Grothendieck rings Enriched Grothendieck ring

Enriched Grothendieck ring of a structure

Esther Elbaz

July 29, 2021

Esther Elbaz Enriched Grothendieck ring of a structure

Definitions

Definition

Let M be a structure. Def(M) is the set of definable subsets of $\cup_{n\in\mathbb{N}}M^n$.

Note: "definable" means "definable with parameters".

First quotient

If $A, B \in \text{Def}(M)$, $A \sim B$ if and only if, A is in definable bijection with B. [A]₁= equivalence class of A.

- 4 同 ト - 4 目 ト

Grothendieck rings Enriched Grothendieck ring Construction Examples

Laws of the future ring

Law +

 $[A]_1 + [B]_1 = [A' \cup B']_1$ where $[A]_1 = [A']_1$, $[B]_1 = [B']_1$ and $A' \cap B' = \emptyset$. Its neutral element is $[\emptyset]_1$.

Law \times

 $[A]_1 \times [B]_1 = [A \times B]_1.$ Its neutral element is $[\{*\}]_1.$

The Grothendieck Ring

$$(\operatorname{Def}(M)/\sim,+,\times)$$
 is a semi-ring but is not a ring:
 $[A]_1+[C]_1=[B]_1+[C]_1$ does not imply $[A]_1=[B]_1$.

Example

 $[1]_1$ doesn't have an inverse for +.

伺 ト イヨト イヨト

Construction Examples

Second quotient

If $a, b \in \mathsf{Def}(M)/\sim$, $a \simeq b$ if and only if $\exists c \in \mathsf{Def}(M)/\sim$ such that a+c=b+c .

Definition

There exists a unique (up to isomorphism) minimal ring that embeds $(\text{Def}(M)/\sim)/\simeq$: the Grothendieck ring of M.

Notation

The Grothendieck ring of M is denoted by $K_0(M)$. We denote by [A] the equivalence class of each $A \in Def(M)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{array}{l} [A] = [B] \Leftrightarrow \exists C \in Def(M), \\ \begin{cases} A \cap C = B \cap C = \emptyset \\ A \sqcup C \text{ and } B \sqcup C \text{ are in definable bijection.} \end{array}$$

з.

Examples

Finite structures

$$\mathcal{K}_0(M) \cong \mathbb{Z}, \mathbb{N} = \{x \in \mathcal{K}_0(M) | \exists A \in Def(M), [A] = x\}.$$

Trivial structure

Let M be an infinite set. In the trivial language $\{=\}$, $\mathcal{K}_0(M) = \mathbb{Z}[X]$.

- 4 同 ト 4 ヨ ト

Onto-Php

Theorem (J. Krajíček, T. Scanlon, '00)

$\mathsf{K}_0(M)$ is non trivial

 $\exists A \in Def(M)$ in definable bijection with $A \setminus \{*\}$.

Proof

- \Leftarrow : If A is in definable bijection with $A \setminus \{a\}$ $(a \in A)$, then $[A \setminus \{a\}] = [A]$ and $[\{a\}] = 0$.
- $\implies: 0 = 1$ means going back to Def(M) that there exists $A \in Def(M)$ such that [A] + 1 = [A].

- 4 同 ト - 4 目 ト

\mathbb{Q}_p (L. van den Dries, '03)

 $\mathsf{K}_0(\mathbb{Q}_p,\mathscr{L}_{\mathrm{ring}}) = \{0\}$

Formal Laurent series over finite fields (R. Cluckers, D. Haskell, '03)

 $\mathcal{K}_0(\mathbb{F}_q((t))) = \{0\}$ in $L_{ring} \cup \{t\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Real closed field

 $\mathcal{K}_0(\mathbb{R}) \cong \mathbb{Z}$. (J. Krajíček, T. Scanlon, '00)

Proof

Let χ Euler characteristic on \mathbb{R} valued in \mathbb{Z} . Let A, B such that $\chi(A) = \chi(B)$.

Is there C disjoint from A and B such that $A \sqcup C$ and $B \sqcup C$ are in definable bijection ?

