Fractal Dimensions and Büchi Automata

Dimension \& definability of r-regular subsets of \mathbb{R}. Joint work with Christian Schulz.

Alexi Block Gorman
The Fields Institute

Formal definition

An automaton is a special 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that:

Formal definition

An automaton is a special 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) such that:

- Q is the set of states (e.g., $\left\{q_{0}, q_{1}\right\}$),

Formal definition

An automaton is a special 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) such that:

- Q is the set of states (e.g., $\left\{q_{0}, q_{1}\right\}$),
- Σ is a finite alphabet (e.g. $\{0,1\}$),

Formal definition

An automaton is a special 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) such that:

- Q is the set of states (e.g., $\left\{q_{0}, q_{1}\right\}$),
- Σ is a finite alphabet (e.g. $\{0,1\}$),
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, or rather partial function $\left(q_{i}, \alpha\right) \mapsto q_{j} \mid \emptyset$,

Formal definition

An automaton is a special 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) such that:

- Q is the set of states (e.g., $\left\{q_{0}, q_{1}\right\}$),
- Σ is a finite alphabet (e.g. $\{0,1\}$),
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, or rather partial function $\left(q_{i}, \alpha\right) \mapsto q_{j} \mid \emptyset$,
- q_{0} is the initial state,

Formal definition

An automaton is a special 5 -tuple ($Q, \Sigma, \delta, q_{0}, F$) such that:

- Q is the set of states (e.g., $\left\{q_{0}, q_{1}\right\}$),
- Σ is a finite alphabet (e.g. $\{0,1\}$),
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function, or rather partial function $\left(q_{i}, \alpha\right) \mapsto q_{j} \mid \emptyset$,
- q_{0} is the initial state,
- F is the set of accept states (denoted by bold circles or double circles).

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$.

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$. Regular languages, the subsets of Σ^{*} recognized by some automaton, are closed under the following:

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$. Regular languages, the subsets of Σ^{*} recognized by some automaton, are closed under the following:

- complement

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$. Regular languages, the subsets of Σ^{*} recognized by some automaton, are closed under the following:

- complement
- union \& intersection

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$. Regular languages, the subsets of Σ^{*} recognized by some automaton, are closed under the following:

- complement
- union \& intersection
- concatenation

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$. Regular languages, the subsets of Σ^{*} recognized by some automaton, are closed under the following:

- complement
- union \& intersection
- concatenation
- Kleene star

Regular languages

For a finite alphabet Σ, let Σ^{*} denote all strings Σ generates.
Call any subset $L \subseteq \Sigma^{*}$ a language. Say that automaton A recognizes L if for all $w \in \Sigma^{*}$ running A on input w ends in an accept state iff $w \in L$. Regular languages, the subsets of Σ^{*} recognized by some automaton, are closed under the following:

- complement
- union \& intersection
- concatenation
- Kleene star

The class of regular expressions (e.g. 0*10* $\left.\cup(00,11)^{*}\right)$ generated from Σ via union, concatenation, and Kleene star is equivalent to the class of regular languages.

Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.

Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.

Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.

Interpret input strings for this automaton as
 then " $d_{1} d_{2}$. .." is the input.

Büchi automata

Büchi automata (BA) differ from traditional automata in that they accept infinite length strings rather than finite length. We say the automaton accepts a string if it enters an accept state infinitely often.

Interpret input strings for this automaton as
 then " $d_{1} d_{2} \ldots$. . is the input.

Say that $X \subseteq[0,1]$ is r-regular if there is a BA that accecepts an input iff the input is a base- r expansion of some $x \in X$.

ω-languages

ω-languages, the subsets of Σ^{ω} recognized by some Büchi automaton, can be expressed in terms of regular languages.

ω-languages

ω-languages, the subsets of Σ^{ω} recognized by some Büchi automaton, can be expressed in terms of regular languages.

Theorem (Büchi, '62)

For every $L \subseteq \Sigma^{\omega}$ recognized by a Büchi automaton there are regular languages $V_{1}, \ldots, V_{k}, W_{1}, \ldots, W_{k}$ such that

$$
L=\bigcup_{i=1}^{k} V_{i} W_{i}^{\omega} .
$$

ω-languages

ω-languages, the subsets of Σ^{ω} recognized by some Büchi automaton, can be expressed in terms of regular languages.

