Algebraic twists of automorphic L-functions

Ph. Michel, EPF Lausanne a series of joint works with E. Fouvry E. Kowalski, Y. Lin and W.Sawin

> Number Theory seminar, Toronto 2021

Let $(\lambda(n))_{n\geq 1}$ be the coefficients of an automorphic *L*-function of degree *d*

$$L(\pi, s) = \sum_{n \ge 1} \frac{\lambda(n)}{n^s} = \prod_p L_p(\pi, s), \ \Re s > 1$$
$$L_p(\pi, s) = \prod_{i \le d} (1 - \frac{\alpha_{i,p}}{p^s})^{-1}.$$

To simplify we assume that the Ramanujan-Petersson bound holds

$$\lambda(n)=n^{o(1)}$$

(and often this known on average)

- The Godement-Jacquet L-function L(π, s) of an automorphic representation π ∈ Aut(GL_d),
- The Rankin-Selberg *L*-function, $L(\pi_1 \otimes \pi_2, s)$ of a pair $(\pi_1, \pi_2) \in Aut(GL_{d_1}) \times Aut(GL_{d_2})$.
- The L-function L(π, ρ, s) attached to π ∈ Aut(GL_d) and ρ a representation of GL_d(ℂ): for instance L(π, Ad, s).
- It is expected (Functoriality Conjecture) that all are products of Godement-Jacquet *L*-functions

Let $\chi \pmod{q}$ be a Dirichlet character (of prime conductor) and $L(\pi, s)$ as above, the twisted *L*-function is

$$L(\pi.\chi,s) = \sum_{n\geq 1} \frac{\lambda(n)\chi(n)}{n^s} = \prod_p L_p(\pi.\chi,s), \ \Re s > 1$$
$$L_p(\pi.\chi,s) = \prod_{i\leq n} (1 - \frac{\alpha_{i,p}.\chi(p)}{p^s})^{-1}.$$

Assume the conductor of $L(\pi, s)$ is 1 (for simplicity) then

$$\Lambda(\pi.\chi,s) = \varepsilon.\varepsilon(\chi)^d \overline{\Lambda(\pi.\chi,1-\overline{s})}$$

where

$$\Lambda(\pi.\chi,s) = q^{ds/2} L_{\infty}(\pi.\chi,s) L(\pi.\chi,s)$$

is the complete L-function, $|\varepsilon| = 1$ and $\varepsilon(\chi)$ is the normalized Gauss sum.

Subconvexity Problem

Show that there is $\delta = \delta_d > 0$ such that for $\Re s = 1/2$,

$$L(\pi.\chi,s) \ll_{\pi,s} q^{d/4-\delta+o(1)}, \ \delta > 0.$$

- GL₁: Burgess, Conrey-Iwaniec, Petrow-Young.
- GL₂: Duke-Friedlander-Iwaniec,..., Conrey-Iwaniec,..., Petrow-Young,..., Venkatesh,.., Nelson...
- GL₂ × GL₂: M, Harcos-M,...,M-Venkatesh, ???
- sym(GL₂): Blomer...
- GL₃: Munshi, Holowinsky-Nelson, Sharma...
- GL₂×sym(GL₂): Blomer...
- $GL_2 \times GL_3$: Sharma...

The problem is substantially equivalent to the bound

$$\sum_{n\sim q^{d/2}}\lambda(n)\chi(n)\ll_{\pi}q^{d/2-\delta+o(1)}.$$

– A fews years ago, F, K and M looked at the problem of establishing similar bounds with $\chi \pmod{q}$ replaced by more general *q*-periodic arithmetic functions $K : \mathbb{Z} \mapsto \mathbb{C}$ such that $\|K\|_{\infty} \ll 1$.

- The aim is to bound non trivially, sums of the shape

$$\sum_{n\sim X}\lambda(n)K(n)\ll_{\pi}X^{1-\delta}, \ \delta>0,$$

at least for some ranges of X wrt to q:

$$X_c = q^{d/2}$$

is the *convexity* range.

-The class of functions K considered are the so-called trace functions.

