$$
P_{j}(z)=R(\alpha)^{* j-1} K_{C}(\alpha, z),
$$

where

$$
R(\alpha): h(z) \rightarrow \frac{h(z)-h(\alpha)}{z-\alpha} .
$$

Corollary

For each $k=1, \ldots, n$,

$$
\left[\operatorname{ker}\left(T^{*}-\bar{\alpha}\right)^{k}\right]^{\perp}=\left\{h: h(\alpha)=h^{\prime}(\alpha)=\cdots=h^{k-1}(\alpha)=0 .\right\} .
$$

This is because

$$
\left\langle h(z), R(\alpha)^{* j-1} K_{C}(\alpha, z)\right\rangle_{C}=\frac{h^{j-1}(\alpha)}{(j-1)!}
$$

Proposition 4

If $\alpha_{1}, \ldots, \alpha_{r}$ are distinct zeros of \boldsymbol{C}, then

$$
\operatorname{ker}\left[\left(T^{*}-\bar{\alpha}_{1}\right)^{m_{1}} \cdots\left(T^{*}-\bar{\alpha}_{r}\right)^{m_{r}}\right]=\sum_{j=1}^{r} \operatorname{ker}\left(T^{*}-\bar{\alpha}_{j}\right)^{m_{j}} .
$$

for all positive integers m_{1}, \ldots, m_{r}.
The proof is by induction on the number of factors.
Cases:

1. Add another zero α_{n+1} of C.
2. Increase one m_{j} to $m_{j}+1$ when $m_{j}+1$ is not beyond the order of α_{j} as a zero of C.
3. Increase one m_{j} beyond this order.

In each case, we make a judicious partial fraction decomposition.

Introduction

Spaces $\mathcal{H}(C)$
Sarason's theorem
Outline of talk
Nudel' man's problem
Abstract problem
Example
Theorem A

Applications to $B(T) R=f(T)$

Preliminaries on spaces $\mathcal{H}(C)$ Difference-quotient identity
Root vectors and subspaces
Proposition 1
Proposition 2
Proposition 3
Proposition 4

Problem

Let R be a bounded operator on $\mathcal{H}(C), C \notin \mathcal{H}(C)$, that commutes with T and satisfies

$$
B(T) R=f(T),
$$

where f is a Schur function, B a Blaschke product of degree κ.
What is the form of R ? Is R uniquely determined?

Easy case:

$$
\{\text { Zeros of } \mathrm{B}\} \cap\{\text { Zeros of } \mathrm{C}\}=\emptyset
$$

Then $B(T)$ is a product of factors $(1-\bar{\beta} T)^{-1}(T-\beta)$ such that $C(\beta) \neq 0$. Then $T-\beta$ is invertible.

Hence $B(T)$ is invertible, and so

$$
R=B(T)^{-1} f(T)
$$

In the general case, set

$$
\begin{aligned}
& \{\text { Zeros of } B\} \cap\{\text { Zeros of } C\}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \\
& m_{1}, \ldots, m_{r}=\text { orders of } \alpha_{1}, \ldots, \alpha_{r} \text { as zeros of } B \\
& n_{1}, \ldots, n_{r}=\text { orders of } \alpha_{1}, \ldots, \alpha_{r} \text { as zeros of } C
\end{aligned}
$$

Factor

$$
B(z)=B_{1}(z) B_{0}(z) B_{2}(z)
$$

where

$$
\begin{aligned}
& B_{1}(z)=\prod_{C(\beta) \neq 0} \frac{z-\beta}{1-\bar{\beta} z} \\
& B_{0}(z)=\prod_{j=1}^{r}\left(\frac{z-\alpha_{j}}{1-\bar{\alpha}_{j} z}\right)^{k_{j}}, \quad k_{j}=\min \left(m_{j}, n_{j}\right) \\
& B_{2}(z)=\prod_{m_{j}>n_{j}}\left(\frac{z-\alpha_{j}}{1-\bar{\alpha}_{j} z}\right)^{m_{j}-n_{j}}
\end{aligned}
$$

Theorem B

Let R be a bounded operator on $\mathcal{H}(C), C \notin \mathcal{H}(C)$, that commutes with T and satisfies

$$
B(T) R=f(T),
$$

where f is a Schur function and B is a Blaschke product of degree κ. Factor $B=B_{1} B_{0} B_{2}$ as just described.

