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HiGHS: The team

What’s in a name?

HiGHS: Hall, ivet Galabova, Huangfu and Schork

Team HiGHS

Julian Hall (1990–date)

Ivet Galabova (2016–date)

Michael Feldmeier (2018–date)

Leona Gottwald (2020–date)
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HiGHS: Solvers

Linear programming (LP)

Dual simplex (Huangfu and Hall)

Serial techniques exploiting sparsity
Parallel techniques exploiting multicore architectures

Interior point (Schork)

Highly accurate due to its iterative linear system solver
Crossover to a basic solution

Mixed-integer programming (MIP)

Branch-and-cut solver (Gottwald)

Quadratic programming (QP)

Active set solver (Feldmeier)
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Practical LP problems

minimize f = cT x such that Ax = b and x ≥ 0

STAIR: 356 rows; 467 columns; 3856 nonzeros DCP1: 4950 rows; 3007 columns; 93853 nonzeros

Large-scale practical LP problems have O(107) variables and constraints
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Solving primal LP problems: Optimality conditions

minimize f = cT x such that Ax = b and x ≥ 0

For a partition B ∪N of {1, . . . , n} with nonsingular basis matrix B

Equations partitioned as BxB + NxN = b so xB = B−1b− B−1NxN ; some xN ≥ 0

Objective partitioned as f = cTB xB + cTN xN

Reduced objective is f = f̂ + ĉTN xN , where

f̂ = cTB b̂, for reduced RHS b̂ = B−1b

ĉTN = cTN − cTB B
−1N is the vector of reduced costs

Partition yields an optimal solution when xN = 0 if there is

Primal feasibility b̂ ≥ 0
Dual feasibility ĉN ≥ 0
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Solving dual LP problems: Optimality conditions

Consider the corresponding dual problem

maximize fD = bT y subject to AT y + s = c s ≥ 0

For a partition B ∪N , the partitioned equations are solved by

y = B−T (cB − sB)

s =

[
sB

sN

]
for sN = ĉN + NTB−T sB ; some sB ≥ 0

Reduced objective is fD = f̂ − b̂
T
sB

Solution is optimal when sB = 0 if there is

Dual feasibility ĉN ≥ 0
Primal feasibility b̂ ≥ 0

Dual simplex algorithm for an LP is primal algorithm applied to the dual problem

Structure of dual equations allows dual simplex algorithm to be applied to primal
simplex tableau
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Dual simplex algorithm: Choose a row

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B

RHS

b̂

b̂p

N

B

Julian Hall HiGHS: Theory, software and Impact 7 / 47



Dual simplex algorithm: Choose a column

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âT
p

ĉTN

âpq

ĉq

N

B
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Dual simplex algorithm: Update cost and RHS

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂− αP âq αP = b̂p/âpq

Update ĉTN := ĉTN + αD âTp αD = −ĉq/âpq
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Dual simplex algorithm: Data required

Assume ĉN ≥ 0 Seek b̂ ≥ 0

Scan b̂i < 0 for p to leave B
Scan ĉj/âpj < 0 for q to leave N

RHS

âq

âT
p

ĉTN

âpq

ĉq

b̂p

b̂

N

B

Update: Exchange p and q between B and N
Update b̂ := b̂− αP âq αP = b̂p/âpq

Update ĉTN := ĉTN + αD âTp αD = −ĉq/âpq

Data required

Pivotal row âTp = eTp B
−1N

Pivotal column âq = B−1aq
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Solving LP problems: Primal or dual simplex?

Primal simplex algorithm

Traditional variant

Solution generally not primal feasible when (primal) LP is tightened

Dual simplex algorithm

Preferred variant

Easier to get dual feasibility

More progress in many iterations

Solution dual feasible when primal LP is tightened
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Simplex method: Computation

Standard simplex method (SSM): Major computational component

RHS

N̂

ĉT
N

b̂B

N Update of tableau: N̂ := N̂ − 1

âpq
âq âTp

where N̂ = B−1N

Hopelessly inefficient for sparse LP problems

Prohibitively expensive for large LP problems

Revised simplex method (RSM): Major computational components

Pivotal row via BTπp = ep BTRAN and âTp = πT
p N PRICE

Pivotal column via B âq = aq FTRAN Represent B−1 INVERT

Update B−1 exploiting B̄ = B + (aq − Bep)eTp UPDATE
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Simplex method: Mittelmann test set

