
J. Gondzio Iterative solvers for IPMs

School of Mathematics

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Recent Advances in Iterative Solvers
for Interior Point Methods

Jacek Gondzio
Email: J.Gondzio@ed.ac.uk

http://www.maths.ed.ac.uk/~gondzio/

Waterloo, Wednesday 11 August 2021 1



J. Gondzio Iterative solvers for IPMs

Outline

• 1984: IPMs were born

• Key ideas

• IPMs today

• Beyond the obvious:

– How much IPM in IPM?

– Direct vs Iterative Methods −→ Inexact2 IPM

– Primal-Dual Newton Conjugate Gradient Method

– Sparse Approximations with IPMs
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1984 Do not think of George Orwell!

Think like Frank Sinatra:
“When I was 24 ... it was a very good year”

Narendra Karmarkar (AT&T Bell Labs) published the paper:

A New Polynomial–time Algorithm for Linear Programming,
Combinatorica 4 (1984) 373–395.

Shocking mathematical concept:

Take linear optimization problem
and add nonlinear function to the objective.

A step against common sense and
the centuries of mathematical practice:

“nonlinearize” the linear problem
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Primal-Dual Pair of Linear Programs

Primal Dual

min cTx max bTy
s.t. Ax = b, s.t. ATy + s = c,

x ≥ 0; s ≥ 0.

Lagrangian

L(x, y) = cTx− yT (Ax− b)− sTx.

Optimality Conditions

Ax = b,

ATy + s = c,
XSe = 0, ( i.e., xj · sj = 0 ∀j),
(x, s) ≥ 0,

X=diag{x1, · · · , xn}, S=diag{s1, · · · , sn}, e=(1, · · · , 1)∈Rn.
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Logarithmic barrier

− ln xj
“replaces” the inequality

xj ≥ 0 .

x

−ln x

1

Observe that

min e−
∑n
j=1 ln xj ⇐⇒ max

n
∏

j=1

xj

The minimization of−∑n
j=1 ln xj is equivalent to the maximization

of the product of distances from all hyperplanes defining the positive
orthant: it prevents all xj from approaching zero.
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Logarithmic barrier

Replace the primal LP

min cTx
s.t. Ax = b,

x ≥ 0,

with the primal barrier program

min cTx− µ
n
∑

j=1
ln xj

s.t. Ax = b.

Lagrangian: L(x, y, µ) = cTx− yT (Ax− b)− µ
n
∑

j=1

lnxj.
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Conditions for a stationary point of the Lagrangian

∇xL(x, y, µ) = c− ATy − µX−1e = 0
∇yL(x, y, µ) = Ax− b = 0,

where X−1 = diag{x−1
1 , x−1

2 , · · · , x−1
n }.

Let us denote

s = µX−1e, i.e. XSe = µe.

The First Order Optimality Conditions are:

Ax = b,
ATy + s = c,

XSe = µe,
(x, s) > 0.
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Approximate FOC

The first order optimality conditions for the barrier problem

Ax = b,
ATy + s = c,

XSe = µe,
(x, s) ≥ 0

approximate the first order optimality conditions for the LP

Ax = b,
ATy + s = c,

XSe = 0,
(x, s) ≥ 0

more and more closely as µ goes to zero.
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Central Trajectory

Parameter µ controls the distance to optimality.

cTx−bTy = cTx−xTATy = xT(c−ATy) = xTs = nµ.

Analytic centre (µ-centre): a (unique) point

(x(µ), y(µ), s(µ)), x(µ) > 0, s(µ) > 0

that satisfies FOC.

The path
{(x(µ), y(µ), s(µ)) : µ > 0}

is called the primal-dual central trajectory.
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Central Path Neighbourhood

Define F0 := {(x, y, s) : Ax = b, c− ATy − s = 0, x, s > 0}.
Assume a primal-dual strictly feasible solution (x, y, s) ∈ F0 lying
in a neighbourhood of the central path is given; namely (x, y, s)
satisfies:

Ax = b,
ATy + s = c,

XSe ≈ µe.

We define a θ-neighbourhood of the central path N2(θ), a set of
primal-dual strictly feasible solutions (x, y, s) ∈ F0 that satisfy:

‖XSe− µe‖ ≤ θµ,

where θ ∈ (0, 1) and the barrier µ satisfies:

xTs = nµ.