Proof continued

Proof

X and Y in definable bijection
$$\Leftrightarrow \begin{cases} \dim(A) = \dim(B) \\ \chi(A) = \chi(B). \end{cases}$$

 $\forall C \text{ such that } \Leftrightarrow \begin{cases} \dim(C) > \max(\dim(A), \dim(B)) \\ A \cap C = B \cap C = \emptyset \end{cases}$
 $A \sqcup C \text{ is in definable bijection with } B \sqcup C.$

•
$$\mathbb{R} =]-\infty, 0[\sqcup \{0\} \sqcup]0, +\infty[$$

• $[\mathbb{R}] = []-\infty, 0[],$
• $[\mathbb{R}] = []0, +\infty[],$
• $\Rightarrow [\mathbb{R}] = 2[\mathbb{R}] + 1 \Rightarrow [\mathbb{R}] = -1.$

< □ > < □ > < □ > < □ > < □ > < □ > ... □

Remark

$$\forall k \in \mathbb{Z}, \exists A \in Def(\mathbb{R}), [A] = k.$$

Proof

k > 0: A finite set of cardinaliy k. k < 0: $[\mathbb{R} \times F]$ where |F| = -k.

- 4 同 1 4 回 1 4 回 1

- *M* finite structure \Rightarrow
 - $K_0(M) = \mathbb{Z}$,
 - [M] = |M|,
 - $\mathbb{N} = \{x \in K_0(M) | \exists A \in Def(M), [A] = x\}.$
- $\mathbb R$ real closed field \Rightarrow

•
$$K_0(\mathbb{R})=\mathbb{Z}$$
,

•
$$[\mathbb{R}] = -1$$
,

•
$$\mathbb{Z} = \{x \in \mathcal{K}_0(M) | \exists A \in Def(\mathbb{R}), [A] = x\}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Grothendieck rings Enriched Grothendieck ring Question Disjoint union of structures

Enriched Grothendieck ring

Enriched Grothendieck ring

• Keep track of the set of equivalence classes of definable sets.

글 🕨 🖌 글

Grothendieck rings Enriched Grothendieck ring Question Disjoint union of structures

Enriched Grothendieck ring

Enriched Grothendieck ring

- Keep track of the set of equivalence classes of definable sets.
- Keep track of the class of the structure.

(E)

Enriched ring

Definition

An enriched ring is a triple (R, a, P) where

- R is a (unital, commutative) ring,
- a ∈ R,
- $P \subseteq R$ stable by addition and multiplication such that P P = R, 0, 1, $a \in P$.

P is the set of positive elements.

We say that (R, a, P) is an **enriched ring** of R.

.

Definition

Let M be a structure.

We can associate to it the enriched ring $(K_0(M), [M], P(M))$ where $P(M) = \{x \in K_0(M) | \exists A \in Def(M), [A] = x\}$. It is called **enriched Grothendieck ring** of M.

4 B b

In previous work,

Theorem

For every $I \subseteq \mathbb{Z}[X]$ ideal, there exists a structure M such that $K_0(M) = \mathbb{Z}[X]/I$.

What are the enriched rings that are the enriched Grothendieck ring of a structure when $K_0(M) = \mathbb{Z}$ or $\mathbb{Z}/N\mathbb{Z}$?

Question Disjoint union of structures

Lemma

$$\begin{aligned} (\mathbb{Z}, k, P) \text{ is an enriched Grothendieck ring} \\ \Rightarrow \begin{cases} (\mathbb{Z}, k, P) = (\mathbb{Z}, k, \mathbb{Z}) \\ (\mathbb{Z}, k, P) = (\mathbb{Z}, k > 0, \mathbb{N}) \end{aligned}$$

Proof

 $\mathbb{N} \subseteq P.$

② If k < 0 in *P*, then $\forall m, n \in \mathbb{N}$, $mk + n \in P$ (stability by addition).

$$[M \setminus \{*\}] = [M] - 1 \Rightarrow [M] - 1 \in P$$

(日)

Theorem

The converse is true: every enriched ring of the form $(\mathbb{Z}, k, \mathbb{Z})$ or $(\mathbb{Z}, k > 0, \mathbb{N})$ is the enriched Grothendieck ring of a structure.

Theorem

Every enriched ring of the form $(\mathbb{Z}/N\mathbb{Z}, k, \mathbb{Z}/N\mathbb{Z})$ is the enriched Grothendieck ring of a structure.

