Algebraic twists of automorphic L-functions

Ph. Michel, EPF Lausanne

a series of joint works with
E. Fouvry E. Kowalski, Y. Lin and W.Sawin

Number Theory seminar, Toronto
2021

Let $(\lambda(n))_{n \geq 1}$ be the coefficients of an automorphic L-function of degree d

$$
\begin{gathered}
L(\pi, s)=\sum_{n \geq 1} \frac{\lambda(n)}{n^{s}}=\prod_{p} L_{p}(\pi, s), \Re s>1 \\
L_{p}(\pi, s)=\prod_{i \leq d}\left(1-\frac{\alpha_{i, p}}{p^{s}}\right)^{-1}
\end{gathered}
$$

To simplify we assume that the Ramanujan-Petersson bound holds

$$
\lambda(n)=n^{\circ(1)}
$$

(and often this known on average)

- The Godement-Jacquet L-function $L(\pi, s)$ of an automorphic representation $\pi \in \operatorname{Aut}\left(\mathrm{GL}_{d}\right)$,
- The Rankin-Selberg L-function, $L\left(\pi_{1} \otimes \pi_{2}, s\right)$ of a pair $\left(\pi_{1}, \pi_{2}\right) \in \operatorname{Aut}\left(\mathrm{GL}_{d_{1}}\right) \times \operatorname{Aut}\left(\mathrm{GL}_{d_{2}}\right)$.
- The L-function $L(\pi, \rho, s)$ attached to $\pi \in \operatorname{Aut}\left(\mathrm{GL}_{d}\right)$ and ρ a representation of $\mathrm{GL}_{d}(\mathbb{C})$: for instance $L(\pi, \mathrm{Ad}, s)$.
- It is expected (Functoriality Conjecture) that all are products of Godement-Jacquet L-functions

Let $\chi(\bmod q)$ be a Dirichlet character (of prime conductor) and $L(\pi, s)$ as above, the twisted L-function is

$$
\begin{gathered}
L(\pi \cdot \chi, s)=\sum_{n \geq 1} \frac{\lambda(n) \chi(n)}{n^{s}}=\prod_{p} L_{p}(\pi \cdot \chi, s), \Re s>1 \\
L_{p}(\pi \cdot \chi, s)=\prod_{i \leq n}\left(1-\frac{\alpha_{i, p} \cdot \chi(p)}{p^{s}}\right)^{-1}
\end{gathered}
$$

Assume the conductor of $L(\pi, s)$ is 1 (for simplicity) then

$$
\Lambda(\pi \cdot \chi, s)=\varepsilon \cdot \varepsilon(\chi)^{d} \overline{\Lambda(\pi \cdot \chi, 1-\bar{s})}
$$

where

$$
\Lambda(\pi \cdot \chi, s)=q^{d s / 2} L_{\infty}(\pi \cdot \chi, s) L(\pi \cdot \chi, s)
$$

is the complete L-function, $|\varepsilon|=1$ and $\varepsilon(\chi)$ is the normalized Gauss sum.

Subconvexity Problem

Show that there is $\delta=\delta_{d}>0$ such that for $\Re s=1 / 2$,

$$
L(\pi \cdot \chi, s)<_{\pi, s} q^{d / 4-\delta+o(1)}, \delta>0
$$

- GL_{1} : Burgess, Conrey-Iwaniec, Petrow-Young.
- GL_{2} : Duke-Friedlander-Iwaniec,.... Conrey-Iwaniec,..., Petrow-Young,..., Venkatesh,.., Nelson...
- $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$: M, Harcos-M,...,M-Venkatesh, ???
- $\operatorname{sym}\left(\mathrm{GL}_{2}\right)$: Blomer...
- GL3: Munshi, Holowinsky-Nelson, Sharma...
- $\mathrm{GL}_{2} \times \operatorname{sym}\left(\mathrm{GL}_{2}\right)$: Blomer...
- $\mathrm{GL}_{2} \times \mathrm{GL}_{3}$: Sharma...

The problem is substantially equivalent to the bound

$$
\sum_{n \sim q^{d / 2}} \lambda(n) \chi(n) \ll_{\pi} q^{d / 2-\delta+o(1)}
$$

- A fews years ago, F, K and M looked at the problem of establishing similar bounds with $\chi(\bmod q)$ replaced by more general q-periodic arithmetic functions $K: \mathbb{Z} \mapsto \mathbb{C}$ such that $\|K\|_{\infty} \ll 1$.
- The aim is to bound non trivially, sums of the shape

$$
\sum_{n \sim X} \lambda(n) K(n)<_{\pi} X^{1-\delta}, \delta>0
$$

at least for some ranges of X wrt to q :

$$
X_{c}=q^{d / 2}
$$

is the convexity range.
-The class of functions K considered are the so-called trace functions.

