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Let (A(n))n>1 be the coefficients of an automorphic L-function of
degree d

L(m,s) = Z An) = HLp(w,s), Rs > 1
p

ns
n>1

Lo(m.s) = [[(1 = =22)

S
i<d P

To simplify we assume that the Ramanujan-Petersson bound holds
A(n) = n°®)

(and often this known on average)



The Godement-Jacquet L-function L(m,s) of an automorphic
representation m € Aut(GLy),

The Rankin-Selberg L-function, L(m ® 2, s) of a pair
(71’1,7T2) € Aut(GLdl) X Aut(GLd2).

The L-function L(m, p,s) attached to m € Aut(GLy) and p a
representation of GL4(C): for instance L(m, Ad,s).

It is expected (Functoriality Conjecture) that all are products
of Godement-Jacquet L-functions



Let x (mod q) be a Dirichlet character (of prime conductor) and
L(m,s) as above, the twisted L-function is

L(mx,s) =) W =[] Lp(mx.s), Rs>1
p

n>1

Lp(m.x,s) = [J(1 - i X(P)y-1.

i<n ps
Assume the conductor of L(m,s) is 1 (for simplicity) then
A(7.x,s) = e.e(x)?N(m.x, 1 —3)

where
A .x,5) = q%/?Los(m.X, 5)L( X, 5)

is the complete L-function, |¢| =1 and (x) is the normalized
Gauss sum.



Subconvexity Problem

Show that there is 6 = 04 > 0 such that for s = 1/2,

L(m.x,s) s q/470F() 5> 0.

bl

GL;1: Burgess, Conrey-lwaniec, Petrow-Young.

GL5: Duke-Friedlander-lwaniec,..., Conrey-lwaniec,...,
Petrow-Young, ..., Venkatesh,.., Nelson...

GL, x GLo: M, Harcos-M,...,M-Venkatesh, 777?
sym(GLz): Blomer...

GL3: Munshi, Holowinsky-Nelson, Sharma...
GL; xsym(GLy): Blomer...

GL, x GL3: Sharma...



The problem is substantially equivalent to the bound

Z A(m)x(n) <5 g?/2-0+00),

n~qd/2

— A fews years ago, F, K and M looked at the problem of
establishing similar bounds with x (mod q) replaced by more
general g-periodic arithmetic functions K : Z — C such that
Koo < 1.

— The aim is to bound non trivially, sums of the shape

D AmK(n) < X0, 6> 0,
n~X
at least for some ranges of X wrt to g:

Xe= qd/2
is the convexity range.
—The class of functions K considered are the so-called trace
functions.



Trace functions include
" . (an
o Additive characters n — eg(a.n) := e(%"),
@ Dirichlet characters n — x(n),

@ composition of the above with rational fractions: for instance
the " Kloosterman fraction”,

Kl_1(n) :=n eq(

), (n,q) =

Q|3

@ Hyper-Kloosterman sums:

1
Kl(mq)=—5 > eqlxa+-+x).

d 2 xix-xx=n

To a trace function K is attached a "conductor” ¢(K) which we
assume is bounded independently of g:

= |K|loo < 1



A in (large) arithmetic progressions

One possible motivation is the distribution of A in large arithmetic
progressions:

1
> )\(H)Zm (Z X(a) D Mn)x(n)

n~N X (mod q) n~N
n=a(mod q)
1 1 _
=—< > Am+—< > x(@) Y An)x(n)
v(q) (q)
n~N X (mod q) n~N
(n7q):1 X#XO

and

A~ o0 Y )

n~N n<<qd/N



2.

%

. Y A0 S 2 hoXan)

x (mod q) n<<qd//V x (mod q)
X#X0 X#X0
1 1
— > <(x)x(an) = —5Klg(an) + O(q~9/*71)
v(q) q
x (mod q)
X#X0

One eventually obtains

N
>, Z An = g2 > X(n)Klg(an; q).

n~N n~N n<q?/N
n=a(mod q) (n q)=1



@ The trivial bound (using Deligne's bound |Kly(an; q)| < d)
gives

L 0 < g5t told)
> A (@) > AMn)<q

n~N n~N
n=a(mod q) (n,q)=1

which is better than N1t°(1) /g as long as g < N%~" where
2

0y = ——.
T d¥1

@ In other terms, non-trivial bounds

Z A(n)Kly(an; q) <. X170, § >0,
n~X
for the shorter range

d
2

N

X>Xg=gq
will improve the level of distribution of A in arithmetic
progressions.