Let \mathcal{K} be the subspace of all $h(z)$ in $\mathcal{H}(C)$ such that

$$
h\left(\alpha_{j}\right)=h^{\prime}\left(\alpha_{j}\right)=\cdots=h^{\left(k_{j}-1\right)}\left(\alpha_{j}\right)=0, \quad j=1, \ldots, r .
$$

Then codim $\mathcal{K} \leq \kappa$, and \mathcal{K} is invariant under T and R.
The restriction $R_{\mathcal{K}}=R \mid \mathcal{K}$ is a function of $T_{\mathcal{K}}=T \mid \mathcal{K}$ given by

$$
R_{\mathcal{K}}=B_{1}\left(T_{\mathcal{K}}\right)^{-1} g\left(T_{\mathcal{K}}\right) B_{2}\left(T_{\mathcal{K}}\right)^{-1}
$$

where $g(z)=f(z) / B_{0}(z)$ is a Schur function.

Idea of the proof
We show that $g=f / B_{0} \in \mathbf{S}_{0}$.
Since $B(T) R=f(T)$ and $B=B_{1} B_{0} B_{2}$,

$$
B_{1}(T) B_{0}(T) B_{2}(T) R=f(T)
$$

All factors on the left commute, and $B_{1}(T)$ is invertible because the zeros of B_{1} are not zeros of C.

Therefore

$$
R B_{2}(T) B_{0}(T)=B_{1}(T)^{-1} f(T)
$$

Here

$$
B_{0}(T)=\prod_{j=1}^{r}\left[\left(1-\bar{\alpha}_{j} T\right)^{-1}\left(T-\alpha_{j}\right)\right]^{k_{j}}
$$

By Proposition 1, $\operatorname{ker}\left(T-\alpha_{j}\right)^{k_{j}}=\left[Q_{1}, \ldots, Q_{k_{j}}\right]$.
Hence $B_{0}(T) Q_{k_{j}}=0$ and so $f(T) Q_{k_{j}}=0$.

Corollary: f has a zero at α_{j} of order at least k_{j}.
By standard function theory,

$$
f(z) /\left(\frac{z-\alpha_{j}}{1-\bar{\alpha}_{j} z}\right)^{k_{j}}
$$

is a Schur function.
Since $B_{0}(z)$ is the product of all such factors,

$$
g(z)=f(z) / B_{0}(z)
$$

is a Schur function.

It follows that

$$
R B_{2}(T) B_{0}(T)=B_{1}(T)^{-1} g(T) B_{0}(T)
$$

This says that

$$
R B_{2}(T)\left|\operatorname{ran} B_{0}(T)=B_{1}(T)^{-1} g(T)\right| \operatorname{ran} B_{0}(T)
$$

Now

$$
\begin{aligned}
\overline{\operatorname{ran} B_{0}(T)} & =\left[\operatorname{ker} B_{0}(T)^{*}\right]^{\perp} \\
& =\left[\operatorname{ker}\left[\left(T^{*}-\bar{\alpha}_{1}\right)^{k_{1}} \cdots\left(T^{*}-\bar{\alpha}_{r}\right)^{k_{r}}\right]\right]^{\perp} \\
& =\left[\sum_{j=1}^{r} \operatorname{ker}\left(T^{*}-\bar{\alpha}_{j}\right)^{k_{j}}\right]^{\perp}
\end{aligned}
$$

by Proposition 4.

