Fractal Dimensions and Buchi Automata
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Q is the set of states (e.g., {qo, 91}),

2 is a finite alphabet (e.g. {0,1}),

5 : Q x £ — Qs atransition function, or rather partial
function (q;, a) — q;|9,

Qo is the initial state,

F is the set of accept states (denoted by bold circles or
double circles). 112
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Regular languages

For a finite alphabet Z, let Z* denote all strings X generates.
Call any subset L € £* a language. Say that automaton A
recognizes L if for all w € Z* running A on input w ends in an
accept state iff w € L. Regular languages, the subsets of X *
recognized by some automaton, are closed under the following:

e complement

e union & intersection
e concatenation

e Kleene star

The class of regular expressions (e.g. 0*10* U (00, 11)*)
generated from X via union, concatenation, and Kleene star is
equivalent to the class of regular languages. 212
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Interpret  input  strings
for this automaton as
ternary representations
for points in [0,1], i.e. if
X = dil+ dog + ... (with
digits dy, db, ... € {0,1,2})
then “djd>...” is the input.

Say that X € [0, 1] is r-regular if there is a BA that accecepts
an input iff the input is a base-r expansion of some x € X.
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w-languages, the subsets of Z“ recognized by some Blchi
automaton, can be expressed in terms of regular languages.

Theorem (Buchi, '62)

For every L € £® recognized by a Blichi automaton there are
regular languages V4, .. ., Vi, Wy, ..., Wy such that

For the Cantor set, ¢ = {0,2}¢
ForD::{%:m,neN,mSZ”},D: {0,1}*0“
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Connection to first-order logic

Definition
Let V,(x, u, k) be a ternary predicate on R that holds precisely

if u=r=" for some n € N.q and the n'" digit of the base-r
representation of x is k.

Theorem (Boigelot, Rassart & Wolper, '98)

A subset X € [0,1]" is r-regular iff X is @-definable in
(]RI <I OI +/ Vr)'

Corollary
The theory of (R, <, 0, +, V,) is decidable.
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Fractal dimensions

Let X € RY be nonempty & bounded.

e The Box-counting dimension of X is given by:

log N(X, € log N(X, ¢€)
dg(X) = limsup Lﬂ = lim infgi1
£—0 log - e—0 log -

where N(X, €) is the # of sets of the form
I =1[z15,(zy + 1)e] x + -+ X [24¢, (24 + 1)e]
needed to cover X, where 2 = (z, ..., Zg) are integers.
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Fractal dimensions continued
e Define Hausdorff s-measure of X as follows:
o0
(X)) = Iirgli(r)ﬁ { ;(Diam Uj)? : {U;};is a collection sets

of diameter at most € covering X}
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Fractal dimensions continued
e Define Hausdorff s-measure of X as follows:
o0
(X)) = Iirgli(r)ﬁ { ;(Diam Uj)? : {U;};is a collection sets
of diameter at most € covering X}

The Hausdorff dimension of X is given by:
dy(X) is the unique s € R such that

§>s = pS(X)=08&5" <5 = pf(X) =00

In general for X € R" these dimensions satisfy the inequality
dx(X) < dp(X).
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Fractal example

For the Cantor set ¥, computing the dimensions shows

dn(€) = logs(2) = ds(¥).
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Fractal example

nnonn nnoun

For the Cantor set ¥, computing the dimensions shows
dr(€) = logs(2) = d(%).

For D = {zﬂn :mneN,m< 2”}, computing dimensions gives

dv(D)=0 & dg(D)=1.
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When dimensions agree...

Fix r > 0, and let XP"® = {x(1,n) : n €N, x € X} denote all
prefixes of X in base-r. Define the entropy of X € Z* by:

[ n - X
H(X) = lim sup og([{x1,m: x € }I)'

n— oo n

Let X be an r-regular subset of [0,1]9. Then:

1
ds(X) = —h(XP®).
log r

If X is also closed, dy(X) = dg(X) as well.
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When dimensions disagree...

Definition

In a finite or Blichi automaton .« with states indexed by i € |,
the cycle language Ci(.«/) € £* contains all strings w € Z*
such that there is a run of .<f from state i to itself via w.

1012



When dimensions disagree...

Definition
In a finite or Blichi automaton .« with states indexed by i € |,

the cycle language Ci(.«/) € £* contains all strings w € Z*
such that there is a run of </ from state i to itself via w.

Theorem (B. G., Schulz, 2021+)

Let .of with states indexed by i € | be a trim Blichi automaton,
and let .«f recognize X. Let Xj = Ci(.«)?, and let F be the set
of indices of accept states in .<f . Then:

1012



When dimensions disagree...

Definition
In a finite or Blichi automaton .« with states indexed by i € |,

the cycle language Ci(.«/) € £* contains all strings w € Z*
such that there is a run of </ from state i to itself via w.

Theorem (B. G., Schulz, 2021+)

Let .of with states indexed by i € | be a trim Blichi automaton,
and let .«f recognize X. Let Xj = Ci(.«)?, and let F be the set
of indices of accept states in .<f . Then:

(i) du(X) = maxjer du(X;);

1012



When dimensions disagree...

Definition

In a finite or Blichi automaton .« with states indexed by i € |,
the cycle language Ci(.«/) € £* contains all strings w € Z*
such that there is a run of .<f from state i to itself via w.

Theorem (B. G., Schulz, 2021+)

Let .of with states indexed by i € | be a trim Blichi automaton,
and let .«f recognize X. Let Xj = Ci(.«)?, and let F be the set
of indices of accept states in .<f . Then:

(i) du(X) = maxjer du(X;);
(i) ds(X) = max;es dn(X;).

10/12



When dimensions disagree...

dx(X) =max dy (X))
ieF

ds(X) = max adu(X;)
I

1112



When dimensions disagree...

dy(X) =maxdy(X;)
ieF

de(X) = max dn(Xi)
I
0,2
start %

1112



When dimensions disagree...

dy(X) =maxdy(X;)
ieF

de(X) = max dn(Xi)
IS

0,2
start H

max dy(Xi) = du(6)
ieF

max d(X;) = dn(€)
I

= logs(2)

11/12



When dimensions disagree...

dy(X) =maxdy(X;)
ieF

de(X) = max dn(Xi)
I

0,2
0,1 0
start % 0
start —

max dy(Xi) = du(6)
ieF

max d(X;) = dn(€)
I

= logs(2)

11/12



When dimensions disagree...

dy(X) =maxdy(X;)
ieF

de(X) = max dn(Xi)
IS

0,2
start H

max dy(Xi) = du(6)
ieF

max d(X;) = dn(€)
I

= logs(2)

0,1 0
SSORNO

max dy(X;) = dw(0“) =0
i€F

max dn(Xi) = du(Z%) =1
e
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Applications to reducts of (R, <, +, V;)

“Cantor set” means a compact set that has no isolated points
and has no interior.

Theorem (B. G., Schulz, 2021+)

Suppose %’ is a reduct of (R, <, +, V;). If there exists

A C [0, 1] definable in #’ such that dy(A) # ds(A), then
either a Cantor set is definable in ', or some definable unary
set is dense and codense in a subinterval of [0, 1].

Partial converse: If A is a Cantor set definable in 2’ then there
exists a definable set A’ such that dy(A”) # dg(A’). Similarly if
Ais dense and codense in some interval J € [0, 1] and the

automaton that recognizes A is strongly connected. 1o1o



