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Let (λ(n))n≥1 be the coefficients of an automorphic L-function of
degree d

L(π, s) =
!

n≥1

λ(n)

ns
=

"

p

Lp(π, s), ℜs > 1

Lp(π, s) =
"

i≤d

(1− αi ,p

ps
)−1.

To simplify we assume that the Ramanujan-Petersson bound holds

λ(n) = no(1)

(and often this known on average)



The Godement-Jacquet L-function L(π, s) of an automorphic
representation π ∈ Aut(GLd),

The Rankin-Selberg L-function, L(π1 ⊗ π2, s) of a pair
(π1,π2) ∈ Aut(GLd1)×Aut(GLd2).

The L-function L(π, ρ, s) attached to π ∈ Aut(GLd) and ρ a
representation of GLd(C): for instance L(π,Ad, s).

It is expected (Functoriality Conjecture) that all are products
of Godement-Jacquet L-functions



Let χ (mod q) be a Dirichlet character (of prime conductor) and
L(π, s) as above, the twisted L-function is

L(π.χ, s) =
!

n≥1

λ(n)χ(n)

ns
=

"

p

Lp(π.χ, s), ℜs > 1

Lp(π.χ, s) =
"

i≤n

(1− αi ,p.χ(p)

ps
)−1.

Assume the conductor of L(π, s) is 1 (for simplicity) then

Λ(π.χ, s) = ε.ε(χ)dΛ(π.χ, 1− s)

where
Λ(π.χ, s) = qds/2L∞(π.χ, s)L(π.χ, s)

is the complete L-function, |ε| = 1 and ε(χ) is the normalized
Gauss sum.



Subconvexity Problem

Show that there is δ = δd > 0 such that for ℜs = 1/2,

L(π.χ, s) ≪π,s q
d/4−δ+o(1), δ > 0.

GL1: Burgess, Conrey-Iwaniec, Petrow-Young.

GL2: Duke-Friedlander-Iwaniec,..., Conrey-Iwaniec,...,
Petrow-Young,..., Venkatesh,.., Nelson...

GL2×GL2: M, Harcos-M,...,M-Venkatesh, ???

sym(GL2): Blomer...

GL3: Munshi, Holowinsky-Nelson, Sharma...

GL2×sym(GL2): Blomer...

GL2×GL3: Sharma...



The problem is substantially equivalent to the bound

!

n∼qd/2

λ(n)χ(n) ≪π qd/2−δ+o(1).

– A fews years ago, F, K and M looked at the problem of
establishing similar bounds with χ (mod q) replaced by more
general q-periodic arithmetic functions K : Z '→ C such that
‖K‖∞ ≪ 1.
– The aim is to bound non trivially, sums of the shape

!

n∼X

λ(n)K (n) ≪π X 1−δ, δ > 0,

at least for some ranges of X wrt to q:

Xc = qd/2

is the convexity range.
–The class of functions K considered are the so-called trace
functions.



Trace functions include

Additive characters n '→ eq(a.n) := e(anq ),

Dirichlet characters n '→ χ(n),

composition of the above with rational fractions: for instance
the ”Kloosterman fraction”,

Kl−1(n) := n '→ eq(
n

q
), (n, q) = 1

Hyper-Kloosterman sums:

Klk(n; q) =
1

q
k−1
2

!

x1x ···xk=n

eq(x1 + · · ·+ xk).

To a trace function K is attached a ”conductor” c(K ) which we
assume is bounded independently of q:

=⇒ ‖K‖∞ ≪ 1



λ in (large) arithmetic progressions

One possible motivation is the distribution of λ in large arithmetic
progressions:

!

n∼N
n≡a (mod q)

λ(n) =
1

ϕ(q)

!

χ (mod q)

χ(a)
!

n∼N

λ(n)χ(n)

=
1

ϕ(q)

!

n∼N
(n,q)=1

λ(n) +
1

ϕ(q)

!

χ (mod q)
χ ∕=χ0

χ(a)
!

n∼N

λ(n)χ(n)

and !

n∼N

λ(n)χ(n) ≈ N

qd/2
ε(χ)d

!

n≪qd/N

λ(n)χ(n)



!