Industry standard set of 40 LP problems

Rows Cols Nonzeros Rows
Cols

Nonzeros
Rows× Cols

Nonzeros
max(Rows,Cols)

Min 960 1560 38304 1/255 0.0005% 2.2
Geomean 54256 72442 910993 0.75 0.02% 6.5
Max 986069 1259121 11279748 85 16% 218.0

Mittelmann measure for solvers

Unsolved problems given “timeout” solution time

Shift all solution times up by 10s

Compute geometric mean of logs of shifted times

Solution time measure is exponent of geometric mean shifted down by 10s

Mittelmann measure for a solver is its solution time measure relative to the best
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Hyper-sparsity
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Hyper-sparsity: Solve Bx = r for sparse r

Given B = LU, solve Bx = r as

Ly = r; Ux = y

In revised simplex method, r is sparse: consequences?

If B is irreducible then x is full
If B is highly reducible then x can be sparse

Phenomenon of hyper-sparsity
Exploit it when forming x
Exploit it when using x
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Hyper-sparsity: Inverse of a sparse matrix

Inverse of a sparse matrix and solution of Bx = r

Optimal B for LP problem STAIR B−1 has density of 58%, so B−1r is
typically dense
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Hyper-sparsity: Inverse of a sparse matrix

Inverse of a sparse matrix and solution of Bx = r

Optimal B for LP problem pds-02 B−1 has density of 0.52%, so B−1r
is typically sparse—when r is sparse

Julian Hall HiGHS: Theory, software and Impact 17 / 47



Hyper-sparsity

Use solution of Lx = b

To illustrate the phenomenon of hyper-sparsity
To demonstrate how to exploit hyper-sparsity

Apply principles to other triangular solves in the simplex method
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Hyper-sparsity: Solving Lx = b

Recall: Solve Lx = b using

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

for all i : Lij 6= 0 do
ri = ri − Lij rj

x = r

When b is sparse

Inefficient until r fills in
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Hyper-sparsity: Solving Lx = b

Better: Check rj for zero

function ftranL(L, b, x)

r = b
for all j ∈ {1, . . . ,m} do

if rj 6= 0 then
for all i : Lij 6= 0 do

ri = ri − Lij rj
x = r

When x is sparse

Few values of rj are nonzero

Check for zero dominates

Requires more efficient identification
of set X of indices j such that rj 6= 0

Gilbert and Peierls (1988)
H and McKinnon (1998–2005)
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Hyper-sparsity: Other components

Recall: major computational components

FTRAN: Form âq = B−1aq

BTRAN: Form πp = B−T ep

PRICE: Form âTp = πT
p N

BTRAN: Form πp = B−T ep

Transposed triangular solves

LT x = b has xi = bi − lTi x

Hyper-sparsity: lTi x typically zero
Also store L (and U) row-wise and
use FTRAN code

PRICE: Form âTp = πT
p N

Hyper-sparsity: πT
p is sparse

Store N row-wise

Form âTp as a combination of

rows of N for nonzeros in πT
p

H and McKinnon (1998–2005)
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Hyper-sparsity: Effectiveness

Testing environment

Mittelmann test set of 40 LPs

HiGHS dual simplex solver with/without exploiting hyper-sparsity

Time limit of 10,000 seconds

Results

When exploiting hyper-sparsity: solves 37 problems

When not exploiting hyper-sparsity: solves 34 problems

Min Geomean Max

Iteration count increase 0.75 1.08 3.17
Solution time increase 0.83 2.31 67.13
Iteration speed decrease 0.92 2.14 66.43

Mittelmann measure 2.57
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Parallel solution of structured LP problems
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Parallel solution of stochastic MIP problems

Two-stage stochastic LPs have column-linked block angular (BALP) structure

minimize cT0 x0 + cT1 x1 + cT2 x2 + . . . + cTNxN
subject to Ax0 = b0

T1x0 + W1x1 = b1

T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WNxN = bN

x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0

Variables x0 ∈ Rn0 are first stage decisions

Variables xi ∈ Rni for i = 1, . . . ,N are second stage decisions
Each corresponds to a scenario which occurs with modelled probability