Theorem (Büchi, '62)

For every $L \subseteq \Sigma^{\omega}$ recognized by a Büchi automaton there are regular languages $V_{1}, \ldots, V_{k}, W_{1}, \ldots, W_{k}$ such that

$$
L=\bigcup_{i=1}^{k} V_{i} W_{i}^{\omega} .
$$

For the Cantor set, $\mathscr{C}=\{0,2\}^{\omega}$

$$
\text { For } \mathbb{D}:=\left\{\frac{m}{2^{n}}: m, n \in \mathbb{N}, m \leq 2^{n}\right\}, \mathbb{D}=\{0,1\}^{*} 0^{\omega}
$$

Connection to first-order logic

Connection to first-order logic

Definition

Let $V_{r}(x, u, k)$ be a ternary predicate on \mathbb{R} that holds precisely if $u=r^{-n}$ for some $n \in \mathbb{N}_{>0}$ and the $n^{\text {th }}$ digit of the base-r representation of x is k.

Connection to first-order logic

Definition

Let $V_{r}(x, u, k)$ be a ternary predicate on \mathbb{R} that holds precisely if $u=r^{-n}$ for some $n \in \mathbb{N}_{>0}$ and the $n^{\text {th }}$ digit of the base-r representation of x is k.

Theorem (Boigelot, Rassart \& Wolper, '98)

A subset $X \subseteq[0,1]^{n}$ is r-regular iff X is 0 -definable in $\left(\mathbb{R},<, 0,+, V_{r}\right)$.

Connection to first-order logic

Definition

Let $V_{r}(x, u, k)$ be a ternary predicate on \mathbb{R} that holds precisely if $u=r^{-n}$ for some $n \in \mathbb{N}_{>0}$ and the $n^{\text {th }}$ digit of the base-r representation of x is k.

Theorem (Boigelot, Rassart \& Wolper, '98)

A subset $X \subseteq[0,1]^{n}$ is r-regular iff X is 0 -definable in $\left(\mathbb{R},<, 0,+, V_{r}\right)$.

Corollary

The theory of $\left(\mathbb{R},<, 0,+, V_{r}\right)$ is decidable.

Fractal dimensions

Let $X \subseteq \mathbb{R}^{d}$ be nonempty \& bounded.

Fractal dimensions

Let $X \subseteq \mathbb{R}^{d}$ be nonempty \& bounded.

- The Box-counting dimension of X is given by:

$$
d_{B}(X)=\limsup _{\varepsilon \rightarrow 0} \frac{\log N(X, \varepsilon)}{\log \frac{1}{\varepsilon}}=\liminf _{\varepsilon \rightarrow 0} \frac{\log N(X, \varepsilon)}{\log \frac{1}{\varepsilon}}
$$

where $N(X, \varepsilon)$ is the \# of sets of the form

$$
I_{z}=\left[z_{1} \varepsilon,\left(z_{1}+1\right) \varepsilon\right] \times \cdots \times\left[z_{d} \varepsilon,\left(z_{d}+1\right) \varepsilon\right]
$$

needed to cover X, where $\vec{z}=\left(z_{1}, \ldots, z_{d}\right)$ are integers.

Fractal dimensions continued

- Define Hausdorff s-measure of X as follows:

$$
\begin{aligned}
\mu_{H}^{s}(X)=\liminf _{\varepsilon \rightarrow 0}\{ & \sum_{i=1}^{\infty}\left(\operatorname{Diam} U_{i}\right)^{s}:\left\{U_{i}\right\}_{i} \text { is a collection sets } \\
& \text { of diameter at most } \varepsilon \text { covering } X\}
\end{aligned}
$$

Fractal dimensions continued

- Define Hausdorff s-measure of X as follows:

$$
\begin{aligned}
& \mu_{H}^{s}(X)=\liminf _{\varepsilon \rightarrow 0}\left\{\sum_{i=1}^{\infty}\left(\text { Diam } U_{i}\right)^{s}:\left\{U_{i}\right\}_{i}\right. \text { is a collection sets } \\
& \text { of diameter at most } \varepsilon \text { covering } X\}
\end{aligned}
$$

The Hausdorff dimension of X is given by: $d_{H}(X)$ is the unique $s \in \mathbb{R}$ such that

Fractal dimensions continued

- Define Hausdorff s-measure of X as follows:

$$
\begin{aligned}
& \mu_{H}^{s}(X)=\liminf _{\varepsilon \rightarrow 0}\left\{\sum_{i=1}^{\infty}\left(\text { Diam } U_{i}\right)^{s}:\left\{U_{i}\right\}_{i}\right. \text { is a collection sets } \\
& \text { of diameter at most } \varepsilon \text { covering } X\}
\end{aligned}
$$

The Hausdorff dimension of X is given by: $d_{H}(X)$ is the unique $s \in \mathbb{R}$ such that

$$
s^{\prime}>s \Longrightarrow \mu_{H}^{s^{\prime}}(X)=0 \& s^{\prime}<s \Longrightarrow \mu_{H}^{s^{\prime}}(X)=\infty
$$