This problem is an analog of providing good estimates for sums
with a sharp cut :

Z A(n) = TeSs:lM + Err(X).

n<X

o Friedlander-lwaniec have shown that in fair generality one can
take
d—1,
Err (X) = O.(Xd17), ¢ > 0.
@ Going beyond this generic bound lead to the problem of
bounding non-trivially sums of the shape

> Mn)exp(2miTe(n/X))

n~X

where (x) = x” and for suitable ranges of T wrt X



For instance, in the case of GL; x GLy Rankin-Selberg L-functions
(d = 4), one has

Theorem (B. Huang)

For f a modular form of level 1

Z Ae(n)? = L(S%;)f’l)x L (=L ey
n<X

This improves the 80 years old 3/5 exponent of Rankin and
Selberg.



GL,

The problem is essentially about bounding non-trivially

> K(n).

n~X

The convexity range here X = /2 is also called the
Polya-Vinogradov range and non-trivial bounds exists only for very
limited amount of trace functions
@ n— eq(P(n)), P € Z[X] of degree > 3: Weyl.
@ n+— x(n): Burgess.
© n+— x(n)eq(P(n)): Burgess, Enflo,... ,Chang,...
Heath-Brown-Pierce.
@ The Fourier transforms of the above:
FKM-Raju-Rivat-Soundararajan.

~ 1
n— K(n) = e Z K(x)eq(nx) :
x (mod q)



GL,

For (A(n)), the Fourier coefficients of a modular form, one has

X.=q, 0, =2/3, Xg=q"/>.

Theorem (FKM)

As long as K "is not” an additive character n — e(2

), one has

<3

D MK () g ey (gX)°Wgl/27HEXL2,
n~X

e For X = X. = q the bound saves q*/8.

@ The bound is non trivial as long as X > ¢3/4t°(1). So this
does not improve ;.



The proof uses amplification "a la” Bykovskii/Conrey-lwaniec:

g O xAR (O Y Ap(n)K(n)?

<L n<X
< D D oxeA(OF1 D] A(mK ()
feBk(q) ¢<L n<X

followed by Kuznetzov formula and Poisson summation in the
resulting two " n" variables.



Ultimately the bound rest on bounding the following correlation
sums

> K(rx)K(x) <ty 0, bad 9+ a2

x€Fq

where the

a b az+b
v = (C d) € PGLy(Fg), v.z= p——

are constructed from the amplifier.
The goal is to show that the set of "bad" ~'s is small.

@ The bound above is a consequence of Deligne's Weil Il and of
a deep fact, due to Laumon, that unless K "is" an additive
character, the Fourier transform K is a trace function whose

conductor ¢(K) is controlled by c(K).



Theorem (Classification of group of automorphisms of sheaves)

The set of v € PGLy(IFy) such that the correlation sum is > q is
contained in Gi(Fq) the set of Fy-points of an algebraic subgroup
of PGLy. Moreover |G (Fy)| is either "small” (bounded in terms
of ¢(K)) or has a simple structure.



GL3

We have
Xe=¢q*? 05=1/2, Xq=q.

Theorem (KLMS)

As long as K "is not” an additive character n — e(

an

'), one has

D AMK(n) Kr () (aX)°Dg?/Ox5/0.
n~X

e For X = q3/2 one obtains < c(K) q3/2—1/36+o(1)

e The bound is non trivial as long as X > ¢*/3+°(1) So this
does not improve 63.