Trace functions include

- Additive characters $n \mapsto e_q(a.n) := e(\frac{an}{q})$,
- Dirichlet characters $n \mapsto \chi(n)$,
- composition of the above with rational fractions: for instance the "Kloosterman fraction",

$$\mathrm{Kl}_{-1}(n) := n \mapsto e_q(\frac{\overline{n}}{q}), \ (n,q) = 1$$

• Hyper-Kloosterman sums:

$$\operatorname{Kl}_k(n;q) = \frac{1}{q^{\frac{k-1}{2}}} \sum_{x_1 \times \cdots \times x_k = n} e_q(x_1 + \cdots + x_k).$$

To a trace function K is attached a "conductor" c(K) which we assume is bounded independently of q:

$$\Longrightarrow \|K\|_{\infty} \ll 1$$

One possible motivation is the distribution of λ in large arithmetic progressions:

$$\sum_{\substack{n \sim N \\ n \equiv a \pmod{q}}} \lambda(n) = \frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q}}} \overline{\chi}(a) \sum_{n \sim N} \lambda(n) \chi(n)$$
$$= \frac{1}{\varphi(q)} \sum_{\substack{n \sim N \\ (n,q)=1}} \lambda(n) + \frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \overline{\chi}(a) \sum_{n \sim N} \lambda(n) \chi(n)$$
and
$$\sum_{n \sim N} \lambda(n) \chi(n) \approx \frac{N}{q^{d/2}} \varepsilon(\chi)^d \sum_{n \ll q^d/N} \overline{\lambda(n)} \overline{\chi}(n)$$

$$\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \dots \approx \frac{N}{q^{d/2}} \sum_{\substack{n \ll q^d/N}} \overline{\lambda(n)} \Big(\frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \varepsilon(\chi)^d \overline{\chi}(an) \Big)$$
$$\frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} \varepsilon(\chi)^d \overline{\chi}(an) = \frac{1}{q^{1/2}} \mathrm{Kl}_d(an) + O(q^{-d/2-1})$$

One eventually obtains

$$\sum_{\substack{n \sim N \\ n \equiv a \pmod{q}}} \lambda(n) - \frac{1}{\varphi(q)} \sum_{\substack{n \sim N \\ (n,q) = 1}} \lambda(n) \approx \frac{N}{q^{(d+1)/2}} \sum_{n \ll q^d/N} \overline{\lambda}(n) \operatorname{Kl}_d(an; q).$$

 The trivial bound (using Deligne's bound |Kl_d(an; q)| ≤ d) gives

$$\sum_{\substack{n \sim N \\ n \equiv a \pmod{q}}} \lambda(n) - \frac{1}{\varphi(q)} \sum_{\substack{n \sim N \\ (n,q) = 1}} \lambda(n) \ll q^{\frac{d-1}{2} + o(1)}$$

which is better than $N^{1+o(1)}/q$ as long as $q \leq N^{ heta_d-\eta}$ where $heta_d=rac{2}{d+1}.$

• In other terms, non-trivial bounds

$$\sum_{n\sim X} \lambda(n) \mathrm{Kl}_d(\mathsf{an}; q) \ll_{\pi} X^{1-\delta}, \ \delta > 0,$$

for the shorter range

$$X \gg X_d = q^{\frac{d}{2} - \frac{1}{2}}$$

will improve the level of distribution of λ in arithmetic progressions.

This problem is an analog of providing good estimates for sums with a sharp cut :

$$\sum_{n\leq X}\lambda(n)=\operatorname{res}_{s=1}\frac{L(\pi,s)X^s}{s}+\operatorname{Err}_{\pi}(X).$$

• Friedlander-Iwaniec have shown that in fair generality one can take

$$\operatorname{Err}_{\pi}(X) = O_{\varepsilon}(X^{\frac{d-1}{d+1}+\varepsilon}), \ \varepsilon > 0.$$

• Going beyond this generic bound lead to the problem of bounding non-trivially sums of the shape

$$\sum_{n\sim X} \lambda(n) \exp(2\pi i T\varphi(n/X))$$

where $\varphi(x) = x^{\beta}$ and for suitable ranges of T wrt X

For instance, in the case of $GL_2 \times GL_2$ Rankin-Selberg *L*-functions (d = 4), one has

Theorem (B. Huang)

For f a modular form of level 1

$$\sum_{n \le X} \lambda_f(n)^2 = \frac{L(\operatorname{sym}^2 f, 1)}{\zeta(2)} X + O_f(X^{3/5 - 1/561})$$

This improves the 80 years old 3/5 exponent of Rankin and Selberg.