Hence N2(θ) = {(x, y, s) ∈ F0 | ‖XSe− µe‖ ≤ θµ}.
Waterloo, Wednesday 11 August 2021 10
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Polynomial Complexity Result

Main ingredients of the polynomial complexity result for the short-
step path-following algorithm:

Stay close to the central path:
all iterates stay in the N2(θ) neighbourhood of the central path.

Make (slow) progress towards optimality:
reduce systematically duality gap

µk+1 = σµk,

where

σ = 1− β/
√
n,

for some β ∈ (0, 1).
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O(√n) complexity result

Note that since at one iteration duality gap is reduced 1 − β/
√
n

times, after
√
n iterations the reduction achieves:

(1− β/
√
n)

√
n ≈ e−β.

After C · √n iterations, the reduction is e−Cβ. For sufficiently
large constant C the reduction can thus be arbitrarily large (i.e. the
duality gap can become arbitrarily small).

Hence this algorithm has iteration complexity O(
√
n).

This should be understood as follows:

“after the number of iterations proportional to
√
n

the algorithm solves the problem”.
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From LP via QP to NLP, SOCP and SDP
For the quadratic cone

Kq = {(x, t) : x ∈ Rn−1, t ∈ R, t2 ≥ ‖x‖2, t ≥ 0},
define the logarithmic barrier function, f : Rn 7→ R

f (x, t) =

{

− ln(t2 − ‖x‖2) if ‖x‖ < t
+∞ otherwise.

For the cone SRn×n
+ of positive definite matrices,

define the logarithmic barrier function, f : SRn×n
+ 7→ R

f (X) =

{

− ln detX if X ≻ 0
+∞ otherwise.

LP: Replace x ≥ 0 with −µ∑n
j=1 lnxj.

SDP: Replace X � 0 with −µ∑n
j=1 lnλj = −µ ln(∏n

j=1 λj).

Waterloo, Wednesday 11 August 2021 13



J. Gondzio Iterative solvers for IPMs

Computational View
Apply Newton Method to the FOC

The first order optimality conditions for the barrier problem form a
large system of nonlinear equations

f (x, y, s) =





Ax − b
ATy + s − c

XSe − µe



 =

[

0
0
0

]

.

Thus, for a given point (x, y, s) we find the Newton direction
(∆x,∆y,∆s) by solving the system of linear equations:





A 0 0
0 AT I
S 0 X



 ·
[

∆x
∆y
∆s

]

=





b− Ax
c− ATy − s
µe−XSe



 .
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Linear Algebra Perspective
Every IPM iteration requires solving a linear system:

[

−Q− Θ−1
P AT

A ΘD

] [

∆x
∆y

]

=

[

r1
r2

]

.

Details depend on a class of problem and the presence of inequalities:

LP QP NLP
[

−Θ−1 AT

A 0

] [

−Q− Θ−1 AT

A 0

] [

Q(x, y) A(x)T

A(x) Θ

]

• Optimizers call it a reduced KKT system

• PDE community calls it a saddle point system
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Interior Point Methods:

• Unified view of optimization
→ from LP via QP to NLP, SOCP and SDP

• Predictable behaviour
→ small number of iterations

• Unequalled efficiency

– competitive for small problems (n ≤ 106)
– beyond competition for large problems (n ≥ 106)

Problem of size 109 solved in 2005.
Object-Oriented Parallel IPM Solver (OOPS):
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html

Gondzio and Grothey, Parallel IPM solver for structured QPs: application to financial planning problems,

Annals of Operations Research 152 (2007) 319-339.
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Improvements

Use 2nd-order information (Newton direction).

But, do not waste time on computing exact direction.

Use Inexact Newton Method

Dembo, Eisenstat and Steihaug,
Inexact Newton Methods,
SIAM J. on Numerical Analysis 19 (1982) 400–408.

Bellavia, Inexact Interior Point Method,
Journal of Optimization Theory and Appls 96 (1998) 109–121.
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Main Tool: Inexact Newton Method

Replace an exact Newton direction

∇2f (x)∆x = −∇f (x)
with an inexact one:

∇2f (x)∆x = −∇f (x) + r,

where the error r is small: ‖r‖ ≤ η‖∇f (x)‖, η ∈ (0, 1).

Waterloo, Wednesday 11 August 2021 18
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Theorem: Suppose the feasible IPM for QP is used.

If the method operates in the small neighbourhood

N2(θ) := {(x, y, s) ∈ F0 : ‖XSe− µe‖2 ≤ θµ}
and uses the inexact Newton direction with η = 0.3, then it
converges in at most

K = O(
√
n ln(1/ǫ)) iterations.