GLj3: improving 3 in special cases

However if the GLs-representation 7 is not cuspidal one can
improve the performance using the fact that A admits a
factorisation

A(n) = A xda(n) = > M(k)
kl=n
for Aj, i =1,2 associated to m; € Aut(GL;).

e r=1H1H1: An)=1x1x1(n)=ds(n),
Friedlander-lwaniec improved 63 by 1/230, Heath-Brown by
1/80 and FKM by 1/46 (using the GL; case for mo = 1 H1).

o m=1Hmy: for A(n) = 1% A¢(n) KMS improved 63 by 1/102.
The key input is a bound for bilinear sums of Kloosterman
sums in the PV range

Z akﬂ,.Kld(akI; q) <4 q1*1/64+o(1)‘
k,I~ql/2



GL3: improving 63 in special cases

However if the GLs-representation is not cuspidal one can improve
the performance using the fact that A admits a factorisation

A(n) = Ar* do(n) = > M(k
kl=n
for \;, i = 1,2 associated to 7; € Aut(GL;).
e For K = Kly, one has (KMS)

D A x da(n)Kli(n) < X0
n~X

for X > g3/4tn,



GL3: the cuspidal case

After a first breakthrough made by X. Li, R. Munshi developed the
d-symbol method to obtain

Theorem (Munshi)

Let ¢ be a SL3(Z)-invariant cusp form. For K(n) = x(n),

> (1, n)K(n) < g*/270TM) 6 = 1/308.

n~g3/2
Holowinsky-Nelson simplified Munshi's approach

Theorem (Holowinsky-Nelson)

Let ¢ be a SL3(Z)-invariant cusp form. For K(n) = x(n),

> (LK (n) <¢ ¢*/270TeM) 5 =1/36.

neag3/2



GL3: the cuspidal case

Munshi’s method can be adapted to handle more general trace
functions K but at the cost of massive complications (also on the
¢-adic side).

Fortunately the Holowinski-Nelson simplification also works and is
so robust that there is no loss of quality when passing to general
trace functions:

Theorem (KLMS)

Let ¢ be a SL3(Z)-invariant cusp form. Let K be a trace function,
one has

Z >‘80(17 n)K(n) <<f,c(K) q3/2_6+0(1)7 o= 1/36

n~g3/2



Set

S(K, X) =Y Ag(1,n)K(n).

n~X

If K is an additive character, S. Miller has proven an analog of
Wilton’s bound:

S(eq(a.0), X) <+ X3/4+e(1),

Wlog wma that K is not an additive character.
— The first step of the HN approach is to realize the function K
within a one-parameter family of g-periodic functions. Define

Rz ) = K(z)eq(—hz) qfz
KO q|z

for (z,h) € 72 so that

K(n, h) := # > K(z, h)eg(—nz).

ZEF;



Taking h =0 in the above

K(n,0) = K(n) — 51(;)2)

and, more generally, for any probability measure @ on F, we have

K(0)
ql/2’

K=(n,0) = K(n) —

where
Ko(n, h) := > @(u)K(n,Th)

ueF;



It follows that

S(K,X)= > @(u) Y S(K(e,Th), X)

ueky |hI<H
— Z Z S(K(e,uh),X) + Err
ueFy 0<|h‘§H
= F — O + Err.

We take w to be supported on the classes u = p./ (mod q) for pairs
of primes p ~ P, | ~ L with P, L < q/2.



log P log L -
_;g/2 zizzZZ)\ (1,n)K(n, plh).

p,l |h|<H n~X

We apply Poisson on h getting for the h, n sums

1/2 Z ZA 1n (—plr)e

|r|1<q/H n~X

Irpn
—)
q

and apply reciprocity
Irpn qpn, . pn qpn
TPy — (- T)e( 21y v e(~ 10,

e( )= qlr Ir

q € Ir
for XP = (1/2)q?L/H or H = q?L/2XP.



We use the automorphy of ¢ through Voronoi summation formula:

_gpn
Z As I

n~X

X —
~ W Z Ao(n, 1) Kh(£pgn; Ir)
7 n(La/H)3/X

We then Cauchy to smooth out n

DD < QoM DG K(=plr)Kha(£pan; Ir)[?)*/
n,r nr  p,l

p,l,n,r

and apply Poisson on the resulting n-sum

Z Kh(+pyqn; hr)Kh(x£poqn; lbr)
n<(Lq/H)3/X

and use the expression of the Fourier transform of the product of
Kloosterman sums in terms of Ramanujan sums.



We obtain that for L < P*

3/2p

F< q°(1)();L 5 + X (aPL)YY).

and to be non-trivial one need at least that X > g'*7

Remark

At this stage, the only information (due to Deligne) we have used
is that for K not an additive character, one has

Koo <) 1.