The problem is essentially about bounding non-trivially

$$\sum_{n\sim X} K(n).$$

The convexity range here $X = q^{1/2}$ is also called the *Polya-Vinogradov* range and non-trivial bounds exists only for very limited amount of trace functions

- **1** $n \mapsto e_q(P(n)), P \in \mathbb{Z}[X]$ of degree ≥ 3 : Weyl.
- **2** $n \mapsto \chi(n)$: Burgess.
- **③** $n \mapsto \chi(n)e_q(P(n))$: Burgess, Enflo,..., Chang,... Heath-Brown-Pierce.
- The Fourier transforms of the above: FKM-Raju-Rivat-Soundararajan.

$$n\mapsto \widehat{K}(n)=rac{1}{q^{1/2}}\sum_{x \pmod{q}}K(x)e_q(nx):$$

For $(\lambda(n))_n$ the Fourier coefficients of a modular form, one has

$$X_c = q, \ \theta_2 = 2/3, \ X_d = q^{1/2}.$$

Theorem (FKM)

As long as K "is not" an additive character $n \mapsto e(\frac{an}{q})$, one has

$$\sum_{n \sim X} \lambda(n) \mathcal{K}(n) \ll_{\pi, c(\mathcal{K})} (qX)^{o(1)} q^{1/2 - 1/8} X^{1/2}$$

- For $X = X_c = q$ the bound saves $q^{1/8}$.
- The bound is non trivial as long as X ≥ q^{3/4+o(1)}. So this does not improve θ₂.

The proof uses amplification "à la" Bykovskii/Conrey-Iwaniec:

$$q^{-1+o(1)} |\sum_{\ell \leq L} x_{\ell} \lambda_{f_0}(\ell)|^2 |\sum_{n \leq X} \lambda_{f_0}(n) K(n)|^2$$

$$\leq \sum_{f \in B_k(q)} |\sum_{\ell \leq L} x_{\ell} \lambda_f(\ell)|^2 |\sum_{n \leq X} \lambda_f(n) K(n)|^2$$

followed by Kuznetzov formula and Poisson summation in the resulting two "n" variables.

Ultimately the bound rest on bounding the following correlation sums

$$\sum_{x \in \mathbb{F}_q} \widehat{K}(\gamma.x) \overline{\widehat{K}(x)} \ll_{c(K)} \delta_{\gamma \text{ bad }} q + q^{1/2}$$

where the

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{PGL}_2(\mathbb{F}_q), \ \gamma.z = \frac{az+b}{cz+d}.$$

are constructed from the amplifier.

The goal is to show that the set of "bad" γ 's is small.

• The bound above is a consequence of Deligne's Weil II and of a deep fact, due to Laumon, that unless K "is" an additive character, the Fourier transform \widehat{K} is a trace function whose conductor $c(\widehat{K})$ is controlled by c(K).

Theorem (Classification of group of automorphisms of sheaves)

The set of $\gamma \in PGL_2(\mathbb{F}_q)$ such that the correlation sum is $\gg q$ is contained in $G_{\widehat{K}}(\mathbb{F}_q)$ the set of \mathbb{F}_q -points of an algebraic subgroup of PGL₂. Moreover $|G_{\widehat{K}}(\mathbb{F}_q)|$ is either "small" (bounded in terms of c(K)) or has a simple structure.

We have

$$X_c = q^{3/2}, \ \theta_3 = 1/2, \ X_d = q.$$

Theorem (KLMS)

As long as K "is not" an additive character $n \mapsto e(\frac{an}{a})$, one has

$$\sum_{n\sim X} \lambda(n) \mathcal{K}(n) \ll_{\pi,c(\mathcal{K})} (qX)^{o(1)} q^{2/9} X^{5/6}$$

- For $X = q^{3/2}$ one obtains $\ll_{\pi,c(K)} q^{3/2-1/36+o(1)}$
- The bound is non trivial as long as X ≥ q^{4/3+o(1)}. So this does not improve θ₃.

GL₃: improving θ_3 in special cases

However if the GL_3 -representation π is not cuspidal one can improve the performance using the fact that λ admits a factorisation

$$\lambda(n) = \lambda_1 \star \lambda_2(n) = \sum_{kl=n} \lambda_1(k)\lambda_2(l)$$

for λ_i , i = 1, 2 associated to $\pi_i \in Aut(GL_i)$.