Trace functions include

- Additive characters $n \mapsto e_{q}($ a.n $):=e\left(\frac{a n}{q}\right)$,
- Dirichlet characters $n \mapsto \chi(n)$,
- composition of the above with rational fractions: for instance the "Kloosterman fraction",

$$
\mathrm{Kl}_{-1}(n):=n \mapsto e_{q}\left(\frac{\bar{n}}{q}\right),(n, q)=1
$$

- Hyper-Kloosterman sums:

$$
\mathrm{Kl}_{k}(n ; q)=\frac{1}{q^{\frac{k-1}{2}}} \sum_{x_{1} x \cdots x_{k}=n} e_{q}\left(x_{1}+\cdots+x_{k}\right)
$$

To a trace function K is attached a "conductor" $c(K)$ which we assume is bounded independently of q :

$$
\Longrightarrow\|K\|_{\infty} \ll 1
$$

λ in (large) arithmetic progressions

One possible motivation is the distribution of λ in large arithmetic progressions:

$$
\begin{aligned}
& \sum_{\substack{n \sim N \\
n \equiv a(\bmod q)}} \lambda(n)=\frac{1}{\varphi(q)} \sum_{\chi(\bmod q)} \bar{\chi}(a) \sum_{n \sim N} \lambda(n) \chi(n) \\
= & \frac{1}{\varphi(q)} \sum_{\substack{n \sim N \\
(n, q)=1}} \lambda(n)+\frac{1}{\varphi(q)} \sum_{\substack{(\bmod q) \\
\chi \neq \chi_{0}}} \bar{\chi}(a) \sum_{n \sim N} \lambda(n) \chi(n)
\end{aligned}
$$

and

$$
\sum_{n \sim N} \lambda(n) \chi(n) \approx \frac{N}{q^{d / 2}} \varepsilon(\chi)^{d} \sum_{n \ll q^{d} / N} \overline{\lambda(n)} \bar{\chi}(n)
$$

$$
\begin{aligned}
& \sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} \cdots \approx \frac{N}{q^{d / 2}} \sum_{n \ll q^{d} / N} \overline{\lambda(n)}\left(\frac{1}{\varphi(q)} \sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} \varepsilon(\chi)^{d} \bar{\chi}(a n)\right) \\
& \frac{1}{\varphi(q)} \sum_{\substack{\chi(\bmod q) \\
\chi \neq \chi_{0}}} \varepsilon(\chi)^{d} \bar{\chi}(a n)=\frac{1}{q^{1 / 2}} K_{d}(a n)+O\left(q^{-d / 2-1}\right)
\end{aligned}
$$

One eventually obtains

$$
\sum_{\substack{n \sim N \\ \equiv a(\bmod q)}} \lambda(n)-\frac{1}{\varphi(q)} \sum_{\substack{n \sim N \\(n, q)=1}} \lambda(n) \approx \frac{N}{q^{(d+1) / 2}} \sum_{n \ll q^{d} / N} \bar{\lambda}(n) \mathrm{Kl}_{d}(a n ; q)
$$

- The trivial bound (using Deligne's bound $\left|\mathrm{Kl}_{d}(a n ; q)\right| \leq d$) gives

$$
\sum_{\substack{n \sim N \\ n \equiv a(\bmod q)}} \lambda(n)-\frac{1}{\varphi(q)} \sum_{\substack{n \sim N \\(n, q)=1}} \lambda(n) \ll q^{\frac{d-1}{2}+o(1)}
$$

which is better than $N^{1+o(1)} / q$ as long as $q \leq N^{\theta_{d}-\eta}$ where

$$
\theta_{d}=\frac{2}{d+1}
$$

- In other terms, non-trivial bounds

$$
\sum_{n \sim X} \lambda(n) \mathrm{Kl}_{d}(a n ; q)<_{\pi} X^{1-\delta}, \delta>0
$$

for the shorter range

$$
X \gg X_{d}=q^{\frac{d}{2}-\frac{1}{2}}
$$

will improve the level of distribution of λ in arithmetic progressions.

This problem is an analog of providing good estimates for sums with a sharp cut :

$$
\sum_{n \leq X} \lambda(n)=\operatorname{res}_{s=1} \frac{L(\pi, s) X^{s}}{s}+\operatorname{Err}_{\pi}(X)
$$

- Friedlander-Iwaniec have shown that in fair generality one can take

$$
\operatorname{Err}_{\pi}(X)=O_{\varepsilon}\left(X^{\frac{d-1}{d+1}+\varepsilon}\right), \varepsilon>0
$$

- Going beyond this generic bound lead to the problem of bounding non-trivially sums of the shape

$$
\sum_{n \sim X} \lambda(n) \exp (2 \pi i T \varphi(n / X))
$$

where $\varphi(x)=x^{\beta}$ and for suitable ranges of T wrt X

For instance, in the case of $\mathrm{GL}_{2} \times \mathrm{GL}_{2}$ Rankin-Selberg L-functions ($d=4$), one has

Theorem (B. Huang)

For f a modular form of level 1

$$
\sum_{n \leq X} \lambda_{f}(n)^{2}=\frac{L\left(\operatorname{sym}^{2} f, 1\right)}{\zeta(2)} X+O_{f}\left(X^{3 / 5-1 / 561}\right)
$$

This improves the 80 years old $3 / 5$ exponent of Rankin and Selberg.