The objective is the expected cost of the decisions

In stochastic MIP problems, some/all decisions are discrete
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Parallel solution of stochastic MIP problems

Power systems optimization project at Argonne

Integer second-stage decisions

Stochasticity from wind generation

Solution via branch-and-bound

Solve root using parallel IPM solver PIPS
Lubin, Petra et al. (2011)

Solve nodes using parallel dual simplex solver PIPS-S
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PIPS-S: Exploiting problem structure

Convenient to permute the LP thus:

minimize cT1 x1 + cT2 x2 + . . . + cTNxN + cT0 x0
subject to W1x1 + T1x0 = b1

W2x2 + T2x0 = b2

. . .
...

...
WNxN + TNx0 = bN

Ax0 = b0

x1 ≥ 0 x2 ≥ 0 . . . xN ≥ 0 x0 ≥ 0
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PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




W B
i are columns corresponding to nB

i basic variables in scenario i



T B
1
...

T B
N

AB


 are columns corresponding to nB

0 basic first stage decisions

.
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PIPS-S: Exploiting problem structure

Inversion of the basis matrix B is key to revised simplex efficiency

B =




W B
1 T B

1
. . .

...
W B

N T B
N

AB




B is nonsingular so
W B

i are “tall”: full column rank[
W B

i T B

i

]
are “wide”: full row rank

AB is “wide”: full row rank

Scope for parallel inversion is immediate and well known

.

Julian Hall HiGHS: Theory, software and Impact 28 / 47



PIPS-S: Exploiting problem structure

Eliminate sub-diagonal entries in each W B
i (independently)

Apply elimination operations to each T B
i (independently)

Accumulate non-pivoted rows from the W B
i with AB and

complete elimination

Julian Hall HiGHS: Theory, software and Impact 29 / 47



PIPS-S: Overview

Scope for parallelism

Parallel Gaussian elimination yields block LU decomposition of B

Scope for parallelism in block forward and block backward substitution

Scope for parallelism in PRICE

Implementation

Distribute problem data over processes

Perform data-parallel BTRAN, FTRAN and PRICE over processes

Used MPI

Lubin, H, Petra and Anitescu (2013)
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PIPS-S: Results

On Fusion cluster: Performance relative to Clp

Dimension Cores Storm SSN UC12 UC24

m + n = O(106)
1 0.34 0.22 0.17 0.08

32 8.5 6.5 2.4 0.7

m + n = O(107) 256 299 45 67 68

On Blue Gene
Instance of UC12

m + n = O(108)

Requires 1 TB of RAM

Runs from an advanced basis

Cores Iterations Time (h) Iter/sec

1024 Exceeded execution time limit
2048 82,638 6.14 3.74
4096 75,732 5.03 4.18
8192 86,439 4.67 5.14
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Parallel solution of general LP problems
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Parallel solution of general LP problems via multiple iterations: pami

Perform standard dual simplex minor iterations for rows in set P (|P| � m)

Suggested by Rosander (1975) but never implemented efficiently in serial

RHS

âT
P

ĉTN

b̂

b̂P
B

N

Task-parallel multiple BTRAN to form πP = B−T eP

Data-parallel PRICE to form âTp (as required)

Task-parallel multiple FTRAN for primal, dual and weight updates

Novel update techniques for minor iterations

Huangfu and H (2011–2014)
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pami: Effectiveness

Serial overhead of pami

HiGHS pami solver in serial: solves 34/40 problems

Min Geomean Max

Iteration count increase 0.43 1.02 2.98
Solution time increase 0.31 1.62 5.36
Iteration speed decrease 0.69 1.59 5.11

Mittelmann measure 2.08

Parallel speed-up of pami with 8 threads

Min Geomean Max

Iteration count decrease 1.00 1.00 1.00
Solution time decrease 1.15 1.88 2.39
Iteration speed increase 1.15 1.88 2.39
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pami: Effectiveness

Performance enhancement using parallel pami with 8 threads

Min Geomean Max

Iteration count decrease 0.34 0.98 2.34
Solution time decrease 0.34 1.16 6.44
Iteration speed increase 0.38 1.18 2.75