- $\pi = 1 \boxplus 1 \boxplus 1 \boxplus 1$: $\lambda(n) = 1 \star 1 \star 1(n) = d_3(n)$, Friedlander-Iwaniec improved θ_3 by 1/230, Heath-Brown by 1/80 and FKM by 1/46 (using the GL₂ case for $\pi_2 = 1 \boxplus 1$).
- π = 1 ⊞ π₂: for λ(n) = 1 ★ λ_f(n) KMS improved θ₃ by 1/102. The key input is a bound for bilinear sums of Kloosterman sums in the PV range

$$\sum_{k,l\simeq q^{1/2}} \alpha_k \beta_l. \mathrm{Kl}_d(\mathsf{akl};q) \ll_d q^{1-1/64+o(1)}.$$

However if the GL_3 -representation is not cuspidal one can improve the performance using the fact that λ admits a factorisation

$$\lambda(n) = \lambda_1 \star \lambda_2(n) = \sum_{kl=n} \lambda_1(k)\lambda_2(l)$$

for λ_i , i = 1, 2 associated to $\pi_i \in Aut(GL_i)$.

• For $K = Kl_k$, one has (KMS)

$$\sum_{n\sim X} \lambda_1 \star \lambda_2(n) \mathrm{Kl}_k(n) \ll X^{1-\delta}$$

for $X \ge q^{3/4+\eta}$.

GL₃: the cuspidal case

After a first breakthrough made by X. Li, R. Munshi developed the δ -symbol method to obtain

Theorem (Munshi)

Let φ be a $SL_3(\mathbb{Z})$ -invariant cusp form. For $K(n) = \chi(n)$,

$$\sum_{n\sim q^{3/2}}\lambda_{arphi}(1,n)K(n)\ll_{f}q^{3/2-\delta+o(1)},\,\,\delta=1/308.$$

Holowinsky-Nelson simplified Munshi's approach

Theorem (Holowinsky-Nelson)

Let φ be a SL₃(\mathbb{Z})-invariant cusp form. For K(n) = $\chi(n)$,

$$\sum_{n\sim q^{3/2}}\lambda_{\varphi}(1,n)\mathcal{K}(n)\ll_f q^{3/2-\delta+o(1)}, \ \delta=1/36.$$

Munshi's method can be adapted to handle more general trace functions K but at the cost of massive complications (also on the ℓ -adic side).

Fortunately the Holowinski-Nelson simplification also works and is so robust that there is no loss of quality when passing to general trace functions:

Theorem (KLMS)

Let φ be a $SL_3(\mathbb{Z})$ -invariant cusp form. Let K be a trace function, one has

$$\sum_{n\sim q^{3/2}}\lambda_{\varphi}(1,n)\mathcal{K}(n)\ll_{f,c(\mathcal{K})}q^{3/2-\delta+o(1)}, \ \delta=1/36.$$

$$S(K,X) := \sum_{n \sim X} \lambda_{\varphi}(1,n) K(n).$$

If K is an additive character, S. Miller has proven an analog of Wilton's bound:

$$S(e_q(a.\bullet),X) \ll_f X^{3/4+o(1)}.$$

Wlog wma that K is not an additive character.

– The first step of the HN approach is to realize the function K within a one-parameter family of q-periodic functions. Define

$$\widehat{K}(z,h) := \begin{cases} \widehat{K}(z)e_q(-h\overline{z}) & q \nmid z \\ \widehat{K}(0) & q \mid z \end{cases}$$

for $(z,h)\in\mathbb{Z}^2$ so that

$$K(n,h):=\frac{1}{q^{1/2}}\sum_{z\in\mathbb{F}_q^\times}\widehat{K}(z,h)e_q(-nz).$$

Taking h = 0 in the above

$$K(n,0)=K(n)-\frac{\widehat{K}(0)}{q^{1/2}}.$$

and, more generally, for any probability measure ϖ on $\mathbb{F}_q^{\times},$ we have

$$K_{\varpi}(n,0) = K(n) - rac{\widehat{K}(0)}{q^{1/2}}$$

where

$$K_{\varpi}(n,h) := \sum_{u \in \mathbb{F}_q^{\times}} \varpi(u) K(n, \overline{u}h)$$

It follows that

$$S(K,X) = \sum_{u \in \mathbb{F}_q^{\times}} \varpi(u) \sum_{|h| \le H} S(K(\bullet, \overline{u}h), X)$$
$$- \sum_{u \in \mathbb{F}_q^{\times}} \varpi(u) \sum_{0 < |h| \le H} S(K(\bullet, \overline{u}h), X) + Err$$
$$= \mathcal{F} - \mathcal{O} + Err.$$