χ (mod q)
χ ∕=χ0

· · · ≈ N

qd/2

!

n≪qd/N

λ(n)
# 1

ϕ(q)

!

χ (mod q)
χ ∕=χ0

ε(χ)dχ(an)
$

1

ϕ(q)

!

χ (mod q)
χ ∕=χ0

ε(χ)dχ(an) =
1

q1/2
Kld(an) + O(q−d/2−1)

One eventually obtains

!

n∼N
n≡a (mod q)

λ(n)− 1

ϕ(q)

!

n∼N
(n,q)=1

λ(n) ≈ N

q(d+1)/2

!

n≪qd/N

λ(n)Kld(an; q).



The trivial bound (using Deligne’s bound |Kld(an; q)| ≤ d)
gives

!

n∼N
n≡a (mod q)

λ(n)− 1

ϕ(q)

!

n∼N
(n,q)=1

λ(n) ≪ q
d−1
2

+o(1)

which is better than N1+o(1)/q as long as q ≤ Nθd−η where

θd =
2

d + 1
.

In other terms, non-trivial bounds

!

n∼X

λ(n)Kld(an; q) ≪π X 1−δ, δ > 0,

for the shorter range

X ≫ Xd = q
d
2
− 1

2

will improve the level of distribution of λ in arithmetic
progressions.



This problem is an analog of providing good estimates for sums
with a sharp cut :

!

n≤X

λ(n) = ress=1
L(π, s)X s

s
+ Errπ(X ).

Friedlander-Iwaniec have shown that in fair generality one can
take

Errπ(X ) = Oε(X
d−1
d+1

+ε), ε > 0.

Going beyond this generic bound lead to the problem of
bounding non-trivially sums of the shape

!

n∼X

λ(n) exp(2πiTϕ(n/X ))

where ϕ(x) = xβ and for suitable ranges of T wrt X



For instance, in the case of GL2×GL2 Rankin-Selberg L-functions
(d = 4), one has

Theorem (B. Huang)

For f a modular form of level 1

!

n≤X

λf (n)
2 =

L(sym2f , 1)

ζ(2)
X + Of (X

3/5−1/561)

This improves the 80 years old 3/5 exponent of Rankin and
Selberg.



GL1

The problem is essentially about bounding non-trivially
!

n∼X

K (n).

The convexity range here X = q1/2 is also called the
Polya-Vinogradov range and non-trivial bounds exists only for very
limited amount of trace functions

n '→ eq(P(n)), P ∈ Z[X ] of degree ≥ 3: Weyl.

n '→ χ(n): Burgess.

n '→ χ(n)eq(P(n)): Burgess, Enflo,... ,Chang,...
Heath-Brown-Pierce.

The Fourier transforms of the above:
FKM-Raju-Rivat-Soundararajan.

n '→ %K (n) =
1

q1/2

!

x (mod q)

K (x)eq(nx) :



GL2

For (λ(n))n the Fourier coefficients of a modular form, one has

Xc = q, θ2 = 2/3, Xd = q1/2.

Theorem (FKM)

As long as K ”is not” an additive character n '→ e(anq ), one has

!

n∼X

λ(n)K (n) ≪π,c(K) (qX )o(1)q1/2−1/8X 1/2.

For X = Xc = q the bound saves q1/8.

The bound is non trivial as long as X ≥ q3/4+o(1). So this
does not improve θ2.



The proof uses amplification ”à la” Bykovskii/Conrey-Iwaniec:

q−1+o(1)|
!

ℓ≤L

xℓλf0(ℓ)|2.|
!

n≤X

λf0(n)K (n)|2

≤
!

f ∈Bk (q)

|
!

ℓ≤L

xℓλf (ℓ)|2|
!

n≤X

λf (n)K (n)|2

followed by Kuznetzov formula and Poisson summation in the
resulting two ”n” variables.



Ultimately the bound rest on bounding the following correlation
sums !

x∈Fq

%K (γ.x) %K (x) ≪c(K) δγ bad q + q1/2

where the

γ =

&
a b
c d

'
∈ PGL2(Fq), γ.z =

az + b

cz + d
.

are constructed from the amplifier.
The goal is to show that the set of ”bad” γ’s is small.