GL_{1}

The problem is essentially about bounding non-trivially

$$
\sum_{n \sim X} K(n) .
$$

The convexity range here $X=q^{1 / 2}$ is also called the Polya-Vinogradov range and non-trivial bounds exists only for very limited amount of trace functions
(1) $n \mapsto e_{q}(P(n)), P \in \mathbb{Z}[X]$ of degree ≥ 3 : Weyl.
(2) $n \mapsto \chi(n)$: Burgess.
(3) $n \mapsto \chi(n) e_{q}(P(n))$: Burgess, Enflo, \ldots, Chang, \ldots Heath-Brown-Pierce.
(4) The Fourier transforms of the above:

FKM-Raju-Rivat-Soundararajan.

$$
n \mapsto \widehat{K}(n)=\frac{1}{q^{1 / 2}} \sum_{x(\bmod q)} K(x) e_{q}(n x):
$$

GL_{2}

For $(\lambda(n))_{n}$ the Fourier coefficients of a modular form, one has

$$
X_{c}=q, \theta_{2}=2 / 3, X_{d}=q^{1 / 2}
$$

Theorem (FKM)

As long as K "is not" an additive character $n \mapsto e\left(\frac{a n}{q}\right)$, one has

$$
\sum_{n \sim X} \lambda(n) K(n) \ll_{\pi, c(K)}(q X)^{o(1)} q^{1 / 2-1 / 8} X^{1 / 2}
$$

- For $X=X_{c}=q$ the bound saves $q^{1 / 8}$.
- The bound is non trivial as long as $X \geq q^{3 / 4+o(1)}$. So this does not improve θ_{2}.

The proof uses amplification "à la" Bykovskii/Conrey-Iwaniec:

$$
\begin{aligned}
& q^{-1+o(1)}\left|\sum_{\ell \leq L} x_{\ell} \lambda_{f_{0}}(\ell)\right|^{2} \cdot\left|\sum_{n \leq X} \lambda_{f_{0}}(n) K(n)\right|^{2} \\
& \leq \sum_{f \in B_{k}(q)}\left|\sum_{\ell \leq L} x_{\ell} \lambda_{f}(\ell)\right|^{2}\left|\sum_{n \leq X} \lambda_{f}(n) K(n)\right|^{2}
\end{aligned}
$$

followed by Kuznetzov formula and Poisson summation in the resulting two " n " variables.

Ultimately the bound rest on bounding the following correlation sums

$$
\sum_{x \in \mathbb{F}_{q}} \widehat{K}(\gamma \cdot x) \overline{\widehat{K}(x)} \ll c(K) \delta_{\gamma \text { bad }} q+q^{1 / 2}
$$

where the

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PGL}_{2}\left(\mathbb{F}_{q}\right), \gamma \cdot z=\frac{a z+b}{c z+d} .
$$

are constructed from the amplifier.
The goal is to show that the set of "bad" γ 's is small.

- The bound above is a consequence of Deligne's Weil II and of a deep fact, due to Laumon, that unless K "is" an additive character, the Fourier transform \widehat{K} is a trace function whose conductor $c(\widehat{K})$ is controlled by $c(K)$.

Theorem (Classification of group of automorphisms of sheaves)

The set of $\gamma \in \mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ such that the correlation sum is $\gg q$ is contained in $G_{\widehat{K}}\left(\mathbb{F}_{q}\right)$ the set of \mathbb{F}_{q}-points of an algebraic subgroup of PGL_{2}. Moreover $\left|G_{\widehat{K}}\left(\mathbb{F}_{q}\right)\right|$ is either "small" (bounded in terms of $c(K)$) or has a simple structure.

GL_{3}

We have

$$
X_{c}=q^{3 / 2}, \theta_{3}=1 / 2, X_{d}=q
$$

Theorem (KLMS)

As long as K "is not" an additive character $n \mapsto e\left(\frac{a n}{q}\right)$, one has

$$
\sum_{n \sim X} \lambda(n) K(n)<_{\pi, c(K)}(q X)^{\circ(1)} q^{2 / 9} X^{5 / 6}
$$

- For $X=q^{3 / 2}$ one obtains $<_{\pi, c(K)} q^{3 / 2-1 / 36+o(1)}$
- The bound is non trivial as long as $X \geq q^{4 / 3+o(1)}$. So this does not improve θ_{3}.