We take ω to be supported on the classes $u \equiv \overline{p}.I \pmod{q}$ for pairs of primes $p \sim P$, $l \sim L$ with $P, L < q^{1/2}$.

$$\mathcal{F} = \frac{\log P}{P/2} \frac{\log L}{L/2} \sum_{p,l} \sum_{|h| \le H} \sum_{n \sim X} \lambda_{\varphi}(1, n) K(n, p\overline{l}h).$$

We apply Poisson on h getting for the h, n sums

$$\frac{H}{q^{1/2}}\sum_{|r|\leq q/H}\sum_{n\sim X}\lambda_{\varphi}(1,n)\widehat{K}(-p\overline{lr})e(\frac{\overline{lr}pn}{q})$$

and apply reciprocity

$$e(rac{\overline{lr}pn}{q}) = e(-rac{\overline{q}pn}{lr})e(rac{pn}{qlr}) pprox e(-rac{\overline{q}pn}{lr}),$$

for $XP = (1/2)q^2L/H$ or $H = q^2L/2XP$.

We use the automorphy of φ through Voronoi summation formula:

$$\sum_{n \sim X} \lambda_{\varphi}(1, n) e(-\frac{\overline{q}pn}{lr})$$
$$\approx \frac{X}{(Lq/H)^{3/2}} \sum_{n \ll (Lq/H)^{3/X}} \lambda_{\varphi}(n, 1) K l_{2}(\pm \overline{p}qn; lr)$$

We then Cauchy to smooth out n

$$\sum_{p,l,n,r} \cdots \leq (\sum_{n,r} |\lambda_{\varphi}(n,1)|^2)^{1/2} (\sum_{n,r} |\sum_{p,l} \widehat{K}(-p\overline{lr})Kl_2(\pm \overline{p}qn;lr)|^2)^{1/2}$$

and apply Poisson on the resulting *n*-sum

$$\sum_{n \ll (Lq/H)^3/X} K l_2(\pm \overline{p}_1 qn; l_1 r) K l_2(\pm \overline{p}_2 qn; l_2 r)$$

and use the expression of the Fourier transform of the product of Kloosterman sums in terms of Ramanujan sums.

We obtain that for $L \leq P^4$

$$\mathcal{F} \ll q^{o(1)} (rac{X^{3/2} P}{q L^{1/2}} + X^{3/4} (q P L)^{1/4}).$$

and to be non-trivial one need at least that $X \ge q^{1+\eta}$.

Remark

At this stage, the only information (due to Deligne) we have used is that for K not an additive character, one has

 $\|\widehat{K}\|_{\infty} \ll_{c(K)} 1.$

Recall that

$$\mathcal{O} = \frac{\log P}{P/2} \frac{\log L}{L/2} \sum_{\substack{p,l \ 0 < |h| \le H}} \sum_{\substack{n \sim X \\ (h,l) = 1}} \lambda_{\varphi}(1,n) \mathcal{K}(n,p\overline{l}h).$$

This time we immediately Cauchy to smooth n and evaluate

$$\sum_{\substack{p_1,h_1,h_1\\p_2,h_2,h_2}} \sum_{n \sim X} \mathcal{K}(n,p_1\overline{l}_1h_1) \overline{\mathcal{K}(n,p_2\overline{l}_2h_2)}$$
$$= \sum_{x_1,x_2 \in \mathbb{F}_q^{\times}} \nu(x_1) \nu(x_2) \sum_{n \sim X} \mathcal{K}(n,x_1) \overline{\mathcal{K}(n,x_2)}$$

Since $X \ge q^{1+\eta}$, only the zero contribution in the dual variable survives and the sum becomes

$$\frac{X}{q^{1/2}} \sum_{x_1, x_2 \in \mathbb{F}_q^{\times}} \nu(x_1) \nu(x_2) \frac{1}{q^{1/2}} \sum_{u \in \mathbb{F}_q} K(u, x_1) \overline{K(u, x_2)}$$
$$= \frac{X}{q^{1/2}} \sum_{x_1, x_2 \in \mathbb{F}_q^{\times}} \nu(x_1) \nu(x_2) \frac{1}{q^{1/2}} \sum_{u \in \mathbb{F}_q} \widehat{K}(u, x_1) \overline{\widehat{K}(u, x_2)}$$

Moreover

$$\frac{1}{q^{1/2}}\sum_{u\in\mathbb{F}_q}\widehat{K}(u,x_1)\overline{\widehat{K}(u,x_2)}=L(x_1-x_2)$$

with

$$L(x) = \frac{1}{q^{1/2}} \sum_{u \in \mathbb{F}_q^{\times}} |\widehat{K}(u)|^2 e(-\frac{\overline{u}x}{q}) + \frac{1}{q^{1/2}} |\widehat{K}(0)|^2.$$

The second term is no problem.