If the method operates in the symmetric neighbourhood

NS(γ) := {(x, y, s) ∈ F0 : γµ ≤ xisi ≤ (1/γ)µ}
and uses the inexact Newton direction with η = 0.05, then it
converges in at most

K = O(n ln(1/ǫ)) iterations.

Gondzio, Convergence Analysis of an Inexact Feasible IPM for Convex Quadratic Programming,

SIAM Journal on Optimization 23 (2013) No 3, pp. 1510-1527.
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Overarching Feature of IPMs

They possess an unequalled ability to identify
the “essential subspace”

in which the optimal solution is hidden.
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Beyond the Obvious

• How much IPM in IPM?
→ do we need to be so rigid?
work with S. Bellavia, M. Porcelli, S. Pougkakiotis

• Inexact2 IPMs
→ IPM-tuned stopping criteria for Krylov methods,
work with F. Zanetti

• Primal-Dual Newton Conjugate Gradient Method
→ homotopy similar to IPM
work with K. Fountoulakis

• Sparse Approximations with IPMs
→ ℓ1-regularized problems, work with
V.De Simone, D.di Serafino, S.Pougkakiotis, M.Viola
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Relaxed (?) Interior Point Method

Waterloo, Wednesday 11 August 2021 22
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SDP with IPMs still remains a challenge

Wishes:

• Remove memory bottleneck

• Accelerate (if possible)

Redesign IPMs for SDP:

• “Relax” the rigid structure of the method

• Replace exact Newton Method

with inexact Newton Method

• Work in matrix-free and limited-memory regime

• Using a preconditioner is essential
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SDP in standard form

• Primal form

min C •X
s.t. Ai •X = bi i = 1, . . . ,m

X � 0,

where Ai ∈ SIRn×n, C ∈ SIRn×n, b ∈ IRm and X ∈ SIRn×n.
• Dual form

max bTy
s.t. S = C −∑m

i=1 yiAi
S � 0,

where y ∈ IRm and S ∈ SIRn×n.

The operation A •B = trace(ATB).

Special interest in S sparse.
S is the linear combination: S = C −∑m

i=1 yiAi
Waterloo, Wednesday 11 August 2021 24
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Dual Path-Following Interior-Point Algorithm

• Dual barrier problem parametrized by µ > 0

max bTy + µ ln(det(S)),

s.t.
∑m
i=1 yiAi + S = C (S � 0).

• Let X = µS−1 � 0, then the first-order optimality conditions
for this problem are given by:

Fµ(X, y, S) =







∑m
i=1 yiAi + S − C

Ai •X − bi i = 1, . . . ,m

X − µS−1






= 0.

Primal-dual complementarity condition: XS = µI .
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Dual Path-Following IPM (cont’d)

Choose a dual strictly feasible pair (S, y) and a scalar µ > 0.

Outer Interior-Point iterations:
Update (reduce) µ := σµ until it is sufficiently small.

Inner Newton iterations:
Perform (damped) steps in Newton direction (∆X,∆S, y) for

Fµ(X, y, S) = 0

until the following proximity criteria is satisfied:

‖S−1/2∆S S−1/2‖F ≤ τ < 1.

Bellavia, Gondzio and Porcelli, An inexact dual logarithmic barrier method for solving sparse semidef-

inite programs, Mathematical Programming, 178 (2019), pp 109–143.

Bellavia, Gondzio and Porcelli, A relaxed interior point method for low-rank semidefinite programming

problems with applications to matrix completion (revised in Mar 2021) http://arxiv.org/abs/1909.06099
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Inexact2 IPM

Standard Inexact Newton Method

∇2f (x)∆x = −∇f (x) + r,

where the error r is small: ‖r‖ ≤ η‖∇f (x)‖, η ∈ (0, 1)
is disappointingly conservative when applied in IPMs!

Newton direction (∆x,∆y,∆s) comes from the system of linear
equations:





A 0 0
0 AT I
S 0 X



 ·
[

∆x
∆y
∆s

]

=

[

ξP
ξD
ξµ

]

=





b− Ax
c− ATy − s
σµe−XSe



 .

Full step in Newton direction (α = 1) would immediately reach
primal feasibility and dual feasibility.
In practice such steps rarely happen.
Why should we waste time on computing accurate directions?
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Intriguing observation
What happens at a particular IPM iteration?

