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Introduction

I The main result is joint work with Gabriel Conant from 2020.
A preprint is available on arXiv.

I It is a structure theorem for finite, d-NIP, k-approximate,
subsets A of arbitrary groups G.

I A mixture of approximate subgroup theory
(Breuillard-Green-Tao-Hrushovski) and “tame” arithmetic
regularity theory (Conant-Pillay-Terry-Wolf).

I Also influenced by a recent paper by
Martin-Pizarro-Palacin-Wolf in the stable approximate
subgroup context.

I As in CPTI, CPTII, and Hrushovski, the methods of proof are
pseudofinite, and use generalized stable group theory.

I I will first discuss background and set the scene by looking at
various contexts or “regimes”.
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Graph regularity I

I We consider finite (bipartite) graphs (V,W,R) (so V , W are
finite sets and R ⊆ V ×W ).

I The Szemeredi regularity lemma says something nontrivial
about all such finite graphs:

I There are partitions V = V1 ∪ ... ∪ Vn, W = W1 ∪ ... ∪Wm

into a small numbers of pieces, such that

I almost all (Vi,Wj , R) are regular in the sense that sufficiently
large subgraphs have almost the same density.

I The notions of small, almost all, sufficiently large, almost the
same, depend on an (arbitrary) ε given in advance.

I More precisely: for all ε there is Nε such that for all finite
(V,W,R) there are partitions of V , W into at most Nε pieces
Vi, Wj , such that for all (i, j) /∈ Σ (where
| ∪(i,j)∈Σ Vi ×Wj | ≤ ε|V ×W |), (Vi,Wj , R) is “ε-regular”.
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Graph regularity II

I What we may call “tame” graph regularity is when attention
is restricted to those finite graphs which omit a fixed finite
graph G.

I When G is the d-half graph
({1, .., d}, {1, .., d}, {(i, j) : i ≤ j}) we obtain the class of
d-stable graphs.

I When G is arbitrary our graphs are all d-NIP for some d
depending on G.

I In any case, under such restrictions one obtains better
conclusions in the Szemeredi regularity lemma, with
homogeneity (complete or empty) replacing regularity and
sometimes with no exceptional set.

I Among the model theory references are Malliaris-Shelah and
Chernikov-Starchenko. I have a largely expository paper in
BSL 2020 “Domination and regularity”.
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Arithmetic regularity I

I Here, instead of all finite graphs, we consider all pairs (G,A)
where G is a finite group and A a subset of G. And we want
to say something about A.

I Notice that we obtain a bipartite graph (G,G,R) where
(x, y) ∈ R if x · y ∈ A, to which Szemeredi regularity applies,
but one might want to have the conclusion of Szemeredi
holding in a form compatible with the group structure. For
example a strong form of this would be:

I (*) The Vi and Wj are all cosets of some subgroup H of G.

I Arithmetic regularity was intiated by Green (2006) but
restricting himself to abelian groups G. He proved a Fourier
analytic statement, which in the case where G = Fn2 , DOES
give (*) above.

I The case of not necessarily abelian G is open.
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Arithmetic regularity II

I However in the tame case (where R is assumed to be d-stable
or d-NIP), we have strong structure theorems when G is not
necessarily abelian, CPT I, II (building on Terry-Wolf in
special abelian cases).

I For example, for any ε there is Nε such that for every finite
(G,A) with x · y ∈ A, d-stable, there is a (normal) subgroup
H of G of index at most Nε such that A is equal to a union
of cosets of H, up to a set of size ≤ ε|H|. In particular we
DO obtain (*), in a strong form.

I The more general d-NIP case is more complicated, with H
replaced by a so-called “Bohr neighbourhood” (as well as
existence of an exceptional set).

I However in all the conclusions, nothing non vacuous is said
about A unless A is sufficiently large, for example |A| ≥ ε|G|.
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Approximate subgroups I

I So what about making a statement about arbitrary, even very
small, subsets A of finite groups G, or even finite subsets A of
arbitrary, possibly infinite, groups G?

I It is pretty clear that nothing much can be said, even under
stable or NIP hypotheses on A, other than A being a finite
subset of G.

I So additional hypotheses have to be made, and one natural
one (coming out of a line of research in additive
combinatorics) is that of an approximate subgroup A of a
group G.

I We define a subset A of a group G to be a k-approximate
subgroup, if A is symmetric (A = A−1) and A ·A (the set of
products of pairs of elements from A) is covered by k (left)
translates of A.
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Approximate subgroups II

I Some related conditions on A are k-doubling or k-tripling:

I A ⊆ G has k-tripling if A is finite and |A ·A ·A| ≤ k|A|.
Likewise for k-doubling.

I A typical example of a finite 2-approximate subgroup of Z is
[−n,+n] for any n ∈ Z.

I A generalization of this is given by the notion of a generalized
arithmetic progression in Z and Freiman showed that finite
k-approximate subgroups of Z are closely related to (i.e.
commensurable with) initial segments of generalized
arithmetic progressions.