For the first term, observe that if $|\hat{K}(u)|^2 = 1$ a.e. (which is the case for $K = \chi$ treated by HN) the first term is a Ramanujan sum hence very small.

In general we have the following elementary:

Lemma

Given $\mu, \nu, L : \mathbb{F}_q \to \mathbb{C}$ we have

$$\sum_{x_1,x_2\in \mathbb{F}_q}
u(x_1)
u(x_2)\mathcal{L}(x_1-x_2)\leq q^{1/2}\|
u\|_2^2\|\widehat{\mathcal{L}}\|_\infty.$$

which is proven by separating x_1, x_2 in $L(x_1 - x_2)$ using the inverse Fourier transform formula and Cauchying.

In the present case we have

$$\widehat{L}(u) = |\widehat{K}(0)|^2 \delta_{u \equiv 0 \pmod{q}} + |\widehat{K}(\overline{u})|^2 \delta_{u \not\equiv 0 \pmod{q}},$$

and (assuming PHL < q)

$$\begin{aligned} \|\nu\|_{2}^{2} &= |\{(p_{1},h_{1},l_{1},p_{2},h_{2},l_{2}), \ p_{1}\overline{l}_{1}h_{1} \equiv p_{2}\overline{l}_{2}h_{2} \pmod{q}\}| \\ &= |\{(p_{1},h_{1},l_{1},p_{2},h_{2},l_{2}), \ p_{1}l_{2}h_{1} = p_{2}l_{1}h_{2}\}| = (PHL)^{1+o(1)}. \end{aligned}$$

This yields

$$\mathcal{O} \ll_f q^{\mathsf{o}(1)} \|\widehat{K}\|_{\infty} \frac{qX^{1/2}}{P}.$$

Combining the ${\mathcal F}$ and ${\mathcal O}$ bounds we conclude.

Remark

The only information used is that K – not being an additive character – satisfies

 $\|\widehat{K}\|_{\infty} \ll_{\mathcal{C}(\mathcal{K})} 1.$

It is important to have X close to or below q.

 Being able to go below the distribution range X_d = q for K(n) = Kl₃(n; q) would make it possible to evaluate asymptotically the first moment

$$\sum_{\chi \pmod{q}} L(\varphi.\chi,1/2)$$

and to obtain non-vanishing results for central values of twists: so far this is known only on average over suitable composite moduli q_1q_2 (W. Luo).

 For φ non-cuspidal such non-vanishing results for twisted L-functions are known (Das-Khan, Petrow, Zacharias).

$\mathsf{GL}_2\times\mathsf{GL}_3$

We have

$$X_c = q^3, \ \theta_6 = 2/7, \ X_d = q^{3-1/2}.$$

Theorem (LMS)

Let f be a $SL_2(\mathbb{Z})$ -cusp form and φ be a $SL_3(\mathbb{Z})$ cups form and

$$\lambda(n) = \lambda_{\varphi}(1, n) \cdot \lambda_f(n)$$

If K is "good", one has

$$\sum_{n \sim X} \lambda_{\varphi}(1, n) \lambda_{f}(n) K(n)$$

 $\ll_{f, \varphi, c(K)} (qX)^{o(1)} (X^{3/4} q^{11/16} + X^{2/3} . q^{11/12} + X . q^{-1/8}).$

• For $X = q^3$ the bound saves $q^{-1/16}$

• The bound is non trivial as long as $X \ge q^{3-1/4+\eta}$. So this does not improve $heta_6$.