The accuracy required from the inner solver does not change the
quality of Newton direction!

Stop inner solver as soon as the stagnation occurs.
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Inexact2 IPM

Accept the direction produced by the inner solver as soon as

max
j

∣

∣

∣

∆xkj

xkj

∣

∣

∣ ≤M, max
j

∣

∣

∣

∆skj

skj

∣

∣

∣ ≤M

and
‖ξk+1P ‖ ≤ ηk‖ξkP‖, ‖ξk+1D ‖ ≤ ηk‖ξkD‖,

where ηk ≥ 1− αk.

• Implemented with CG and MINRES;

• Prevents IPM from “over-solving” of the linear systems
→ 70%-90% reduction of the number of Krylov iterations;

• Worst-case complexity drops from O(n) to O(n2).

F. Zanetti and J. Gondzio, (arXiv: 2106.16090)

A new stopping criterion for Krylov solvers applied in interior point methods, June 2021 (submitted).
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Inexact2 IPM
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Multi-Energy X-ray Tomography

min
x≥0

‖h−Ax‖22 + α‖x‖22 + βxTSx,

where S =

[

0 I
I 0

]

is an inner product regularizer which promotes

material separation (note x1 ≥ 0, x2 ≥ 0, keep xT1 x2 small).

CG, tol = 10−6 IPCG, ε = 10−2

Size IPM PCG Time IPM PCG Time
2,048 18 3,810 7.46 19 586 1.44
8,192 20 6,301 35.04 24 1,149 6.29
32,768 23 9,249 140.91 26 1,366 23.02
131,072 26 15,115 817.45 32 1,763 106.36
524,288 29 25,112 5,174.26 49 2,639 639.92

J. Gondzio, S.-M. Latva-Äijö, S.M Siltanen, M. Lassas, F. Zanetti, (arXiv: 2107.03535)

Material-separating regularizer for multi-energy X-ray tomography, June 2021 (submitted).
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Big Data Optimization
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Sparse Approximation

• Machine Learning: Classification with SVMs

• Statistics: Estimate x from observations

• Wavelet-based signal/image reconst. & restoration

• Compressed Sensing (Signal Processing)

All such problems lead to the same dense, possibly very large QP.

Waterloo, Wednesday 11 August 2021 33
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Binary Classification

min τ‖x‖1+
m
∑

i=1
log(1+e−bix

Tai) min τ‖x‖22+
m
∑

i=1
log(1+e−bix

Tai)

Waterloo, Wednesday 11 August 2021 34
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ℓ1-regularization

min
x

τ‖x‖1 + φ(x).

think of LASSO:
min
x

f (x) = τ‖x‖1 + ‖Ax− b‖22

Unconstrained optimization ⇒ easy

Serious Issue: nondifferentiability of ‖.‖1
Two possible tricks:

• Splitting x = u− v with u, v ≥ 0

• Smoothing with pseudo-Huber approximation

replaces ‖x‖1 with ψµ(x) =
∑n
i=1(

√

µ2 + x2i − µ)

Waterloo, Wednesday 11 August 2021 35
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Huber:

Waterloo, Wednesday 11 August 2021 36
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Continuation

Embed inexact Newton Method into a homotopy approach:

• Inequalities u ≥ 0, v ≥ 0 −→ use IPM

replace z ≥ 0 with −µ logz and drive µ to zero.

• pseudo-Huber regression −→ use continuation

replace |xi| with µ(
√

1+
x2i
µ2

−1) and drive µ to zero.

Questions:

• Theory?

• Practice?

Waterloo, Wednesday 11 August 2021 37
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Compressed Sensing and Continuation

Replace min
x

f (x) = τ‖WTx‖1 +
1

2
‖Ax− b‖22, −→ xτ

with min
x

fµ(x) = τψµ(W
Tx) +

1

2
‖Ax− b‖22, −→ xτ,µ

Solve approximately a family of problems for a (short) decreasing
sequence of µ’s: µ0 > µ1 > µ2 · · ·

Theorem (Brief description)

There exists a µ̃ such that ∀µ ≤ µ̃ the difference of the two solutions
satisfies ‖xτ,µ − xτ‖2 = O(µ1/2) ∀ τ, µ.
Primal-Dual Newton Conjugate Gradient Method:

Fountoulakis and Gondzio, A Second-order Method for Strongly Convex ℓ1-regularization Problems,
Mathematical Programming, 156 (2016) 189–219.