$\mathrm{GL}_{3}:$ improving θ_{3} in special cases

However if the $G L_{3}$-representation π is not cuspidal one can improve the performance using the fact that λ admits a factorisation

$$
\lambda(n)=\lambda_{1} \star \lambda_{2}(n)=\sum_{k l=n} \lambda_{1}(k) \lambda_{2}(I)
$$

for $\lambda_{i}, i=1,2$ associated to $\pi_{i} \in \operatorname{Aut}\left(\mathrm{GL}_{i}\right)$.

- $\pi=1 \boxplus 1 \boxplus 1: \lambda(n)=1 \star 1 \star 1(n)=d_{3}(n)$,

Friedlander-Iwaniec improved θ_{3} by $1 / 230$, Heath-Brown by $1 / 80$ and FKM by $1 / 46$ (using the GL_{2} case for $\pi_{2}=1 \boxplus 1$).

- $\pi=1 \boxplus \pi_{2}$: for $\lambda(n)=1 \star \lambda_{f}(n)$ KMS improved θ_{3} by $1 / 102$.

The key input is a bound for bilinear sums of Kloosterman sums in the PV range

$$
\sum_{k, / \simeq q^{1 / 2}} \alpha_{k} \beta_{l} \cdot \mathrm{Kl}_{d}(a k l ; q) \ll_{d} q^{1-1 / 64+o(1)}
$$

GL_{3} : improving θ_{3} in special cases

However if the $G L_{3}$-representation is not cuspidal one can improve the performance using the fact that λ admits a factorisation

$$
\lambda(n)=\lambda_{1} \star \lambda_{2}(n)=\sum_{k l=n} \lambda_{1}(k) \lambda_{2}(I)
$$

for $\lambda_{i}, i=1,2$ associated to $\pi_{i} \in \operatorname{Aut}\left(\mathrm{GL}_{i}\right)$.

- For $K=\mathrm{Kl}_{k}$, one has (KMS)

$$
\sum_{n \sim X} \lambda_{1} \star \lambda_{2}(n) \mathrm{Kl}_{k}(n) \ll X^{1-\delta}
$$

for $X \geq q^{3 / 4+\eta}$.

GL_{3} : the cuspidal case

After a first breakthrough made by X. Li, R. Munshi developed the δ-symbol method to obtain

Theorem (Munshi)

Let φ be a $S L_{3}(\mathbb{Z})$-invariant cusp form. For $K(n)=\chi(n)$,

$$
\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) K(n) \ll_{f} q^{3 / 2-\delta+o(1)}, \delta=1 / 308
$$

Holowinsky-Nelson simplified Munshi's approach

Theorem (Holowinsky-Nelson)

Let φ be a $S L_{3}(\mathbb{Z})$-invariant cusp form. For $K(n)=\chi(n)$,

$$
\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) K(n)<_{f} q^{3 / 2-\delta+o(1)}, \delta=1 / 36
$$

GL_{3} : the cuspidal case

Munshi's method can be adapted to handle more general trace functions K but at the cost of massive complications (also on the ℓ-adic side).
Fortunately the Holowinski-Nelson simplification also works and is so robust that there is no loss of quality when passing to general trace functions:

Theorem (KLMS)

Let φ be a $S L_{3}(\mathbb{Z})$-invariant cusp form. Let K be a trace function, one has

$$
\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) K(n) \ll_{f, c(K)} q^{3 / 2-\delta+o(1)}, \delta=1 / 36
$$

Set

$$
S(K, X):=\sum_{n \sim X} \lambda_{\varphi}(1, n) K(n) .
$$

If K is an additive character, S . Miller has proven an analog of Wilton's bound:

$$
S\left(e_{q}(a \cdot \bullet), X\right) \ll_{f} X^{3 / 4+o(1)} .
$$

Wlog wma that K is not an additive character.

- The first step of the HN approach is to realize the function K within a one-parameter family of q-periodic functions. Define

$$
\widehat{K}(z, h):= \begin{cases}\widehat{K}(z) e_{q}(-h \bar{z}) & q \nmid z \\ \widehat{K}(0) & q \mid z\end{cases}
$$

for $(z, h) \in \mathbb{Z}^{2}$ so that

$$
K(n, h):=\frac{1}{q^{1 / 2}} \sum_{z \in \mathbb{F}_{q}^{\times}} \widehat{K}(z, h) e_{q}(-n z) .
$$

Taking $h=0$ in the above

$$
K(n, 0)=K(n)-\frac{\widehat{K}(0)}{q^{1 / 2}} .
$$

and, more generally, for any probability measure ϖ on \mathbb{F}_{q}^{\times}, we have

$$
K_{\varpi}(n, 0)=K(n)-\frac{\widehat{K}(0)}{q^{1 / 2}} .
$$

where

$$
K_{\varpi}(n, h):=\sum_{u \in \mathbb{F}_{q}^{\times}} \varpi(u) K(n, \bar{u} h)
$$