$\mathsf{GL}_2\times\mathsf{GL}_3$

The proof follows the proof by P. Sharma of the special case $K = \chi$ (equivalent to the subconvex bound for $L(\varphi \times f.\chi, 1/2)$):

Theorem (Sharma)

Let f be a $SL_2(\mathbb{Z})$ -cusp form and φ be a $SL_3(\mathbb{Z})$ cups form . One has

$$\sum_{n \sim q^3} \lambda_{\varphi}(1, n) \lambda_f(n) \chi(n) \ll_{\varphi, f} q^{3-\delta+o(1)}, \ \delta = 1/16$$

Corollary (Sharma)

Let φ be a $SL_3(\mathbb{Z})$ -invariant cusp form. One has,

$$\sum_{n \sim q^{3/2}} \lambda_{\varphi}(1, n) \chi(n) \ll_f q^{3/2 - \delta + o(1)}, \ \delta = 1/32.$$

Sharma's proof uses

① The δ -symbol method to decompose

 $\delta_{m=n}\lambda(1,m)\lambda_f(n)\chi(n).$

- 2 Conductor decreasing trick.
- **3** GL_2 and GL_3 -Voronoi on *n* and *m*.
- ④ Cauchy to smooth out m.
- O Poisson (aka GL₁-Voronoi). In this case, some non-zero frequencies contribute.
- Squareroot cancellation in multivariable exponential sums by "invoking" the Adolphson-Sperber non-degeneracy criterion.

Excepted for the very last step, the proof does not make much use of the fact that χ is a Dirichlet character.

 In the end the most complicated exponential sum one need to face is: for (*l*, *m*, *p*) ∈ 𝔽[×]_q some parameters (arising from amplification and δ-symbol methods)

$$Z_{\ell,m,p}(v) := \frac{1}{q^{1/2}} \sum_{a \pmod{q}} K(a) \operatorname{Kl}_2(\overline{p}^2 ma; q) \operatorname{Kl}_2(\overline{p}^3 \ell \overline{v} a; q)$$

$$\mathcal{C}_{\ell,m,p,\ell',m',p'}(h;q) := \frac{1}{q^{1/2}} \sum_{v \in \mathbb{F}_q^{\times}} Z_{l,m,p}(v) \overline{Z_{l',m',p'}(v + \overline{pp'}h)}.$$

 It is at this stage that the hypothesis that K is "good" comes in and to describe what "good" means one needs to know a bit more about...

Trace functions

Given $(\ell, q) = 1$, choose an embedding $\iota : \overline{\mathbb{Q}_{\ell}} \hookrightarrow \mathbb{C}$. The basic datum is a Galois representation

$$ho: \mathsf{Gal}(\overline{\mathbb{F}_q[T]}/\mathbb{F}_q(T)) o \mathsf{GL}(V)$$

for V a finite dimensional $\overline{\mathbb{Q}_{\ell}}$ -vector space.

- We assume that ρ is (ι-)pure of weight 0: the eigenvalues of the Frobenius at any unramified place of F_q(T) have absolute value 1.
- \bullet The trace function associated with ρ is the function

$$K_{\rho}: t \in \mathbb{F}_{q} \mapsto \operatorname{tr}(\operatorname{Frob}_{t}|V^{I_{t}}) \in \overline{\mathbb{Q}_{\ell}} \hookrightarrow \mathbb{C}.$$

(here "t" denote the "place" of the function field associated with the polynomial T - t.) It follows from purity that

$$\|K_{\rho}\|_{\infty} \leq \dim V.$$

The datum of this Galois representation ρ is equivalent to the datum of an ℓ -adic sheaf $\mathcal{F} = \mathcal{F}_{\rho}$ with nice properties (a middle extension sheaf) and

$$K_{
ho} = K_{\mathcal{F}}$$

is the trace function attached to that sheaf and the representation ρ is called the *monodromy* of the sheaf \mathcal{F} .

 The geometric monodromy ρ
 is the restriction of ρ to the geometric Galois (sub)-group

$$\overline{\rho}: \mathsf{Gal}(\overline{\mathbb{F}_q[\mathcal{T}]}/\overline{\mathbb{F}_q}(\mathcal{T})) \to \mathsf{GL}(\mathcal{V})$$

and the *geometric monodromy group* is the Zariski closure of its image in GL(V).

- The conductor c(K) of K (more correctly of ρ or F) is formed by agregating (ie. summing) the local and global invariants of p
 :
 - The dimension dim V,
 - the number of ramified places of $\overline{\rho}$,
 - the Swan conductor at these places $\operatorname{swan}_{\overline{t}}(\rho)$ (which is zero unless the representation is wildly ramified there).