Dassios, Fountoulakis and Gondzio, A Preconditioner for a Primal-Dual Newton Conjugate Gradient

Method for Compressed Sensing Problems, SIAM J on Scientific Computing, 37 (2015) A2783–A2812.
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Simple test example for ℓ1-regularization

min
x

τ‖x‖1 + ‖Ax− b‖22

Special matrix given in SVD form A = UΣV T , where U and V are
products of Givens rotations. The user controls:

• the condition number κ(A),

• the sparsity of matrix A.

Matlab generator:
http://www.maths.ed.ac.uk/ERGO/trillion/

Fountoulakis and Gondzio

Performance of First- and Second-Order Methods for ℓ1-regularized Least Squares Problems,

Computational Optimization and Applications 65 (2016) 605–635.
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Excessive Computational Tests (4 mths of CPU)

• FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)

• PCDM (Parallel Coordinate Descent Method)

• PSSgb (Projected Scaled Subgradient, Gafni-Bertsekas)

• pdNCG (primal-dual Newton Conjugate Gradient)

The 1st order methods:

• work well if the condition number κ(A) ≤ 102,

• struggle when κ(A) ≥ 103,

• stall when κ(A) ≥ 104.

The 2nd order method (pdNCG, diagonal preconditioner):

• works well if the condition number κ(A) ≤ 106.

Waterloo, Wednesday 11 August 2021 40
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Let us go big: a trillion (240) variables

n (billions) Processors Memory (TB) time (s)
1 64 0.192 1923
4 256 0.768 1968
16 1024 3.072 1986
64 4096 12.288 1970
256 16384 49.152 1990

1,024 65536 196.608 2006

ARCHER (ranked 25 on top500.com, 11 March 2015)

Linpack Performance (Rmax) 1,642.54 TFlop/s
Theoretical Peak (Rpeak) 2,550.53 TFlop/s
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More Sparse Approximations
Problems of the form

min f (x) + τ1‖x‖1 + τ2‖Lx‖1
s.t. Ax = b.

• Sparse portfolio selection
comparison with Split Bregman method

• Classification models for funct’l Magnetic Resonance Imaging
comparison with FISTA and ADMM

• TV-based Poisson Image Restoration
comparison with PDAL

• Linear Classification via Regularized Logistic Regression
comparison with newGLMNET and ADMM

De Simone, di Serafino, Gondzio, Pougkakiotis, Viola,

Sparse Approximations with Interior Point Methods (released in February 2021)

https://arxiv.org/abs/2102.13608
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Classification models for fMRI
Comparison of IPM, FISTA and ADMM (opt tol 10−5). We report:

• classification accuracy (ACC),

• corrected pairwise overlap (CORR OVR);
measures the “stability” of each voxel selection,

• solution density (DEN).

Algorithm τ1 = τ2 ACC CORR OVR DEN
IP-PMM 10−2 86.16± 7.11 43.47± 9.09 20.56± 6.63

5 · 10−2 84.90± 4.80 62.70± 10.39 3.77± 0.84
10−1 82.29± 6.22 82.60± 9.24 2.49± 0.34

FISTA 10−2 86.90± 5.01 5.43± 0.43 88.97± 0.71
5 · 10−2 84.15± 5.92 65.50± 2.68 19.36± 0.86

10−1 81.62± 7.58 80.44± 5.72 5.14± 0.44
ADMM 10−2 86.46± 6.91 0.03± 0.01 98.70± 0.03

5 · 10−2 85.57± 5.37 0.15± 0.04 97.97± 0.05
10−1 82.07± 6.51 0.26± 0.13 97.50± 0.19

We want: ACC and CORR OVR close to 100, and small DEN.
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Classification models for fMRI (cont’d)

Performance comparison in terms of elapsed time:

Evolution of ACC, DEN and CORR OVR with time;
IP-PMM (left) and FISTA (right).
We report average measures with 95% confidence intervals.
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Conclusions

IPMs have revolutionized the optimization.

They are clearly the 2nd-order methods,
but work well with the inexact Newton method
(this makes the matrix-free implementation possible).

Trick:

• use continuation

• find the “essential subspace” and

• exploit it to simplify the linear algebra

– works in IPMs for LP, QP, SOCP, SDP
– works in Newton CG for ℓ1-regularization
– works in IPMs for sparse approximations
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Thank you for your attention

Stay safe, stay healthy!
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