Fractal dimensions continued

- Define Hausdorff s-measure of X as follows:

$$
\begin{aligned}
& \mu_{H}^{s}(X)=\liminf _{\varepsilon \rightarrow 0}\left\{\sum_{i=1}^{\infty}\left(\operatorname{Diam} U_{i}\right)^{s}:\left\{U_{i}\right\}_{i}\right. \text { is a collection sets } \\
& \text { of diameter at most } \varepsilon \text { covering } X\}
\end{aligned}
$$

The Hausdorff dimension of X is given by:
$d_{H}(X)$ is the unique $s \in \mathbb{R}$ such that

$$
s^{\prime}>s \Longrightarrow \mu_{H}^{s^{\prime}}(X)=0 \& s^{\prime}<s \Longrightarrow \mu_{H}^{s^{\prime}}(X)=\infty
$$

In general for $X \subseteq \mathbb{R}^{n}$ these dimensions satisfy the inequality $d_{H}(X) \leq d_{B}(X)$.

Fractal example

For the Cantor set \mathscr{C}, computing the dimensions shows

$$
d_{H}(\mathscr{C})=\log _{3}(2)=d_{B}(\mathscr{C})
$$

Fractal example

For the Cantor set \mathscr{C}, computing the dimensions shows

$$
d_{H}(\mathscr{C})=\log _{3}(2)=d_{B}(\mathscr{C})
$$

For $\mathbb{D}=\left\{\frac{m}{2^{n}}: m, n \in \mathbb{N}, m \leq 2^{n}\right\}$, computing dimensions gives

$$
d_{H}(\mathbb{D})=0 \quad \& \quad d_{B}(\mathbb{D})=1
$$

When dimensions agree...

Fix $r>0$, and let $X^{\text {pre }}=\left\{x_{(1, n)}: n \in \mathbb{N}, x \in X\right\}$ denote all prefixes of X in base- r.

When dimensions agree...

Fix $r>0$, and let $X^{\text {pre }}=\left\{x_{(1, n)}: n \in \mathbb{N}, x \in X\right\}$ denote all prefixes of X in base- r. Define the entropy of $X \subseteq \Sigma^{*}$ by:

When dimensions agree...

Fix $r>0$, and let $X^{\text {pre }}=\left\{x_{(1, n)}: n \in \mathbb{N}, x \in X\right\}$ denote all prefixes of X in base-r. Define the entropy of $X \subseteq \Sigma^{*}$ by:

$$
h(X)=\limsup _{n \rightarrow \infty} \frac{\log \left(\left|\left\{x_{(1, n)}: x \in X\right\}\right|\right)}{n}
$$

When dimensions agree...

Fix $r>0$, and let $X^{\text {pre }}=\left\{x_{(1, n)}: n \in \mathbb{N}, x \in X\right\}$ denote all prefixes of X in base- r. Define the entropy of $X \subseteq \Sigma^{*}$ by:

$$
h(X)=\limsup _{n \rightarrow \infty} \frac{\log \left(\left|\left\{x_{(1, n)}: x \in X\right\}\right|\right)}{n} .
$$

Fact

Let X be an r-regular subset of $[0,1]^{d}$. Then:

$$
d_{B}(X)=\frac{1}{\log r} h\left(X^{\text {pre }}\right)
$$

If X is also closed, $d_{H}(X)=d_{B}(X)$ as well.

When dimensions disagree...

Definition

In a finite or Büchi automaton \mathscr{A} with states indexed by $i \in I$, the cycle language $C_{i}(\mathscr{A}) \subseteq \Sigma^{*}$ contains all strings $w \in \Sigma^{*}$ such that there is a run of \mathscr{A} from state i to itself via w.

When dimensions disagree...

Definition

In a finite or Büchi automaton \mathscr{A} with states indexed by $i \in I$, the cycle language $C_{i}(\mathscr{A}) \subseteq \Sigma^{*}$ contains all strings $w \in \Sigma^{*}$ such that there is a run of \mathscr{A} from state i to itself via w.

Theorem (B. G., Schulz, 2021+)

Let \mathscr{A} with states indexed by $i \in I$ be a trim Büchi automaton, and let \mathscr{A} recognize X. Let $X_{i}=C_{i}(\mathscr{A})^{\omega}$, and let F be the set of indices of accept states in \mathscr{A}. Then:

When dimensions disagree...

Definition

In a finite or Büchi automaton \mathscr{A} with states indexed by $i \in I$, the cycle language $C_{i}(\mathscr{A}) \subseteq \Sigma^{*}$ contains all strings $w \in \Sigma^{*}$ such that there is a run of \mathscr{A} from state i to itself via w.

Theorem (B. G., Schulz, 2021+)

Let \mathscr{A} with states indexed by $i \in I$ be a trim Büchi automaton, and let \mathscr{A} recognize X. Let $X_{i}=C_{i}(\mathscr{A})^{\omega}$, and let F be the set of indices of accept states in \mathscr{A}. Then:
(i) $d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right)$;

When dimensions disagree...