The bound above is a consequence of Deligne’s Weil II and of
a deep fact, due to Laumon, that unless K ”is” an additive
character, the Fourier transform %K is a trace function whose
conductor c( %K ) is controlled by c(K ).



Theorem (Classification of group of automorphisms of sheaves)

The set of γ ∈ PGL2(Fq) such that the correlation sum is ≫ q is
contained in G !K (Fq) the set of Fq-points of an algebraic subgroup
of PGL2. Moreover |G !K (Fq)| is either ”small” (bounded in terms
of c(K )) or has a simple structure.



GL3

We have
Xc = q3/2, θ3 = 1/2, Xd = q.

Theorem (KLMS)

As long as K ”is not” an additive character n '→ e(anq ), one has

!

n∼X

λ(n)K (n) ≪π,c(K) (qX )o(1)q2/9X 5/6.

For X = q3/2 one obtains ≪π,c(K) q
3/2−1/36+o(1)

The bound is non trivial as long as X ≥ q4/3+o(1). So this
does not improve θ3.



GL3: improving θ3 in special cases

However if the GL3-representation π is not cuspidal one can
improve the performance using the fact that λ admits a
factorisation

λ(n) = λ1 - λ2(n) =
!

kl=n

λ1(k)λ2(l)

for λi , i = 1, 2 associated to πi ∈ Aut(GLi ).

π = 1⊞ 1⊞ 1: λ(n) = 1 - 1 - 1(n) = d3(n),
Friedlander-Iwaniec improved θ3 by 1/230, Heath-Brown by
1/80 and FKM by 1/46 (using the GL2 case for π2 = 1⊞ 1).

π = 1⊞ π2: for λ(n) = 1 - λf (n) KMS improved θ3 by 1/102.
The key input is a bound for bilinear sums of Kloosterman
sums in the PV range

!

k,l≃q1/2

αkβl .Kld(akl ; q) ≪d q1−1/64+o(1).



GL3: improving θ3 in special cases

However if the GL3-representation is not cuspidal one can improve
the performance using the fact that λ admits a factorisation

λ(n) = λ1 - λ2(n) =
!

kl=n

λ1(k)λ2(l)

for λi , i = 1, 2 associated to πi ∈ Aut(GLi ).

For K = Klk , one has (KMS)

!

n∼X

λ1 - λ2(n)Klk(n) ≪ X 1−δ

for X ≥ q3/4+η.



GL3: the cuspidal case

After a first breakthrough made by X. Li, R. Munshi developed the
δ-symbol method to obtain

Theorem (Munshi)

Let ϕ be a SL3(Z)-invariant cusp form. For K (n) = χ(n),

!

n∼q3/2

λϕ(1, n)K (n) ≪f q3/2−δ+o(1), δ = 1/308.

Holowinsky-Nelson simplified Munshi’s approach

Theorem (Holowinsky-Nelson)

Let ϕ be a SL3(Z)-invariant cusp form. For K (n) = χ(n),

!

n∼q3/2

λϕ(1, n)K (n) ≪f q3/2−δ+o(1), δ = 1/36.



GL3: the cuspidal case

Munshi’s method can be adapted to handle more general trace
functions K but at the cost of massive complications (also on the
ℓ-adic side).
Fortunately the Holowinski-Nelson simplification also works and is
so robust that there is no loss of quality when passing to general
trace functions:

Theorem (KLMS)

Let ϕ be a SL3(Z)-invariant cusp form. Let K be a trace function,
one has

!

n∼q3/2

λϕ(1, n)K (n) ≪f ,c(K) q
3/2−δ+o(1), δ = 1/36.



Set
S(K ,X ) :=

!

n∼X

λϕ(1, n)K (n).

If K is an additive character, S. Miller has proven an analog of
Wilton’s bound:

S(eq(a.•),X ) ≪f X 3/4+o(1).

Wlog wma that K is not an additive character.
– The first step of the HN approach is to realize the function K
within a one-parameter family of q-periodic functions. Define

%K (z , h) :=

(
%K (z)eq(−hz) q ∤ z
%K (0) q | z

for (z , h) ∈ Z2 so that

K (n, h) :=
1

q1/2

!

z∈F×
q

%K (z , h)eq(−nz).