I This was generalized by Green-Rusza to arbitrary abelian
groups G in place of Z, using the notion of a coset
progression, taking into account the possible existence of
finite subgroups of G.

I Finally Breuillard, Green, Tao, extend this to not necessarily
abelian groups, where the notion of a “coset nilprogession”
replaces coset progression. More later.
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Approximate subgroups III

I Let us compare the arithmetic regularity regime to the
approximate subgroup regime in so far as conclusions are
concerned.

I In the former the structure theorem is relative to an epsilon,
but not in the latter.

I On the other hand in the latter, the structure theorem is only
up to commensurability, where X,Y ⊆ G are said to be
commensurable if finitely many translates of each of X,Y
cover the other, and where in the situation at hand, the
number of translates depends on k (as in k-approximate).

I The improvement when we assume in addition A being d-NIP
(i.e. x · y ∈ A is d-NIP) is that the structure theorem in terms
of coset nilprogressions is about A itself, rather than up to
bounded commensurability, but on the other hand there is still
an ε involved.

I In the rest of the talk, we give definitions and the precise
theorem, and if we have time, discuss the proof and methods.
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NIP

I Let M be a structure in language L and φ(x, y) an L-formula
(where x, y could be tuples). Then φ(x, y) is d-NIP (with
respect to M) if there do not exist ai, and bσ in M , for i ∈ [d]
and σ ⊆ [d] such that M |= φ(ai, bσ) iff i ∈ σ (for all i, σ).

I Let G be a group, and A a subset. We will say that A is
d-NIP in G if the (quantifier-free) formula x · y ∈ A is d-NIP
with respect to the structure (G, ·, A).

I Likewise we have the stronger properties of d-stability of a
formula φ(x, y) and d-stability of a subset A of a group G.

I As mentioned earlier, given a finite bipartite graph G there is
some d such that for any graph (V,W,R) which omits G, the
formula (x, y) ∈ R is d-NIP.
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Coset nilprogressions I

I Let G be an abelian group. By a generalised arithmetic
progression of rank d in G we mean the image of a
homomorphism from some d-dimensional box∏
i=1,..,d[−Li, Li] ⊂ Zd under a homomorphism π : Zd → G.

(Such an object is a 2d-approxomate subgroup of G).

I Properness means π is 1− 1. And to take account of finite
subgroups, a coset progression (of rank d) is something of the
form P0 +H where P0 is a generalized arithmetic progression
and H is a finite subgroup of G.

I The notion of a coset nilprogression is a certain nonabelian
generalization: in place of the box above, one considers a
“box” in the free nilpotent group of step r and rank k,
consisting of elements which can be written as a word in the
generators e1, ...., ek and their inverses and where ei and its
inverse appear at most Li times.
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Coset nilprogressions II

I And a (rank r, step s) nilprogession in G is the image of such
a box under a homomorphism to G. There is also a analogue
of properness, “c-normality” which I will not discuss.

I A coset nilprogression in G is a set P of the form P0H where
P0 is a nilprogression and H is a finite subgroup of G
normalized by P0.
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Statement of Theorem

Theorem 0.1
Suppose A is a finite subset of a group G, and A has k-tripling
and d-NIP. Given ε > 0, there is a coset nilprogression P ⊆ G, and
a subset Z ⊆ AP with |Z| < ε|A| (the error set) such that
(i) P ⊆ AA−1 ∩A−1A and A ⊆ CP for some C ⊆ A,
(ii) For some D ⊆ C, |(A∆DP ) \ Z| < ε|P |.
(iii) For g ∈ G \ Z, |gP ∩A| < ε|P | or |gP ∩A| > (1− ε)|P |.
Moreover rank and step and normal form of P , and the cardinality
of C, are bounded by constants depending only on d, k, ε. And if
G is abelian we can take P to be a (proper) coset progression.

I Note the k-tripling hypothesis, which is slightly weaker than
the approximate subgroup hypothesis, but essentially the same
under NIP.
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Comments on the statement

I In the main result of BGT, there is no NIP hypothesis, and no
ε, and in the conclusion no Z, and in (i) we have the weaker
statement P ⊆ (A ∪A−1)8 and (ii), (iii) are replaced by the
“bounded commensurability” condition that A is covered by
Ck translates of P .

I The conclusions (ii), (iii) in Theorem 0.1 are the typical
“tame arithmetic regularity” conditions, that outside a small
exceptional set A is essentially a bounded union of highly
structured objects: in this case translates of a coset
nilprogression.

I When G has exponent at most r, the coset nilprogession can
be replaced by a subgroup H of index depending on the data,
such that after throwing away the exceptional set Z A is a
union of cosets of H, up to a set of size at most ε|H|.
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Comments on the proof I

I The proof is essentially a nonstandard proof. Namely prove a
single statement in a nonstandard environment; a (saturated)
group G equipped with a pseudofinite subset A which has
k-tripling, with respect to the pseudofinite counting measure,
and A is d-NIP.