Definition

In a finite or Büchi automaton \mathscr{A} with states indexed by $i \in I$, the cycle language $C_{i}(\mathscr{A}) \subseteq \Sigma^{*}$ contains all strings $w \in \Sigma^{*}$ such that there is a run of \mathscr{A} from state i to itself via w.

Theorem (B. G., Schulz, 2021+)

Let \mathscr{A} with states indexed by $i \in I$ be a trim Büchi automaton, and let \mathscr{A} recognize X. Let $X_{i}=C_{i}(\mathscr{A})^{\omega}$, and let F be the set of indices of accept states in \mathscr{A}. Then:
(i) $d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right)$;
(ii) $d_{B}(X)=\max _{i \in I} d_{H}\left(X_{i}\right)$.

When dimensions disagree...

$$
\begin{aligned}
& d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right) \\
& d_{B}(X)=\max _{i \in I} d_{H}\left(X_{i}\right)
\end{aligned}
$$

When dimensions disagree...

$$
\begin{aligned}
& d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right) \\
& d_{B}(X)=\max _{i \in I} d_{H}\left(X_{i}\right)
\end{aligned}
$$

When dimensions disagree...

$$
\begin{aligned}
& d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right) \\
& d_{B}(X)=\max _{i \in I} d_{H}\left(X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\max _{i \in F} d_{H}\left(X_{i}\right) & =d_{H}(\mathscr{C}) \\
\max _{i \in I} d_{H}\left(X_{i}\right) & =d_{H}(\mathscr{C}) \\
& =\log _{3}(2)
\end{aligned}
$$

When dimensions disagree...

$$
\begin{aligned}
& d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right) \\
& d_{B}(X)=\max _{i \in I} d_{H}\left(X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\max _{i \in F} d_{H}\left(X_{i}\right) & =d_{H}(\mathscr{C}) \\
\max _{i \in I} d_{H}\left(X_{i}\right) & =d_{H}(\mathscr{C}) \\
& =\log _{3}(2)
\end{aligned}
$$

When dimensions disagree...

$$
\begin{aligned}
& d_{H}(X)=\max _{i \in F} d_{H}\left(X_{i}\right) \\
& d_{B}(X)=\max _{i \in I} d_{H}\left(X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\max _{i \in F} d_{H}\left(X_{i}\right) & =d_{H}(\mathscr{C}) \\
\max _{i \in I} d_{H}\left(X_{i}\right) & =d_{H}(\mathscr{C}) \\
& =\log _{3}(2)
\end{aligned}
$$

$$
\begin{aligned}
& \max _{i \in F} d_{H}\left(X_{i}\right)=d_{H}\left(0^{\omega}\right)=0 \\
& \max _{i \in I} d_{H}\left(X_{i}\right)=d_{H}\left(\Sigma^{\omega}\right)=1
\end{aligned}
$$

Applications to reducts of $\left(\mathbb{R},<,+, V_{r}\right)$

Applications to reducts of $\left(\mathbb{R},<,+, V_{r}\right)$

"Cantor set" means a compact set that has no isolated points and has no interior.

Applications to reducts of $\left(\mathbb{R},<,+, V_{r}\right)$

"Cantor set" means a compact set that has no isolated points and has no interior.

Theorem (B. G., Schulz, 2021+)

Suppose \mathscr{R}^{\prime} is a reduct of $\left(\mathbb{R},<,+, V_{r}\right)$. If there exists $A \subseteq[0,1]$ definable in \mathscr{R}^{\prime} such that $d_{H}(A) \neq d_{B}(A)$, then either a Cantor set is definable in \mathscr{R}^{\prime}, or some definable unary set is dense and codense in a subinterval of $[0,1]$.

Applications to reducts of $\left(\mathbb{R},<,+, V_{r}\right)$

"Cantor set" means a compact set that has no isolated points and has no interior.

Theorem (B. G., Schulz, 2021+)

Suppose \mathscr{R}^{\prime} is a reduct of $\left(\mathbb{R},<,+, V_{r}\right)$. If there exists $A \subseteq[0,1]$ definable in \mathscr{R}^{\prime} such that $d_{H}(A) \neq d_{B}(A)$, then either a Cantor set is definable in \mathscr{R}^{\prime}, or some definable unary set is dense and codense in a subinterval of $[0,1]$.

Partial converse: If A is a Cantor set definable in \mathscr{R}^{\prime} then there exists a definable set A^{\prime} such that $d_{H}\left(A^{\prime}\right) \neq d_{B}\left(A^{\prime}\right)$. Similarly if A is dense and codense in some interval $J \subseteq[0,1]$ and the automaton that recognizes A is strongly connected.