Taking h = 0 in the above

K (n, 0) = K (n)−
%K (0)

q1/2
.

and, more generally, for any probability measure ϖ on F×
q , we have

Kϖ(n, 0) = K (n)−
%K (0)

q1/2
.

where
Kϖ(n, h) :=

!

u∈F×
q

ϖ(u)K (n, uh)



It follows that

S(K ,X ) =
!

u∈F×
q

ϖ(u)
!

|h|≤H

S(K (•, uh),X )

−
!

u∈F×
q

ϖ(u)
!

0<|h|≤H

S(K (•, uh),X ) + Err

= F −O + Err .

We take ω to be supported on the classes u ≡ p.l (mod q) for pairs
of primes p ∼ P , l ∼ L with P , L < q1/2.



Bounding F

F =
logP

P/2

log L

L/2

!

p,l

!

|h|≤H

!

n∼X

λϕ(1, n)K (n, plh).

We apply Poisson on h getting for the h, n sums

H

q1/2

!

|r |≤q/H

!

n∼X

λϕ(1, n) %K (−plr)e(
lrpn

q
)

and apply reciprocity

e(
lrpn

q
) = e(−qpn

lr
)e(

pn

qlr
) ≈ e(−qpn

lr
),

for XP = (1/2)q2L/H or H = q2L/2XP .



We use the automorphy of ϕ through Voronoi summation formula:

!

n∼X

λϕ(1, n)e(−
qpn

lr
)

≈ X

(Lq/H)3/2

!

n≪(Lq/H)3/X

λϕ(n, 1)Kl2(±pqn; lr)

We then Cauchy to smooth out n

!!

p,l ,n,r

· · · ≤ (
!

n,r

|λϕ(n, 1)|2)1/2(
!

n,r

|
!

p,l

%K (−plr)Kl2(±pqn; lr)|2)1/2

and apply Poisson on the resulting n-sum

!

n≪(Lq/H)3/X

Kl2(±p1qn; l1r)Kl2(±p2qn; l2r)

and use the expression of the Fourier transform of the product of
Kloosterman sums in terms of Ramanujan sums.



We obtain that for L ≤ P4

F ≪ qo(1)(
X 3/2P

qL1/2
+ X 3/4(qPL)1/4).

and to be non-trivial one need at least that X ≥ q1+η.

Remark

At this stage, the only information (due to Deligne) we have used
is that for K not an additive character, one has

‖ %K‖∞ ≪c(K) 1.



Bounding O

Recall that

O =
logP

P/2

log L

L/2

!

p,l

!

0<|h|≤H
(h,l)=1

!

n∼X

λϕ(1, n)K (n, plh).



This time we immediately Cauchy to smooth n and evaluate

!!

p1,h1,l1
p2,h2,l2

!

n∼X

K (n, p1l1h1)K (n, p2l2h2)

=
!

x1,x2∈F×
q

ν(x1)ν(x2)
!

n∼X

K (n, x1)K (n, x2)

Since X ≥ q1+η, only the zero contribution in the dual variable
survives and the sum becomes

X

q1/2

!

x1,x2∈F×
q

ν(x1)ν(x2)
1

q1/2

!

u∈Fq

K (u, x1)K (u, x2)

=
X

q1/2

!

x1,x2∈F×
q

ν(x1)ν(x2)
1

q1/2

!

u∈Fq

%K (u, x1) %K (u, x2)



Moreover

1

q1/2

!

u∈Fq

%K (u, x1) %K (u, x2) = L(x1 − x2)

with

L(x) =
1

q1/2

!

u∈F×
q

| %K (u)|2e(−ux

q
) +

1

q1/2
| %K (0)|2.

The second term is no problem.
For the first term, observe that if | %K (u)|2 = 1 a.e. (which is the
case for K = χ treated by HN) the first term is a Ramanujan sum
hence very small.



In general we have the following elementary:

Lemma

Given µ, ν, L : Fq → C we have

!

x1,x2∈Fq

ν(x1)ν(x2)L(x1 − x2) ≤ q1/2‖ν‖22‖%L‖∞.

which is proven by separating x1, x2 in L(x1 − x2) using the inverse
Fourier transform formula and Cauchying.