It follows that

$$
\begin{aligned}
S(K, X)= & \sum_{u \in \mathbb{F}_{a}^{\times}} \varpi(u) \sum_{|h| \leq H} S(K(\bullet, \bar{u} h), X) \\
& -\sum_{u \in \mathbb{F}_{a}^{\times}} \varpi(u) \sum_{0<|h| \leq H} S(K(\bullet, \bar{u} h), X)+E r r \\
= & \mathcal{F}-\mathcal{O}+E r r .
\end{aligned}
$$

We take ω to be supported on the classes $u \equiv \bar{p} . /(\bmod q)$ for pairs of primes $p \sim P, I \sim L$ with $P, L<q^{1 / 2}$.

Bounding \mathcal{F}

$$
\mathcal{F}=\frac{\log P}{P / 2} \frac{\log L}{L / 2} \sum_{p, l} \sum_{|h| \leq H} \sum_{n \sim X} \lambda_{\varphi}(1, n) K(n, p \bar{l} h)
$$

We apply Poisson on h getting for the h, n sums

$$
\frac{H}{q^{1 / 2}} \sum_{|r| \leq q / H} \sum_{n \sim X} \lambda_{\varphi}(1, n) \widehat{K}(-p \overline{\operatorname{lr}}) e\left(\frac{\overline{\operatorname{lr}} p n}{q}\right)
$$

and apply reciprocity

$$
e\left(\frac{\overline{\operatorname{lr}} p n}{q}\right)=e\left(-\frac{\bar{q} p n}{l r}\right) e\left(\frac{p n}{q / r}\right) \approx e\left(-\frac{\bar{q} p n}{l r}\right)
$$

for $X P=(1 / 2) q^{2} L / H$ or $H=q^{2} L / 2 X P$.

We use the automorphy of φ through Voronoi summation formula:

$$
\begin{aligned}
& \sum_{n \sim X} \lambda_{\varphi}(1, n) e\left(-\frac{\bar{q} p n}{l r}\right) \\
& \approx \frac{X}{(L q / H)^{3 / 2}} \sum_{n \ll(L q / H)^{3} / X} \lambda_{\varphi}(n, 1) K I_{2}(\pm \bar{p} q n ; l r)
\end{aligned}
$$

We then Cauchy to smooth out n
$\sum_{p, l, n, r} \sum_{n} \cdots \leq\left(\sum_{n, r}\left|\lambda_{\varphi}(n, 1)\right|^{2}\right)^{1 / 2}\left(\sum_{n, r}\left|\sum_{p, l} \widehat{K}(-p \overline{/ r}) K I_{2}(\pm \bar{p} q n ; I r)\right|^{2}\right)^{1 / 2}$
and apply Poisson on the resulting n-sum

$$
\sum_{n \ll(L q / H)^{3} / X} K I_{2}\left(\pm \bar{p}_{1} q n ; l_{1} r\right) K I_{2}\left(\pm \bar{p}_{2} q n ; l_{2} r\right)
$$

and use the expression of the Fourier transform of the product of Kloosterman sums in terms of Ramanujan sums.

We obtain that for $L \leq P^{4}$

$$
\mathcal{F} \ll q^{o(1)}\left(\frac{X^{3 / 2} P}{q L^{1 / 2}}+X^{3 / 4}(q P L)^{1 / 4}\right)
$$

and to be non-trivial one need at least that $X \geq q^{1+\eta}$.

Remark

At this stage, the only information (due to Deligne) we have used is that for K not an additive character, one has

$$
\|\widehat{K}\|_{\infty}<_{c(K)} 1
$$

Bounding \mathcal{O}

Recall that

$$
\mathcal{O}=\frac{\log P}{P / 2} \frac{\log L}{L / 2} \sum_{p, l} \sum_{\substack{0<|h| \leq H \\(h, l)=1}} \sum_{n \sim X} \lambda_{\varphi}(1, n) K(n, p \bar{l} h) .
$$

This time we immediately Cauchy to smooth n and evaluate

$$
\begin{aligned}
& \sum_{\substack{p_{1}, h_{1}, l_{1} \\
p_{2}, h_{2}, l_{2}}} \sum_{n \sim X} K\left(n, p_{1} \overline{1}_{1} h_{1}\right) \overline{K\left(n, p_{2} \bar{I}_{2} h_{2}\right)} \\
= & \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \sum_{n \sim X} K\left(n, x_{1}\right) \overline{K\left(n, x_{2}\right)}
\end{aligned}
$$