An Indefinite

By Proposition 3,

$$
\left[\operatorname{ker}\left(T^{*}-\bar{\alpha}_{j}\right)^{k_{j}}\right]^{\perp}=\left\{h: h\left(\alpha_{j}\right)=h^{\prime}\left(\alpha_{j}\right)=\cdots=h^{k_{j}-1}\left(\alpha_{j}\right)=0\right\}
$$

Therefore $\overline{\operatorname{ran} B_{0}(T)}=\mathcal{K}$.
Clearly $T \mathcal{K} \subseteq \mathcal{K}$, and

$$
\operatorname{codim} \mathcal{K}=k_{1}+\cdots+k_{r} \leq \kappa .
$$

We have shown

$$
R B_{2}(T)\left|\mathcal{K}=B_{1}(T)^{-1} g(T)\right| \mathcal{K}
$$

Short step to

$$
R_{\mathcal{K}} B_{2}\left(T_{\mathcal{K}}\right)=B_{1}\left(T_{\mathcal{K}}\right)^{-1} g\left(T_{\mathcal{K}}\right)
$$

It remains to move $B_{2}\left(T_{\mathcal{K}}\right)$ to the right side.
Claim: $B_{2}\left(T_{\mathcal{K}}\right)$ is an invertible element of $\mathcal{L}(\mathcal{K})$
Omit

Granting this,

$$
R_{\mathcal{K}}=B_{1}\left(T_{\mathcal{K}}\right)^{-1} g\left(T_{\mathcal{K}}\right) B_{2}\left(T_{\mathcal{K}}\right)^{-1}
$$

Theorem B follows.

Theorem C

Let R be an operator on $\mathcal{H}(C), C$ inner, that commutes with T and satisfies

$$
\mathrm{sq}_{-}\left(1-R R^{*}\right)=\kappa .
$$

Then there is a Schur function f and a Blaschke product B of degree κ such that $B(T) R=f(T)$. Factor $B=B_{1} B_{0} B_{2}$ as in Theorem B.

Let \mathcal{K} be the subspace of all $h(z)$ in $\mathcal{H}(C)$ such that

$$
h\left(\alpha_{j}\right)=h^{\prime}\left(\alpha_{j}\right)=\cdots=h^{\left(k_{j}-1\right)}\left(\alpha_{j}\right)=0, \quad j=1, \ldots, r .
$$

Then $\operatorname{codim} \mathcal{K} \leq \kappa$, and \mathcal{K} is invariant under T and R.
The restriction $R_{\mathcal{K}}=R \mid \mathcal{K}$ is a function of $T_{\mathcal{K}}=T \mid \mathcal{K}$ given by

$$
R_{\mathcal{K}}=B_{1}\left(T_{\mathcal{K}}\right)^{-1} g\left(T_{\mathcal{K}}\right) B_{2}\left(T_{\mathcal{K}}\right)^{-1}
$$

where $g(z)=f(z) / B_{0}(z)$ is a Schur function.

Remark

In general, $\mathcal{K} \neq \mathcal{H}(C)$ and R cannot be known completely.
This is expected behavior in indefinite interpolation.

Unexpected behavior:
If C is a singular inner function, then automatically

$$
B(T)=\prod_{C(\beta) \neq 0}(1-\bar{\beta} T)^{-1}(T-\beta)
$$

is invertible. Then $\mathcal{K}=\mathcal{H}(C)$ and $R=B(T)^{-1} f(T)$.

An Indefinite
Analog of Sarason's
Generalized Interpolation Theorem

James Rovnyak

Introduction
Spaces $\mathcal{H}(C)$
Sarason's theorem
Outine of talk
Nudel' man's problem

Abstract problem
Example
Theorem A
Preliminaries on spaces $\mathcal{H}(C)$
Difference-quotient identity
Root vectors and subspaces
Proposition 1
Proposition 2
Proposition 3
Proposition 4
Applications to $B(T) R=f(T)$
Problem
Theorem B
Theorem C

Thank you!