In the present case we have

%L(u) = | %K (0)|2δu≡0 (mod q) + | %K (ū)|2δu ∕≡0 (mod q),

and (assuming PHL < q)

‖ν‖22 = |{(p1, h1, l1, p2, h2, l2), p1l1h1 ≡ p2l2h2 (mod q)}|
= |{(p1, h1, l1, p2, h2, l2), p1l2h1 = p2l1h2}| = (PHL)1+o(1).

This yields

O ≪f qo(1)‖ %K‖∞
qX 1/2

P
.

Combining the F and O bounds we conclude.

Remark

The only information used is that K – not being an additive
character – satisfies

‖ %K‖∞ ≪C(K) 1.



It is important to have X close to or below q.

Being able to go below the distribution range Xd = q for
K (n) = Kl3(n; q) would make it possible to evaluate
asymptotically the first moment

!

χ (mod q)

L(ϕ.χ, 1/2)

and to obtain non-vanishing results for central values of
twists: so far this is known only on average over suitable
composite moduli q1q2 (W. Luo).

For ϕ non-cuspidal such non-vanishing results for twisted
L-functions are known (Das-Khan, Petrow, Zacharias).



GL2×GL3

We have
Xc = q3, θ6 = 2/7, Xd = q3−1/2.

Theorem (LMS)

Let f be a SL2(Z)-cusp form and ϕ be a SL3(Z) cups form and

λ(n) = λϕ(1, n).λf (n)

If K is ”good”, one has

!

n∼X

λϕ(1, n)λf (n)K (n)

≪f ,ϕ,c(K) (qX )o(1)(X 3/4q11/16 + X 2/3.q11/12 + X .q−1/8).

For X = q3 the bound saves q−1/16

The bound is non trivial as long as X ≥ q3−1/4+η. So this
does not improve θ6.



GL2×GL3

The proof follows the proof by P. Sharma of the special case
K = χ (equivalent to the subconvex bound for L(ϕ× f .χ, 1/2)):

Theorem (Sharma)

Let f be a SL2(Z)-cusp form and ϕ be a SL3(Z) cups form . One
has !

n∼q3

λϕ(1, n)λf (n)χ(n) ≪ϕ,f q3−δ+o(1), δ = 1/16.

Corollary (Sharma)

Let ϕ be a SL3(Z)-invariant cusp form. One has,

!

n∼q3/2

λϕ(1, n)χ(n) ≪f q3/2−δ+o(1), δ = 1/32.



Sharma’s proof uses

The δ-symbol method to decompose

δm=nλ(1,m)λf (n)χ(n).

Conductor decreasing trick.

GL2 and GL3-Voronoi on n and m.

Cauchy to smooth out m.

Poisson (aka GL1-Voronoi). In this case, some non-zero
frequencies contribute.

Squareroot cancellation in multivariable exponential sums by
”invoking” the Adolphson-Sperber non-degeneracy criterion.

Excepted for the very last step, the proof does not make much use
of the fact that χ is a Dirichlet character.



In the end the most complicated exponential sum one need to
face is: for (l ,m, p) ∈ F×

q some parameters (arising from
amplification and δ-symbol methods)

Zℓ,m,p(v) :=
1

q1/2

!

a (mod q)

K (a)Kl2(p
2ma; q)Kl2(p

3ℓva; q)

Cℓ,m,p,ℓ′,m′,p′(h; q) :=
1

q1/2

!

v∈F×
q

Zl ,m,p(v)Zl ′,m′,p′(v + pp′h).

It is at this stage that the hypothesis that K is ”good” comes
in and to describe what ”good” means one needs to know a
bit more about...



Trace functions

Given (ℓ, q) = 1, choose an embedding ι : Qℓ ↩→ C.
The basic datum is a Galois representation

ρ : Gal(Fq[T ]/Fq(T )) → GL(V )

for V a finite dimensional Qℓ-vector space.

We assume that ρ is (ι-)pure of weight 0: the eigenvalues of
the Frobenius at any unramified place of Fq(T ) have absolute
value 1.