Since $X \geq q^{1+\eta}$, only the zero contribution in the dual variable survives and the sum becomes

$$
\begin{aligned}
& \frac{X}{q^{1 / 2}} \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} K\left(u, x_{1}\right) \overline{K\left(u, x_{2}\right)} \\
= & \frac{X}{q^{1 / 2}} \sum_{x_{1}, x_{2} \in \mathbb{F}_{q}^{\times}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) \frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} \widehat{K}\left(u, x_{1}\right) \overline{\widehat{K}\left(u, x_{2}\right)}
\end{aligned}
$$

Moreover

$$
\frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}} \widehat{K}\left(u, x_{1}\right) \overline{\widehat{K}\left(u, x_{2}\right)}=L\left(x_{1}-x_{2}\right)
$$

with

$$
L(x)=\frac{1}{q^{1 / 2}} \sum_{u \in \mathbb{F}_{q}^{\times}}|\widehat{K}(u)|^{2} e\left(-\frac{\bar{u} x}{q}\right)+\frac{1}{q^{1 / 2}}|\widehat{K}(0)|^{2} .
$$

The second term is no problem.
For the first term, observe that if $|\widehat{K}(u)|^{2}=1$ a.e. (which is the case for $K=\chi$ treated by HN) the first term is a Ramanujan sum hence very small.

In general we have the following elementary:

Lemma

Given $\mu, \nu, L: \mathbb{F}_{q} \rightarrow \mathbb{C}$ we have

$$
\sum_{x_{1}, x_{2} \in \mathbb{F}_{q}} \nu\left(x_{1}\right) \nu\left(x_{2}\right) L\left(x_{1}-x_{2}\right) \leq q^{1 / 2}\|\nu\|_{2}^{2}\|\widehat{L}\|_{\infty} .
$$

which is proven by separating x_{1}, x_{2} in $L\left(x_{1}-x_{2}\right)$ using the inverse Fourier transform formula and Cauchying.

In the present case we have

$$
\widehat{L}(u)=|\widehat{K}(0)|^{2} \delta_{u \equiv 0(\bmod q)}+|\widehat{K}(\bar{u})|^{2} \delta_{u \neq 0(\bmod q)}
$$

and (assuming $P H L<q$)

$$
\begin{aligned}
\|\nu\|_{2}^{2} & =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} \bar{I}_{1} h_{1} \equiv p_{2} \bar{I}_{2} h_{2}(\bmod q)\right\}\right| \\
& =\left|\left\{\left(p_{1}, h_{1}, l_{1}, p_{2}, h_{2}, l_{2}\right), p_{1} l_{2} h_{1}=p_{2} l_{1} h_{2}\right\}\right|=(P H L)^{1+o(1)}
\end{aligned}
$$

This yields

$$
\mathcal{O}<_{f} q^{o(1)}\|\widehat{K}\|_{\infty} \frac{q X^{1 / 2}}{P}
$$

Combining the \mathcal{F} and \mathcal{O} bounds we conclude.

Remark

The only information used is that K - not being an additive character - satisfies

$$
\|\widehat{K}\|_{\infty} \ll C(K)
$$

It is important to have X close to or below q.

- Being able to go below the distribution range $X_{d}=q$ for $K(n)=K I_{3}(n ; q)$ would make it possible to evaluate asymptotically the first moment

$$
\sum_{\chi(\bmod q)} L(\varphi \cdot \chi, 1 / 2)
$$

and to obtain non-vanishing results for central values of twists: so far this is known only on average over suitable composite moduli $q_{1} q_{2}$ (W. Luo).

- For φ non-cuspidal such non-vanishing results for twisted L-functions are known (Das-Khan, Petrow, Zacharias).

$\mathrm{GL}_{2} \times \mathrm{GL}_{3}$

We have

$$
X_{c}=q^{3}, \theta_{6}=2 / 7, X_{d}=q^{3-1 / 2}
$$

Theorem (LMS)

Let f be a $\mathrm{SL}_{2}(\mathbb{Z})$-cusp form and φ be a $\mathrm{SL}_{3}(\mathbb{Z})$ cups form and

$$
\lambda(n)=\lambda_{\varphi}(1, n) \cdot \lambda_{f}(n)
$$

If K is "good", one has

$$
\sum_{n \sim X} \lambda_{\varphi}(1, n) \lambda_{f}(n) K(n)
$$

$$
<_{f, \varphi, c(K)}(q X)^{o(1)}\left(X^{3 / 4} q^{11 / 16}+X^{2 / 3} \cdot q^{11 / 12}+X \cdot q^{-1 / 8}\right)
$$

- For $X=q^{3}$ the bound saves $q^{-1 / 16}$
- The bound is non trivial as long as $X \geq q^{3-1 / 4+\eta}$. So this does not improve θ_{6}.