Recall that

log P log L -
= Pg/2 52 Z Z ZA‘P(l n)K(n, plh).

p,l 0<|h|<H n~X
(h.)=1



This time we immediately Cauchy to smooth n and evaluate

ZZ Z K(n, p1/1hy) (n palaho)

p1,h1,h n~X
p2,h2,h

= Y vav(e) Y K(nx)K(n x)
><1,X2€IE‘;< n~X

Since X > g**", only the zero contribution in the dual variable
survives and the sum becomes

X -
7 Z v(x1)v(x2) Y Z K(u,x1)K(u, x2)
ql/ /

x1,%€Fg u€lFq

X ~ =~
= e Z y(xl)y(x2)ﬁ Z K(u,x1)K(u, x2)

X1,X2 E]Ff,< u€lq



Moreover

1/2ZKUX1 x2) = L(x1 — x2)
uclFy
with
109 = 4 ¥ IR 2) + RO
ueky

The second term is no problem.

For the first term, observe that if |K(u)|? = 1 a.e. (which is the
case for K = y treated by HN) the first term is a Ramanujan sum
hence very small.



In general we have the following elementary:

Lemma

Given p,v, L :Fq — C we have
Y vla)v(e)la — %) < a2 (V3] Lo
x1,%0€Fq

which is proven by separating x1, x2 in L(x; — x2) using the inverse
Fourier transform formula and Cauchying.



In the present case we have

Z(U) = ‘K( )| 5u 0 modq)+‘K( )’ 5u§£0(m0dq)

and (assuming PHL < q)

w3 = [{(p1, 1, h,p2, h2, b), pilih1 = palahy (mod q)}|
= {(p1, b, hy 2, 2, o), prhhy = pahiha}| = (PHL)Y M),
This yields
x1/2
0 <¢ ¢°W||K|loe L

Combining the F and O bounds we conclude.

Remark
The only information used is that K — not being an additive
character — satisfies

1K loo <y L.



It is important to have X close to or below g.

@ Being able to go below the distribution range Xy = q for
K(n) = Ki(n; g) would make it possible to evaluate
asymptotically the first moment

Y Lex.1/2)

x (mod q)

and to obtain non-vanishing results for central values of
twists: so far this is known only on average over suitable
composite moduli g1g2 (W. Luo).

@ For ¢ non-cuspidal such non-vanishing results for twisted
L-functions are known (Das-Khan, Petrow, Zacharias).



GL2 X GL3

We have

Xe = q37 06 = 2/77 Xd = q3_1/2'

Theorem (LMS)
Let f be a SLy(Z)-cusp form and ¢ be a SL3(Z) cups form and

A(n) = Ap(1, n).Ae(n)

If K is "good”, one has

> Ae(L MAr(mK(n)
n~X
<Lf p,c(K) (gX)°W(X3/4g11/16 4 x2/3 q11/12 | x o=1/8),

e For X = g3 the bound saves g—1/16

e The bound is non trivial as long as X > g3~ /4t So this
does not improve 6g.



GL2 X GL3

The proof follows the proof by P. Sharma of the special case
K = x (equivalent to the subconvex bound for L(¢ x f.x,1/2)):

Theorem (Sharma)

Let f be a SLy(Z)-cusp form and ¢ be a SL3(Z) cups form . One
has

3 AL mAr(m)x(n) < P70, 5 = 1/16.

n~q3

Corollary (Sharma)

Let ¢ be a SL3(Z)-invariant cusp form. One has,

> Ap(Ln)x(n) <5 ¥ 5 =1/32.

n~g3/2



Sharma’s proof uses

@ The d-symbol method to decompose
Sm=nA(1, m)Ar(n)x(n).

Conductor decreasing trick.
GL> and GL3-Voronoi on n and m.

Cauchy to smooth out m.

©© 00

Poisson (aka GL1-Voronoi). In this case, some non-zero
frequencies contribute.

©

Squareroot cancellation in multivariable exponential sums by
"invoking” the Adolphson-Sperber non-degeneracy criterion.

Excepted for the very last step, the proof does not make much use
of the fact that x is a Dirichlet character.