The trace function associated with ρ is the function

Kρ : t ∈ Fq '→ tr(Frobt |V It ) ∈ Qℓ ↩→ C.

(here ”t” denote the ”place” of the function field associated
with the polynomial T − t.) It follows from purity that

‖Kρ‖∞ ≤ dimV .



Trace functions

The datum of this Galois representation ρ is equivalent to the
datum of an ℓ-adic sheaf F = Fρ with nice properties (a middle
extension sheaf) and

Kρ = KF

is the trace function attached to that sheaf and the representation
ρ is called the monodromy of the sheaf F .

The geometric monodromy ρ is the restriction of ρ to the
geometric Galois (sub)-group

ρ : Gal(Fq[T ]/Fq(T )) → GL(V )

and the geometric monodromy group is the Zariski closure of
its image in GL(V ).



Trace functions

The conductor c(K ) of K (more correctly of ρ or F) is
formed by agregating (ie. summing) the local and global
invariants of ρ :

The dimension dimV ,
the number of ramified places of ρ,
the Swan conductor at these places swant(ρ) (which is zero
unless the representation is wildly ramified there).



The goodness criterion

Definition

The trace function K is ”good” if the sheaf F associated to K
does not satisfy any of these conditions

For λ ∈ F×
q − {1} the geometric monodromy of F has some

quotient isomorphic to [×λ]∗KL2.

For some λ ∈ F×
q − {1}, F and [×λ]∗F are geometrically

isomorphic.

The local monodromy of F at ∞ has a slope equal to 1/2.



The goodness criterion

Recall that

Zℓ,m,p(v) :=
1

q1/2

!

a (mod q)

K (a)Kl2(p
2ma; q)Kl2(p

3ℓva; q)

Cℓ,m,p,ℓ′,m′,p′(h; q) :=
1

q1/2

!

v∈F×
q

Zl ,m,p(v)Zl ′,m′,p′(v + pp′h).

Theorem

If K is ”good” then whenever h ∕= 0 (mod q) or
(l ,m, p) ∕= (l ′,m′, p′) one has

Cℓ,m,p,ℓ′,m′,p′(h; q) ≪ 1



The goodness criterion: idea of the proof

The Z function can be obtained from K by a sequence of
simple transformations (we assume ℓ = m = p = 1 for
simplicity)

K (x)
×Kl2−−−→ L(x) = K (x)Kl2(x)

FT−−→ %L(y)

inv−−→ M(y) := %L(y−1)
FT−−→ %M(u)

inv−−→ M(u−1)

where FT denote the Fourier transform and inv : x → x−1

the inversion.

These transformations have geometric analog at the level of
sheaves and one can track how the singularities of F evolve
when applying these (the deep but explicit work of Laumon on
the local Fourier transform is used there) to see when the two
copies of Z correlate.



The goodness criterion

The goodness criterion is pretty generic:

n '→ eq(P(n)) is good if degP ≥ 3 and is not a monomial.

The Kloosterman sum n '→ Kld(n) is good if d ≥ 3.

There are however some notable ”bad apples”:



The goodness criterion

n '→ χ(n) (Sharma’s case): in that case the sums Zℓ,m,p(v)
and Cℓ,m,p,ℓ′,m′,p′(h; q) simplify considerably and the bound

Cℓ,m,p,ℓ′,m′,p′(h; q) ≪ 1

is still valid for h ∕= 0 (and easier) and when h = 0 the failure
is localized along an explicit and small diagonal set of the
remaining parameters and the final bound remains valid.

n '→ Kl2(n): here the bound really fails but one can get
around with a trick.



The goodness criterion

n '→ Kl2(n): here the bound really fails but one can get
around with a trick: we have

Kl2(n; q) =
q1/2

ϕ(q)

!

χ (mod q)

χ(n)ε(χ)2

so that

S(Kl2, q
3) =

q1/2

ϕ(q)

!

χ (mod q)

ε(χ)2S(χ, q3)

and applying the functional equation one find that

S(Kl2, q
3) ≈ q1/2

ϕ(q)

!

χ (mod q)

ε(χ)6−2S(χ, q3) ≈ S(Kl4, q
3)

and Kl4 is good !



Thank you !