$\mathrm{GL}_{2} \times \mathrm{GL}_{3}$

The proof follows the proof by P . Sharma of the special case $K=\chi$ (equivalent to the subconvex bound for $L(\varphi \times f . \chi, 1 / 2)$):

Theorem (Sharma)

Let f be a $\mathrm{SL}_{2}(\mathbb{Z})$-cusp form and φ be a $\mathrm{SL}_{3}(\mathbb{Z})$ cups form. One has

$$
\sum_{n \sim q^{3}} \lambda_{\varphi}(1, n) \lambda_{f}(n) \chi(n) \ll_{\varphi, f} q^{3-\delta+o(1)}, \delta=1 / 16
$$

Corollary (Sharma)

Let φ be a $S L_{3}(\mathbb{Z})$-invariant cusp form. One has,

$$
\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \chi(n) \lll q^{3 / 2-\delta+o(1)}, \delta=1 / 32
$$

Sharma's proof uses
(1) The δ-symbol method to decompose

$$
\delta_{m=n} \lambda(1, m) \lambda_{f}(n) \chi(n) .
$$

(2) Conductor decreasing trick.
(3) GL_{2} and GL_{3}-Voronoi on n and m.
(4) Cauchy to smooth out m.
(5) Poisson (aka GL_{1}-Voronoi). In this case, some non-zero frequencies contribute.
(6) Squareroot cancellation in multivariable exponential sums by "invoking" the Adolphson-Sperber non-degeneracy criterion.
Excepted for the very last step, the proof does not make much use of the fact that χ is a Dirichlet character.

- In the end the most complicated exponential sum one need to face is: for $(I, m, p) \in \mathbb{F}_{q}^{\times}$some parameters (arising from amplification and δ-symbol methods)

$$
\begin{gathered}
Z_{\ell, m, p}(v):=\frac{1}{q^{1 / 2}} \sum_{a(\bmod q)} K(a) \mathrm{Kl}_{2}\left(\bar{p}^{2} m a ; q\right) \mathrm{Kl}_{2}\left(\bar{p}^{3} \ell \bar{v} a ; q\right) \\
\mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q):=\frac{1}{q^{1 / 2}} \sum_{v \in \mathbb{F}_{q}^{\times}} Z_{l, m, p}(v) \overline{Z_{l^{\prime}, m^{\prime}, p^{\prime}}\left(v+\overline{p p^{\prime}} h\right)} .
\end{gathered}
$$

- It is at this stage that the hypothesis that K is "good" comes in and to describe what "good" means one needs to know a bit more about...

Trace functions

Given $(\ell, q)=1$, choose an embedding $\iota: \overline{\mathbb{Q} \ell} \hookrightarrow \mathbb{C}$.
The basic datum is a Galois representation

$$
\rho: \operatorname{Gal}\left(\overline{\mathbb{F}_{q}[T]} / \mathbb{F}_{q}(T)\right) \rightarrow \operatorname{GL}(V)
$$

for V a finite dimensional $\overline{\mathbb{Q} \ell}$-vector space.

- We assume that ρ is ($\iota-$)pure of weight 0 : the eigenvalues of the Frobenius at any unramified place of $\mathbb{F}_{q}(T)$ have absolute value 1 .
- The trace function associated with ρ is the function

$$
K_{\rho}: t \in \mathbb{F}_{q} \mapsto \operatorname{tr}\left(\operatorname{Frob}_{t} \mid V^{I_{t}}\right) \in \overline{\mathbb{Q}_{\ell}} \hookrightarrow \mathbb{C} .
$$

(here " t " denote the "place" of the function field associated with the polynomial $T-t$.) It follows from purity that

$$
\left\|K_{\rho}\right\|_{\infty} \leq \operatorname{dim} V
$$

Trace functions

The datum of this Galois representation ρ is equivalent to the datum of an ℓ-adic sheaf $\mathcal{F}=\mathcal{F}_{\rho}$ with nice properties (a middle extension sheaf) and

$$
K_{\rho}=K_{\mathcal{F}}
$$

is the trace function attached to that sheaf and the representation ρ is called the monodromy of the sheaf \mathcal{F}.

- The geometric monodromy $\bar{\rho}$ is the restriction of ρ to the geometric Galois (sub)-group

$$
\bar{\rho}: \operatorname{Gal}\left(\overline{\mathbb{F}_{q}[T]} / \overline{\mathbb{F}_{q}}(T)\right) \rightarrow \mathrm{GL}(V)
$$

and the geometric monodromy group is the Zariski closure of its image in $\mathrm{GL}(V)$.

Trace functions

- The conductor $c(K)$ of K (more correctly of ρ or \mathcal{F}) is formed by agregating (ie. summing) the local and global invariants of $\bar{\rho}$:
- The dimension $\operatorname{dim} V$,
- the number of ramified places of $\bar{\rho}$,
- the Swan conductor at these places $\operatorname{swan}_{\bar{t}}(\rho)$ (which is zero unless the representation is wildly ramified there).