@ In the end the most complicated exponential sum one need to
face is: for (/,m, p) € F; some parameters (arising from
amplification and J-symbol methods)

Zymp(v) = 1/2 Z K(a)Klx(p* ma; q)Kla(p>¢va; q)
a(mod q)

Ce,m,p,g’,m’,p’(h; q) = 1/2 Z Z/ m p )Z// m’,p’ (V + pp/h)
veFy
@ It is at this stage that the hypothesis that K is "good” comes

in and to describe what "good” means one needs to know a
bit more about...



Trace functions

Given (4, q) = 1, choose an embedding ¢ : Q; — C.
The basic datum is a Galois representation

p: Gal(Fo[T]/Fq(T)) = GL(V)

for V a finite dimensional Q-vector space.

@ We assume that p is (t-)pure of weight 0: the eigenvalues of

the Frobenius at any unramified place of Fq(T) have absolute
value 1.

@ The trace function associated with p is the function
K, :t € Fy > tr(Frob| V") € @, — C.

(here "t" denote the "place” of the function field associated
with the polynomial T — t.) It follows from purity that

1K, oo < dim V.



Trace functions

The datum of this Galois representation p is equivalent to the
datum of an /-adic sheaf F = F, with nice properties (a middle
extension sheaf) and

K, = Kr
is the trace function attached to that sheaf and the representation
p is called the monodromy of the sheaf F.

@ The geometric monodromy p is the restriction of p to the
geometric Galois (sub)-group

P : Gal(Fq[T]/Fq(T)) — GL(V)

and the geometric monodromy group is the Zariski closure of
its image in GL(V).



Trace functions

@ The conductor ¢(K) of K (more correctly of p or F) is
formed by agregating (ie. summing) the local and global
invariants of p :

e The dimension dim V,

o the number of ramified places of p,

o the Swan conductor at these places swang(p) (which is zero
unless the representation is wildly ramified there).



The goodness criterion

The trace function K is "good” if the sheaf F associated to K
does not satisfy any of these conditions

@ For A € Fj; — {1} the geometric monodromy of F has some
quotient isomorphic to [XA\]*ICL,.

@ For some A € F' — {1}, F and [xA]*F are geometrically
isomorphic.

@ The local monodromy of F at oo has a slope equal to 1/2.



The goodness criterion

Recall that

1
Zimp(V) =i > K(a)Kly(p*ma; q)Klo(p*(va; q)
a(mod q)

1 —
C&m,p,Z’,m’,p’(h; q) = m Z Zl,m,p(v)zlgm’,p’(v + pp/h)-

VGF;

If K is "good” then whenever h # 0 (mod q) or
(I,m,p) # (I',m', p’) one has

Compem p(hq) <1



The goodness criterion: idea of the proof

@ The Z function can be obtained from K by a sequence of
simple transformations (we assume ¢ = m = p =1 for
simplicity)

K(x) 252 [(x) = K(x)Kla(x) 25 L(y)

N M(y) = Ly ) £5 M(u) 2% M(u™t)

where FT denote the Fourier transform and inv : x — x~ 1

the inversion.

@ These transformations have geometric analog at the level of
sheaves and one can track how the singularities of F evolve
when applying these (the deep but explicit work of Laumon on
the local Fourier transform is used there) to see when the two
copies of Z correlate.



The goodness criterion

The goodness criterion is pretty generic:
e n+— eq(P(n)) is good if deg P > 3 and is not a monomial.
@ The Kloosterman sum n +— Kly(n) is good if d > 3.

There are however some notable "bad apples”:



The goodness criterion

@ n+— x(n) (Sharma's case): in that case the sums Z; , ,(v)
and Cy,m.p¢ v, p(h; @) simplify considerably and the bound

C(,m,p,(’,mﬂp’(h; q) <1

is still valid for h # 0 (and easier) and when h = 0 the failure
is localized along an explicit and small diagonal set of the
remaining parameters and the final bound remains valid.

e n+— Kly(n): here the bound really fails but one can get
around with a trick.



The goodness criterion

e n+ Klp(n): here the bound really fails but one can get
around with a trick: we have

g2 _
Kla(niq) = 25 > x(me(x)?

9) x (mod q)

so that

5(K127 = q(_ Z )

and applying the functional equation one find that

1/2
5(K12,q3)%% Y e(0°25(x.¢%) ~ S(KL, ¢°)

x (mod q)

and Kl is good !



Thank you !