I (If one wants, consider G,A as living in a nonstandard model
of set theory which thinks A is finite.)

I The use of model theory or logic has two aspects: (a) proving
the relevant statement in the nonstandard (pseudofinite)
environment and (b) pulling it down suitably to obtain the
theorem.

I Part (b) is essentially routine. Part (a) is the main thing
although the current proof still involves going down here and
there and appealing to BGT. In any case, from here on it is
model theory.



Comments on the proof I

I The proof is essentially a nonstandard proof. Namely prove a
single statement in a nonstandard environment; a (saturated)
group G equipped with a pseudofinite subset A which has
k-tripling, with respect to the pseudofinite counting measure,
and A is d-NIP.

I (If one wants, consider G,A as living in a nonstandard model
of set theory which thinks A is finite.)

I The use of model theory or logic has two aspects: (a) proving
the relevant statement in the nonstandard (pseudofinite)
environment and (b) pulling it down suitably to obtain the
theorem.

I Part (b) is essentially routine. Part (a) is the main thing
although the current proof still involves going down here and
there and appealing to BGT. In any case, from here on it is
model theory.



Comments on the proof I

I The proof is essentially a nonstandard proof. Namely prove a
single statement in a nonstandard environment; a (saturated)
group G equipped with a pseudofinite subset A which has
k-tripling, with respect to the pseudofinite counting measure,
and A is d-NIP.

I (If one wants, consider G,A as living in a nonstandard model
of set theory which thinks A is finite.)

I The use of model theory or logic has two aspects: (a) proving
the relevant statement in the nonstandard (pseudofinite)
environment and (b) pulling it down suitably to obtain the
theorem.

I Part (b) is essentially routine. Part (a) is the main thing
although the current proof still involves going down here and
there and appealing to BGT. In any case, from here on it is
model theory.



Comments on the proof I

I The proof is essentially a nonstandard proof. Namely prove a
single statement in a nonstandard environment; a (saturated)
group G equipped with a pseudofinite subset A which has
k-tripling, with respect to the pseudofinite counting measure,
and A is d-NIP.

I (If one wants, consider G,A as living in a nonstandard model
of set theory which thinks A is finite.)

I The use of model theory or logic has two aspects: (a) proving
the relevant statement in the nonstandard (pseudofinite)
environment and (b) pulling it down suitably to obtain the
theorem.

I Part (b) is essentially routine. Part (a) is the main thing
although the current proof still involves going down here and
there and appealing to BGT. In any case, from here on it is
model theory.



Comments on the proof II

I Let H be the subgroup of G generated by A, a so-called
∨-definable group, being a union of the definable sets
A±m = Am ∪A−m ∪ {1} (each of which is covered by finiteky
many translates of the approximate group A±1).

I Let µ be the pseudofinite counting measure, normalized so
that µ(A) = 1. Then µ is <∞-valued on elements of the
“ring” R generated by the left-right translates of A.

I (Stabilizer theorem.) There is a smallest bounded index
R-type definable (normal) subgroup Γ of H, with
Γ ⊆ AA−1 ∩A−1A, and

I H/Γ with the logic topology is a locally compact group G,
and let π : H → G be the canonical surjective homomorphism.

I The main use of the NIP assumption is a “generic locally
compact domination” theorem:
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Comments on proofs III

I Let λ be Haar measure on G, let X be a set in R. Then there
is a closed set E ⊂ G of λ-measure 0 such that for all
c ∈ G \ Z, exactly one of π−1(c) ∩X, π−1(c) \X is “µ-wide”
(is not contained in a definable set of µ-measure 0).

I This domination statement, plus several more steps, including
appealing to (ultra) BGT, yield the following nonstandard
version of Theorem 0.1 which suffices:

I For any ε > 0 there is an internal coset nilprogression P in
normal form, and Z ⊆ AP with Z ∈ R and µ(Z) < ε, such
that P ⊆ AA−1 ∩A−1A, A is covered by finitely many
translates of P , for each g ∈ G \ Z, µ(gP ∩A) = 0 or
µ(gP \A) = 0. And A \ Z is a finite union of translates gP
of P , up to measure 0.
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Additional remarks

I In the case where A is d-stable, then in Theorem 0.1 there is
NO exceptional set Z, and P is replaced by a (finite)
subgroup of G.

I Why nilprogression in Theorem 0.1 and the nonstandard
version above? Because, BGT prove that the connected
component of H/Γ is an inverse limit of connected nilpotent
Lie groups.

I (And when H is “definable” then the connected component
of the compact group H/Γ is commutative.)

I ALSO, there is a model-theoretic measure-theoretic statement,
involving generically stable φ-measures and assuming residual
nilpotence of the connected component of the relevant H/Γ.