Mittelmann measure 1.21

Observations

There is significant scope to improve pami performance further

Use pami tactically: switch it off if it is ineffective

Commercial impact

Huangfu applied the parallel dual simplex techniques within the Xpress solver

For much of 2013–2018 the Xpress simplex solver was the best in the world
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HiGHS
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HiGHS: Features and interfaces

Features

Load/add/delete/modify model data

Presolve/postsolve (LP and MIP)

Solution sensitivity/ranging (LP)

Interfaces

Language

C++ HiGHS class
C

C#

FORTRAN

Python

JavaScript

Rust

Applications

JuliaOpt

SciPy

PuLp

GAMS∗

OSI∗

SCIP∗

Future

AMPL

MATLAB

Mosel

OpenSolver

R

Suggestions?
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HiGHS: Access

Open-source (MIT license)

GitHub: ERGO-Code/HiGHS
COIN-OR

No third-party code required

Runs under Linux, Windows and MacOS

Build requires CMake 3.15

Compilation requires (eg) GNU gcc/g++ 4.9

Parallel code uses OpenMP

Documentation: https://www.HiGHS.dev/
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HiGHS: Performance

Problems

LP simplex: Mittelmann’s 40 problems
LP interior point: Mittelmann’s 46 problems
MIP: MIPLIB 2017 240 problems

Time allowance

LP: 3600s
MIP: 7200s

Solvers

LP: Clp
MIP: Cbc and SCIP

Machines: mixed!
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HiGHS: Simplex performance

Solved Time

Clp 38 1
HiGHS 32 2.5

Mittelmann benchmarks use an old version of HiGHS and give 29 solved and time
of 3.8 relative to Clp

Simplex performance improvement due to improved presolve and more reliable
primal simplex clean-up

Much scope for further improvement

Add dualisation

Add primal simplex switch

Add sifting

Use and improve parallel solver

Add Idiot crash and crossover

Improve Idiot crash
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HiGHS: Interior point performance

Solved Time

Clp 31 2.9
HiGHS 42 1

Clp fails on (only) 3 due to insufficient memory

HiGHS simply faster
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HiGHS: MIP performance

Cbc and SCIP results are on Mittelmann’s machine

HiGHS results are on Gottwald’s: comparable

Solved Time

Cbc 89 1.9
HiGHS (June 2021) 104 1.7
HiGHS (July 2021) 113 1.4
SCIP 125 1

“I must admit that HiGHS is beating Cbc big time” [PuLP user]

Significant further performance improvement expected

17 Problems not solved due to simplex bug
Scope for greater efficiency in simplex-MIP solver interaction
More features still to be added to MIP solver
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HiGHS: QP performance

No results to show

Solves 3 of the 7 strictly convex QPLIB instances

Very much “work in progress”
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HiGHS: The future

First formal release! End of August 2021?

Further interfaces

AMPL

MATLAB

Mosel

OpenSolver

R

Displace Clp, Cbc

Performance of HiGHS is generally superior
HiGHS is being developed actively
HiGHS is agile to demands of interfaces

“We could get rid of COIN-OR and just use HiGHS and IPOPT”
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HiGHS: Impact
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HiGHS: Impact (REF2021)

Animal feed formulation

Animal feed is blended from many ingredients

Multiple animals; multiple diets
Shared raw materials
Formulate at minimum cost!

Dantzig-Wolfe structure

min cT1 x1 + . . . + cTNxN
s.t. A01x1 + . . . + A0NxN ≤ b0

A1x1 = b1

. . .
...

ANxN = bN

x1 ≥ 0 . . . xN ≥ 0

Cargill (Format Solutions)

25-year relationship

Format software blends half the
world’s manufactured animal food

Farm food: O($1bn)
Pet food: O($10bn)
Trade commodities

HiGHS ten times faster than EMSOL
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High performance LP solvers: simplex and IPM

High performance MIP solver

Prototype QP solver

Language interfaces: C++, C, C#, FORTRAN, Python

Application interfaces: JuliaOpt, SciPy, PuLp, ...

Permissive license and no third-party code

Available for research and consultancy

https://www.HiGHS.dev/
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