The goodness criterion

Definition

The trace function K is "good" if the sheaf \mathcal{F} associated to K does not satisfy any of these conditions

- For $\lambda \in \mathbb{F}_{q}^{\times}-\{1\}$ the geometric monodromy of \mathcal{F} has some quotient isomorphic to $[\times \lambda]^{*} \mathcal{K} \mathcal{L}_{2}$.
- For some $\lambda \in \mathbb{F}_{q}^{\times}-\{1\}, \mathcal{F}$ and $[\times \lambda]^{*} \mathcal{F}$ are geometrically isomorphic.
- The local monodromy of \mathcal{F} at ∞ has a slope equal to $1 / 2$.

The goodness criterion

Recall that

$$
\begin{gathered}
Z_{\ell, m, p}(v):=\frac{1}{q^{1 / 2}} \sum_{a(\bmod q)} K(a) \mathrm{Kl}_{2}\left(\bar{p}^{2} m a ; q\right) \mathrm{Kl}_{2}\left(\bar{p}^{3} \ell \bar{v} a ; q\right) \\
\mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q):=\frac{1}{q^{1 / 2}} \sum_{v \in \mathbb{F}_{q}^{\times}} Z_{l, m, p}(v) \overline{Z_{l^{\prime}, m^{\prime}, p^{\prime}}\left(v+\overline{p p^{\prime}} h\right)} .
\end{gathered}
$$

Theorem

If K is "good" then whenever $h \neq 0(\bmod q)$ or
$(I, m, p) \neq\left(I^{\prime}, m^{\prime}, p^{\prime}\right)$ one has

$$
\mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q) \ll 1
$$

The goodness criterion: idea of the proof

- The Z function can be obtained from K by a sequence of simple transformations (we assume $\ell=m=p=1$ for simplicity)

$$
\begin{gathered}
K(x) \xrightarrow{x \mathrm{Kl}_{2}} L(x)=K(x) \mathrm{Kl}_{2}(x) \xrightarrow{F T} \widehat{L}(y) \\
\xrightarrow{\mathrm{inv}} M(y):=\widehat{L}\left(y^{-1}\right) \xrightarrow{F T} \widehat{M}(u) \xrightarrow{\mathrm{inv}} M\left(u^{-1}\right)
\end{gathered}
$$

where $F T$ denote the Fourier transform and inv : $x \rightarrow x^{-1}$ the inversion.

- These transformations have geometric analog at the level of sheaves and one can track how the singularities of \mathcal{F} evolve when applying these (the deep but explicit work of Laumon on the local Fourier transform is used there) to see when the two copies of Z correlate.

The goodness criterion

The goodness criterion is pretty generic:

- $n \mapsto e_{q}(P(n))$ is good if $\operatorname{deg} P \geq 3$ and is not a monomial.
- The Kloosterman sum $n \mapsto \mathrm{Kl}_{d}(n)$ is good if $d \geq 3$.

There are however some notable "bad apples":

The goodness criterion

- $n \mapsto \chi(n)$ (Sharma's case): in that case the sums $Z_{\ell, m, p}(v)$ and $\mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q)$ simplify considerably and the bound

$$
\mathcal{C}_{\ell, m, p, \ell^{\prime}, m^{\prime}, p^{\prime}}(h ; q) \ll 1
$$

is still valid for $h \neq 0$ (and easier) and when $h=0$ the failure is localized along an explicit and small diagonal set of the remaining parameters and the final bound remains valid.

- $n \mapsto \mathrm{Kl}_{2}(n)$: here the bound really fails but one can get around with a trick.

The goodness criterion

- $n \mapsto \mathrm{Kl}_{2}(n)$: here the bound really fails but one can get around with a trick: we have

$$
\mathrm{Kl}_{2}(n ; q)=\frac{q^{1 / 2}}{\varphi(q)} \sum_{\chi(\bmod q)} \chi(n) \overline{\varepsilon(\chi)^{2}}
$$

so that

$$
S\left(\mathrm{Kl}_{2}, q^{3}\right)=\frac{q^{1 / 2}}{\varphi(q)} \sum_{\chi(\bmod q)} \overline{\varepsilon(\chi)^{2}} S\left(\chi, q^{3}\right)
$$

and applying the functional equation one find that

$$
S\left(\mathrm{Kl}_{2}, q^{3}\right) \approx \frac{q^{1 / 2}}{\varphi(q)} \sum_{\chi(\bmod q)} \varepsilon(\chi)^{6-2} S\left(\bar{\chi}, q^{3}\right) \approx S\left(\mathrm{Kl}_{4}, q^{3}\right)
$$

and Kl_{4} is good!

Thank you !