Case $K_0(M) = \mathbb{Z}$

- Case $P = \mathbb{N}$: Let M be a finite structure of cardinality k. $\Rightarrow K_0(M) = \mathbb{Z}, [M] = k, P(M) = \mathbb{N}.$
- Case P = Z: For R: K₀(R) = Z, [R] = −1, P(R) = Z.
 F finite set of cardinality k.
 R × F admits (Z, -k, Z) as enriched Grothendieck ring ?
 R ⊔ F admits (Z, k − 1, Z) as enriched Grothendieck ring ?

Theorem

There exists a structure M with $K_0(M) = \mathbb{Z}/N\mathbb{Z}$ (and [M] = 0).

In the case where $K_0(M) = \mathbb{Z}/N\mathbb{Z}$, we want to prove that every $(\mathbb{Z}/N\mathbb{Z}, k, \mathbb{Z}/N\mathbb{Z})$ is an enriched Grothendieck ring

Question Disjoint union of structures

Disjoint union of structures

L and *L'* languages. $L_u = L \sqcup L'$. *M* a *L*-structure and *M'* a *L'*-structure. We want to make $M \sqcup M'$ a L_u -structure.

• • • • • • •

If $c \in L$ is a constant symbol, then c is interpreted in $M \sqcup M'$ as the constant c in the *L*-structure M.

向下 イヨト イヨト

- If $f \in L$ is a function symbol of arity n, then f is interpreted
 - on M^n as the function f in the L-structure M,
 - on the complementary of M^n as a constant function equal to c' where $c' \in M'$.

周 ト イ ヨ ト イ ヨ ト

If $R \in L$ is a relation symbol of arity n, then R is interpreted

- on M^n as the relation R in the L-structure M,
- on the complementary of M^n as the multi-diagonal: if $(x_1, \ldots, x_n) \in (M \sqcup M')^n \setminus M^n$, then $M \sqcup M' \models R(x_1, \ldots, x_n) \Leftrightarrow x_1 = \ldots = x_n$.

伺下 イヨト イヨト

Definition

Let M be an L-structure and M' be an L'-structure. Let $M \sqcup M'$ be the disjoint union of M and M' considered as an $L \sqcup L'$ -structure. We say that the $L \sqcup L'$ -structure $M \sqcup M'$ is the **disjoint union** of M and M'.

Definable sets

Lemma

Let $M \sqcup M'$ be the disjoint union of M and M'. Any definable set of $M \sqcup M'$ is a (finite) Boolean combination of sets of the form

- A with $A \in Def(M)$,
- B with $B \in Def(M')$,
- $\prod_{i=1}^{n} A_i$ where $A_i \in Def(M) \cup Def(M')$.

Proposition

Let $M \sqcup M'$ be the disjoint union of two structures. Then $K_0(M \sqcup M')$ is equal to $K_0(M) \otimes_{\mathbb{Z}} K_0(M')$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma

- $i_1: K_0(M) \hookrightarrow K_0(M \sqcup M'), i_2: K_0(M') \hookrightarrow K_0(M \sqcup M')$
- $[M \sqcup M'] = i_1([M]) + i_2([M']),$
- $P(M \sqcup M') = i_1(P(M)) + i_2(P(M')).$

- 4 同 ト - 4 目 ト

Corollary

Let *M* be an structure whose enriched Grothendieck ring is $(K_0(M), [M], P(M))$. Let *F* be a finite set. Then the enriched Grothendieck ring of $M \sqcup F$ is $(K_0(M), [M] + |F|, P(M))$.

Proposition

Let k > 0 and F of cardinality k + 1. Then the enriched Grothendieck ring of $\mathbb{R} \sqcup F$ is $(\mathbb{Z}, k, \mathbb{Z})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

Let k < 0. Then $(\mathbb{Z}, k, \mathbb{Z})$ is the enriched Grothendieck ring of the disjoint union of -k copies of \mathbb{R} .

Theorem

There exists a structure *M* whose enriched Grothendieck ring is $(\mathbb{Z}/N\mathbb{Z}, 0, \mathbb{Z}/N\mathbb{Z})$

Lemma

Every enriched ring of $\mathbb{Z}/N\mathbb{Z}$ is the enriched Grothendieck ring of a structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you !

イロト イヨト イヨト イヨト

2