Definition

The trace function K is "good" if the sheaf \mathcal{F} associated to K **does not** satisfy any of these conditions

- For $\lambda \in \mathbb{F}_q^{\times} \{1\}$ the geometric monodromy of \mathcal{F} has some quotient isomorphic to $[\times \lambda]^* \mathcal{KL}_2$.
- For some $\lambda \in \mathbb{F}_q^{\times} \{1\}$, \mathcal{F} and $[\times \lambda]^* \mathcal{F}$ are geometrically isomorphic.
- The local monodromy of ${\cal F}$ at ∞ has a slope equal to 1/2.

Recall that

$$Z_{\ell,m,p}(v) := \frac{1}{q^{1/2}} \sum_{a \pmod{q}} K(a) \operatorname{Kl}_2(\overline{p}^2 ma; q) \operatorname{Kl}_2(\overline{p}^3 \ell \overline{v}a; q)$$
$$C_{\ell,m,p,\ell',m',p'}(h;q) := \frac{1}{q^{1/2}} \sum_{v \in \mathbb{F}_q^{\times}} Z_{l,m,p}(v) \overline{Z_{l',m',p'}(v + \overline{pp'}h)}$$

Theorem

If K is "good" then whenever $h \neq 0 \pmod{q}$ or $(l, m, p) \neq (l', m', p')$ one has

 $\mathcal{C}_{\ell,m,p,\ell',m',p'}(h;q) \ll 1$

The goodness criterion: idea of the proof

 The Z function can be obtained from K by a sequence of simple transformations (we assume ℓ = m = p = 1 for simplicity)

$$\begin{array}{c} \mathcal{K}(x) \xrightarrow{\times \mathrm{Kl}_2} \mathcal{L}(x) = \mathcal{K}(x) \mathrm{Kl}_2(x) \xrightarrow{FT} \widehat{\mathcal{L}}(y) \\ \xrightarrow{\mathrm{inv}} \mathcal{M}(y) := \widehat{\mathcal{L}}(y^{-1}) \xrightarrow{FT} \widehat{\mathcal{M}}(u) \xrightarrow{\mathrm{inv}} \mathcal{M}(u^{-1}) \end{array}$$

where FT denote the Fourier transform and $inv : x \to x^{-1}$ the inversion.

• These transformations have geometric analog at the level of sheaves and one can track how the singularities of \mathcal{F} evolve when applying these (the deep but explicit work of Laumon on the local Fourier transform is used there) to see when the two copies of Z correlate.

The goodness criterion is pretty generic:

- $n \mapsto e_q(P(n))$ is good if deg $P \ge 3$ and is not a monomial.
- The Kloosterman sum $n \mapsto \operatorname{Kl}_d(n)$ is good if $d \geq 3$.

There are however some notable "bad apples":

n → χ(n) (Sharma's case): in that case the sums Z_{ℓ,m,p}(v) and C_{ℓ,m,p,ℓ',m',p'}(h; q) simplify considerably and the bound

$$\mathcal{C}_{\ell,m,p,\ell',m',p'}(h;q) \ll 1$$

is still valid for $h \neq 0$ (and easier) and when h = 0 the failure is localized along an explicit and small diagonal set of the remaining parameters and the final bound remains valid.

 n → Kl₂(n): here the bound really fails but one can get around with a trick.

The goodness criterion

 n → Kl₂(n): here the bound really fails but one can get around with a trick: we have

$$\mathrm{Kl}_{2}(n;q) = \frac{q^{1/2}}{\varphi(q)} \sum_{\chi \pmod{q}} \chi(n) \overline{\varepsilon(\chi)^{2}}$$

so that

$$\mathcal{S}(\mathrm{Kl}_2,q^3) = rac{q^{1/2}}{arphi(q)} \sum_{\chi \,(\mathrm{mod} \, q)} \overline{arepsilon(\chi)^2} \mathcal{S}(\chi,q^3)$$

and applying the functional equation one find that

$$\mathcal{S}(\mathrm{Kl}_2,q^3)pprox rac{q^{1/2}}{arphi(q)}\sum_{\chi \,(\mathrm{mod}\,q)}arepsilon(\chi)^{6-2}\mathcal{S}(\overline{\chi},q^3)pprox \mathcal{S}(\mathrm{Kl}_4,q^3)$$

and Kl₄ is good !

Thank you !